Plan du chapitre «Milieux diélectriques»

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Plan du chapitre «Milieux diélectriques»"

Transcription

1 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 1

2 Milieux diélectriques On considère pour l instant des isolants, au sein desquels on ne peut trouver de courant (macroscopique) de charges libres Le champ E peut y être non nul! Expérience de Faraday : L introduction d un isolant entre les armatures d un condensateur en modifie la capacité Dans ce chapitre, on considèrera des champs éventuellement variables dans le temps Milieux diélectriques 2

3 Une molécule peut être assimilée à grande distance à un dipôle Un milieu à structure moléculaire sera caractérisé, à grande distance, par sa densité volumique de moments dipolaires (électriques) On pose : Densité volumique de moment dipolaire ou polarisation P = d p dv m -3 C/m 2 Un milieu diélectrique est une substance qui peut acquérir un moment dipolaire électrique sous l action d un champ électrique extérieur Cm Milieux diélectriques 3

4 La polarisation peut être spontanée ou induite La polarisation spontanée (très rare) concerne les milieux : Pyro-électriques (spontanément polarisés lorsqu ils sont chauffés) Exemple : la tourmaline Ferro-électriques (une polarisation persiste après qu ils aient été soumis pendant un temps à un champ électrique extérieur) Exemple : le titanate de baryum (BaTiO 3 ) La polarisation induite concerne a priori tous les matériaux Milieux diélectriques 4

5 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 1. Moments dipolaires des atomes et des molécules 2. Polarisation électronique 3. Polarisation ionique 4. Polarisation dipolaire 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 5

6 Cas d un atome Un atome isolé dans son état fondamental aura un moment dipolaire nul puisque les barycentres moyens G + et G - seront superposés (principe de Curie) Un champ E appliqué va décaler G + et induire un moment dipolaire (électrique) Ceci reste valable tant que E < seuil d ionisation Concerne par exemple He, Ne, Ar, Kr (gaz nobles) Milieux diélectriques 6

7 Cas d une molécule Il existe deux types de molécules, en fonction des positions relatives des barycentres G + et G - : Les molécules apolaires possèdent un centre de symétrie Mol. diatomiques constituées du même atome (H 2, N 2, O 2 ) Mol. linéaires (CO 2 ) Mol. à symétrie tétragonale ou benzémique (CH 4, C 6 H 6 ) Les molécules polaires ne possèdent pas de centre de symétrie Molécules diatomiques constituées de 2 atomes différents (HCl) ou molécules non linéaires (H 2 O) Molécules plus complexes Milieux diélectriques 7

8 Dipôles permanent et induits Les molécules polaires possèdent un moment permanent Les molécules apolaires sont polarisables par un champ E externe : elles se polarisent mutuellement sous l action du moment dipolaire électrique instantané de l autre molécule Pour une molécule apolaire, il peut exister les 2 types de moments Entre dipôles permanents : force de Keesom Entre dipôles permanents et induits : force de Debye Entre dipôles induits : force de London Milieux diélectriques 8

9 Ordre de grandeur Les distances inter-moléculaires sont 0,1 nm, les moments dipolaires sont en ordre de grandeur : p e d 1, , Cm On exprime souvent les moments dipolaires en Debye 1D = unité CGS de moment dipolaire (10-3 /c) 1 D 0, Cm Cm Les moments dipolaires sont alors voisins de l unité : 1,08 pour HCl ; 1,85 pour H 2 O et 1,5 pour NH 3 Milieux diélectriques 9

10 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 1. Moments dipolaires des atomes et des molécules 2. Polarisation électronique 3. Polarisation ionique 4. Polarisation dipolaire 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 10

11 Elle concerne tous les milieux et résulte du déplacement des nuages électroniques autour des atomes sous l action d un champ E l. On observe expérimentalement que : Pour une molécule apolaire p = α ε 0 E α : polarisabilité de la molécule Pour une molécule polaire G +- : barycentre des charges + et - δ p = α ε 0 E Milieux diélectriques 11

12 Sous l action d un champ E l, un milieu va acquérir une polarisation supplémentaire P donnée par : P = n p = n α ε 0 E En chimie, on utilise souvent les unités CGS. On a alors : α Physique = 4 π α chimie Milieux diélectriques 12

13 Modèle de Mossotti (1/2) On assimile un atome à un noyau (charge Ze) et à une distribution de charge électronique uniforme ρ de rayon a. L application d un champ E a extérieur déplace le nuage électronique wrt au noyau Neutralité électronique : Z e π a3 ρ = 0 r On note r le déplacement du noyau wrt au centre du nuage Nuage Noyau Forces s exerçant sur le noyau : Force électrique : Z e E a Force exercée par le nuage : Gauss : le champ E créé par ρ à la distance r s écrit : Z e E 4 π r 2 E = 1 4 ε 0 3 π r3 ρ E = ρ r = Z e 3ε 0 4 π ε 0 Milieux diélectriques 13 r a 3

14 Modèle de Mossotti (2/2) L équilibre du noyau s écrit : ( ) 2 Z e E a Z e 4 π ε 0 r a 3 = 0 r = 4 π ε 0 a3 Z e E a Il apparaît un moment dipolaire induit : La polarisabilité devient : p = Z e r p = α ε 0 E a α = 4 π a 3 La polarisabilité a la dimension d un volume! En mécanique quantique, on obtient : α MQ =18 π a 3 Pour H 2 dans son état fondamental, a = 52.9 pm α Exp = m 3 α Mossotti = m 3 α MQ = m 3 Milieux diélectriques 14

15 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 1. Moments dipolaires des atomes et des molécules 2. Polarisation électronique 3. Polarisation ionique 4. Polarisation dipolaire 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 15

16 Si une distribution de charges (globalement neutre) est soumise à un champ E, les charges + et se séparent légèrement d où apparition d un moment dipolaire : Au niveau moléculaire (déformation du nuage électronique) Polarisation électronique Au niveau du réseau cristallin (déformation des mailles) Polarisation ionique Pour un cristal cubique tel que NaCl, on observe : P = n p = n α ε 0 E S ajoute à la polarisation électronique qui apparaît pour un champ plus faible On appelle parfois polarisation par déformation les polarisations électronique et ionique Milieux diélectriques 16

17 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 1. Moments dipolaires des atomes et des molécules 2. Polarisation électronique 3. Polarisation ionique 4. Polarisation dipolaire 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 17

18 Concerne les molécules qui possèdent un moment dipolaire électrique permanent (H 2 O, HCl). Les dipôles se répartissent avec une orientation aléatoire Les dipôles tendent à minimiser leur énergie potentielle E p = p. E moyenne nulle car n très élevé P = 1 V p = 0 orientation préférentielle dans le 0 P sens du champ n p n : densité moléculaire volumique Milieux diélectriques 18

19 Lien avec la Physique Statistique Langevin a montré par la physique statistique que P(x) = n p L(x) avec L(x) = coth(x) 1 x et x = p E k B T L(x) : fonction de Langevin Si x << 1 (T 300 K) : P // E p 2 P = n α ε 0 E α = 3ε 0 k B T Forte variation avec T Si x >> 1 : P n p Les dipôles sont tous alignés sur le champ : saturation de la polarisation Milieux diélectriques 19

20 Egalement appelée polarisation par orientation On retiendra que la polarisation dipolaire varie fortement avec la température : p 2 α or = 3ε 0 k B T Ce n est pas le cas de la polarisation par déformation : La polarisation électronique ne dépend que de la nature de la molécule La polarisation ionique ne dépend que de la structure du cristal Milieux diélectriques 20

21 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 21

22 Dans l expérience de Faraday, la capacité C = Q/Φ augmente à charge constante : Le champ E doit donc diminuer : des charges opposées aux charges des armatures doivent apparaître. D où viennent-elles? Milieux diélectriques 22

23 Plaque uniformément polarisée On remplace (par la pensée) la plaque par un empilement de dipôles: La charge volumique sera nulle La charge surfacique sera non nulle On appelle charges de polarisation les excédents locaux de charges engendrés par la polarisation Milieux diélectriques 23

24 z Exemple d une polarisation dépendant de la position En remplaçant la polarisation par un empilement de dipôles, on observe cette fois que les densités volumiques et surfaciques sont non nulles Il apparaît un excédent de charges de polarisation dans le volume, lié à P/ z Milieux diélectriques 24

25 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 25

26 On appelle (V) le volume du diélectrique (initialement neutre) et (S) la surface qui l entoure. Le potentiel scalaire correspondant au diélectrique s écrit : On a : P Q. = QM Φ(M ) = Q P QM 1 4 π ε 0 ( ) Diélectrique + P. 1 Q QM P.QM QM 3 = Q P QM ( ) d3 Q + P. QM QM 3 D où : Φ(M ) = 1 P Q. 4 π ε Diélectrique 0 QM Q. QM P ( ) d3 Q Milieux diélectriques 26

27 Φ(M ) = 1 P Q. 4 π ε Diélectrique 0 QM Q. QM P ( ) d3 Q Théorème de la divergence Φ(M ) = 1 4 π ε 0 P. (S) n ds QM 1 4 π ε 0 Diélectrique Q.( P ) QM d3 Q Le potentiel Φ créé par la distribution de dipôles qui constitue le diélectrique est donc égal au potentiel créé par une distribution surfacique σ P et une distribution volumique ρ P telles que : σ P = P. n et ρ P =. P Savoir refaire ce calcul Milieux diélectriques 27

28 Φ(M ) = 1 4 π ε 0 P. (S) n ds QM 1 4 π ε 0 Diélectrique Q.( P ) QM d3 Q σ P = P. n et ρ P =. P Tout se passe comme si on pouvait remplacer le diélectrique et sa polarisation par les distributions de charges σ P et ρ P appelées charges de polarisation D un point de vue macroscopique, la polarisation P du diélectrique est équivalente pour Φ (ou E) à une distribution macroscopique de charges de polarisation Milieux diélectriques 28

29 Ces charges ne sont pas des charges «comme les autres». Ce ne sont pas des charges libres. On les appelle charges liées La signification physique du terme charge liée apparaîtra dans l étude des régimes variables Attention à bien distinguer σ P et ρ P des densités de charges libres σ et ρ si le milieu contient les deux types de charge Pour un régime statique, les charges de polarisation sont fictives du point de vue macroscopique. Les deux descriptions (en polarisation ou en charges) sont équivalentes Milieux diélectriques 29

30 La charge totale portée par le diélectrique est : Q = ρ P dv + σ P ds = Q = Q = 0 (V ) P. n ds + (S) (S) P. n (S) ds (V ). P dv + P. n (S) ds d ʹ après le théorème de la divergence On retrouve que le diélectrique est globalement neutre (car constitués de dipôles) Milieux diélectriques 30

31 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 31

32 Dans un diélectrique de polarisation P, (MG) s écrit : On introduit donc naturellement le vecteur D tel que : D est un vecteur axial. ε 0 E ( ) = ρ libre. La définition de D est étendue au vide pour lequel Le théorème de Gauss s écrit Sous sa forme locale : Sous sa forme intégrale : ( P ). ε 0 E + P D = ε 0 E. D = ρ libre D. ds (S) ( ) = ρ libre = Q libre. E = ρ libre + ρ P ε 0 D = ε 0 E + P C/m 2 Déplacement électrique - Induction électrique - Excitation électrique - Densité de flux électrique - Vecteur D Milieux diélectriques 32

33 Quand utilise-t-on D ou E? Dans le cas général :. D = ρ libre. E = ρ libre + ρ P ε 0 D. ds (S) = Q libre (S) E. ds = ρ tot ε 0 = Q tot ε 0 Les calculs avec E (et donc Φ) utilisent les densités totales. Les calculs avec D utilisent uniquement les densités de charges libres Il est possible d utiliser E ou D indifféremment En particulier, si «P est uniforme», alors ρ P =. P 0 Milieux diélectriques 33

34 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 34

35 Milieu linéaire si les composantes de sa polarisation sont des fonctions linéaires des composantes du champ électrique : P = ε 0 [ χ e ] E Valable pour E «pas trop fort». La limite dépend de chaque corps [χ e ] est le tenseur de susceptibilité diélectrique (matrice 3x3 sur une base orthonormée). Il existe une base principale sur laquelle : χ [ χ e ] = 0 χ χ 3 Les éléments diagonaux χ i sont les susceptibilités diélectriques principales Milieux diélectriques 35

36 Milieu homogène si [χ e ] est indépendante du point de l espace considéré Milieu isotrope si aucune direction n est privilégiée. Cela signifie en particulier que P n a aucune raison d être dans une autre direction que E : P = ε 0 χ e (M, E ) E χ e : susceptibilité électrique χ e est un nombre réel positif sans dimension La susceptibilité électrique χ e est parfois appelée simplement susceptibilité (et notée χ) lorsqu il n existe pas de risque de confusion Milieux diélectriques 36

37 Milieu linéaire, homogène et isotrope (ou lhi) si les valeurs propres de [χ e ] sont égales (isotropie) et indépendantes de l espace (homogénéité) et du champ (linéarité) : P = ε 0 χ E Quelques valeurs : Matériau Phase χ e Air Gaz H 2 Gaz O 2 Gaz H 2 O Liquide polaire 80 Benzène Liquide non polaire 2.8 NaCl Solide cristallin 5.8 BaTiO 3 Solide cristallin 1760 à 120 C Milieux diélectriques 37

38 Déplacement électrique pour un lhi Dans un lhi : P = ε 0 χ E D = ε 0 E + P = ε 0 (1+ χ) E = ε 0 ε r E = ε E Permittivité relative Permittivité absolue Le théorème de Gauss s écrit alors :. D = ρ libre. E = ρ libre = ρ libre ε 0 ε r ε D. ds (S) = Q libre (S) E. ds = Q libre = Q libre ε 0 ε r ε Milieux diélectriques 38

39 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 39

40 Le champ E 0 d un système de conducteurs dans le vide vérifie : E 0 = (MF) 0 (MG). E 0 = ρ libre ε 0 Par la pensée, on peut remplacer le vide par un lhi. Le champ E vérifie alors : E = 0 (MF) (MG).( ε 0 ε r E ) = ρ libre Soit encore : (MF) ε r E ( ) = 0 (MG). ε r E ( ) = ρ libre ε 0 On en déduit que E vérifie : E = E 0 < ε r E 0 Le champ dans le diélectrique lhi est toujours plus faible que dans le vide!! Milieux diélectriques 40

41 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 41

42 Plaque lhi plongée dans un condensateur Les charges libres des armatures créent le champ E 0 = σ libre ε 0 u z E 0 induit dans le diélectrique une polarisation P de même sens Il apparaît sur les faces du diélectrique des densités de charges de polarisation σ = P. n = ± P Ces charges créent un autre champ dans le diélectrique E P = σ P P u z = ε 0 ε 0 Milieux diélectriques 42

43 E P = P ε 0 E P est de sens opposé à E 0 Le champ total dans la plaque vaut : E = E 0 + E P = E 0 P ε 0 Généralisation : le champ E P créé par la polarisation est toujours de sens opposé à E 0 (loi de modération). On l appelle champ dépolarisant (même s il n est associé à aucun mécanisme de dépolarisation) Milieux diélectriques 43

44 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 44

45 Equations de Maxwell Pour une polarisation statique :. D = ρ libre B = µ 0 J E = 0. B = 0 (MG) (MA) (MF) (MΦ) On en déduit : (MF) : continuité de E T (MΦ) : continuité de B N (MA) : discontinuité de B T (MG) : discontinuité de D N E T2 = E T1 B T2 B T1 = µ 0 K n 1 2 B N2 = B N1 Seule modification par rapport au vide Milieux diélectriques 45

46 Discontinuité de D N σ libre : densité de charge libres sur la surface de séparation dans un modèle surfacique. On a : σ P1 = P 1. n 1 2 et σ P2 = P 2. n 1 2 La condition de passage pour la composante normale de E s écrit : E 2 ( E 1 ). n 1 2 = σ tot ε 0 = σ libre +σ P1 +σ P2 ε 0 Ou encore pour D N : ε 0 E 2 + P 2 ( ). n 1 2 ε 0 E 1 + P ( 1 ). ( D 1 ). n 1 2 = σ libre D 2 D N2 D N1 = σ libre n 1 2 n 1 2 = σ libre Milieux diélectriques 46

47 Réfraction des lignes de champ pour 2 lhi E T2 = E T1 D N2 D N1 = σ libre n 1 2 Si σ libre = 0, on en déduit : E 1 sin(α 1 ) = E 2 sin(α 2 ) ε 1 E 1 cos(α 1 ) = ε 2 E 2 cos(α 2 ) D où : tan(α 1 ) ε 1 = tan(α 2 ) ε 2 tan(α 1 ) ε r1 = tan(α 2 ) ε r2 Cette relation caractérise la réfraction des lignes de champ à la traversée de la surface (S) En passant dans un milieu de ε plus élevé, le champ E s écarte de la normale Milieux diélectriques 47

48 Exemple de la sphère uniformément polarisée E i = P 3ε 0 Les champs internes E i et externe E e créés par une polarisation P selon u z sont (cf TD) : et E e = P R 3 3ε 0 r 3 [ ] 2 cos(θ) u r +sin(θ) u θ A l extérieur, on retrouve le champ d un dipôle de moment placé au centre de la sphère Le signe «-» est très général et caractérise le champ dépolarisant p = 4 3 π R3 P P, E et D créés par la sphère (différents des champs totaux) Milieux diélectriques 48

49 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 49

50 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 50

51 Pour passer des densités vraies aux densités nivelées, on utilise une fonction de nivellement continue, centrée sur la charge en r i et à symétrie sphérique, vérifiant : f ( r ) dv =1 Espace Une charge ponctuelle q i en r i est remplacée par la fonction continue ρ i : ρ i = q i f ( r r i ) La densité nivelée s écrit : ρ = q i f ( r r i i ) La forme de la fonction f fait que dans la pratique, seules les charges proches de r sont prises en compte Milieux diélectriques 51

52 On extrapole ceci aux charges liées : On coupe le diél. en groupe de particules de charge totale nulle On note r N la position du centre de masse du groupe N et r Nk les positions relatives par rapport au centre de masse des k charges qui composent le groupe N Comme la charge q k est située en r N + r Nk, la densité nivelée devient : ρ( r ) = N k q Nk f ( r r N r Nk ) De la même manière, on peut écrire la polarisation P à partir des moments p N : P ( r ) = p N f ( r r N ) avec p N = q Nk r Nk N k Milieux diélectriques 52

53 ρ( r ) = N k q Nk f ( r r N r Nk ) Par définition, f varie peu à l échelle des variations de ρ, d où : f ( r r N r Nk ) f ( r r N ) r Nk. f ( r r N ) [ ] On en déduit ρ : ρ( r ) q Nk N k f ( r r N ) N k q Nk r Nk. f ( r r N ) [ ] = 0 car la charge totale de chaque groupe est nulle Moment dipolaire du groupe N p N = k q Nk r Nk Finalement : ρ( r ) p N N [ ]. f ( r r N ) Milieux diélectriques 53

54 On peut écrire : P ( r ) = p N f ( r r N ).( f p N ) = f.( p N )+ p N. ( f ) Puisque seul f dépend de r, on a :. P = p N f ( r r N ) N N ( ) En comparant avec l expression de ρ du transparent précédent, il reste : ρ( r ). P Cette expression ne conserve que le caractère dipolaire de la distribution. Les autres termes ne sont pas pris en compte Milieux diélectriques 54

55 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 1. Champ local E l 2. Formule de Clausius-Mossotti 3. Variations de la susceptibilité 4. Cas particuliers 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 55

56 Champs microscopiques et macroscopiques Le champ microscopique e est le champ dans le vide entre les particules du milieu. Il a une structure très «tourmentée» Dans un solide cristallin, il varie considérablement sur des distances de l ordre de la maille (quelques Å) Le champ macroscopique E est la moyenne spatiale de e au voisinage du point M E = 1 V V e dv V : volume mésoscopique E varie plus lentement que e. C est E qui est utilisé dans les équations de Maxwell On ne peut plus raisonner ainsi avec la polarisabilité Milieux diélectriques 56

57 On soumet un diélectrique à un champ E 0 constant créé par un condensateur Le champ macroscopique E dans le diélectrique est : E = E 0 + E P avec E P = P ε 0 E P : champ dépolarisant dû aux charges de polarisation portées par le diélectrique On considère une molécule M du diélectrique. Le champ qui agit sur M n est pas E qui est la moyenne spatiale du champ au voisinage de M. Le champ à considérer est le champ créé en M par toutes les molécules autres que M Ce champ local E l est le champ ressenti par la molécule C est lui qui intervient dans le moment dipolaire Milieux diélectriques 57

58 Pour les molécules apolaires, on utilise pour E l une expression due à Lorentz (1920) On suppose que la présence ou non de l élément polarisable ne modifie pas le champ autour de M On obtient alors : E l = E P E est le champ + 3ε 0 macroscopique Cette expression n est qu une approximation pour les milieux denses (liquides et solides) et est complètement fausse pour les cristaux non cubiques Pour les molécules polaires, on utilise pour E l une expression plus complexe due à Onsager (1936) Milieux diélectriques 58

59 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 1. Champ local E l 2. Formule de Clausius-Mossotti 3. Variations de la susceptibilité 4. Cas particuliers 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 59

60 Clausius-Mossotti (1/2) On a (en supposant la forme de Lorentz du champ local) : P P = n α ε 0 E l = n α ε 0 E + n α P = 3ε 0 1 n α /3 ε 0 E Polarisabilité Soit pour un milieu lhi : χ e = n α 1 n α /3 Savoir refaire ce calcul µ : masse volumique M : masse molaire N 0 : nombre d Avogadro ε r =1+ χ e µ = n M N 0 M ε r 1 = N 0 α µ ε r Formule de Clausius-Mossotti Milieux diélectriques 60

61 M ε r 1 = N 0 α µ ε r Clausius-Mossotti (2/2) L énorme intérêt de ce modèle est de permettre une mesure de α (paramètre microscopique) à l aide de paramètres macroscopiques Pour un milieu peu dense (χ e << 1) : χ n α M µ ε r 1 ( ) N 0 α Milieux diélectriques 61

62 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 1. Champ local E l 2. Formule de Clausius-Mossotti 3. Variations de la susceptibilité 4. Cas particuliers 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 62

63 Variation de la polarisabilité avec la température Pour un milieu peu dense : χ n α Milieux apolaires : Uniquement polarisation électronique et ionique qui ne dépendent pas de la température α ne doit pas dépendre de T Milieux polaires : La polarisation dipolaire dépend de la température : α = α elec +α ion +α dipolaire = α 0 + p 0 2 3ε 0 k B T Polarisations électronique et ionique Milieux diélectriques 63

64 α = α elec +α ion +α dipolaire = α 0 + HCl p 0 2 3ε 0 k B T HI CH 4 La pente de ses courbes fournit le moment dipolaire L ordonnée à l origine fournit la polarisabilité α 0 On en déduit que : HCl a un plus grand moment dipolaire que HI HI a une plus grande polarisabilité électronique que HCl (HI est plus grosse) CH 4 est apolaire (logique puisque possède un centre de symétrie) Milieux diélectriques 64

65 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 1. Champ local E l 2. Formule de Clausius-Mossotti 3. Variations de la susceptibilité 4. Cas particuliers 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 65

66 χ e = n α 1 n α /3 «Catastrophe de polarisation» ou ferroélectricité (1/2) χ e va diverger pour n α/3 = 1 Exemple du titanate de Baryum BaTiO 3 A 400 C, diélectrique «ordinaire» (χ e 500) Si T, n et χ e plusieurs milliers Lorsque T atteint sa température de Curie (120 C), apparition d un état ferroélectrique, caractérisé par l apparition d une polarisation spontanée en l absence de champ appliqué (χ e = ) P est alors due à l existence pour les ions Ti 4+ et Ba 2+ de nouvelles positions d équilibre décalées wrt aux nœuds du réseau initial Milieux diélectriques 66

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Plan du chapitre «Milieux magnétiques»

Plan du chapitre «Milieux magnétiques» Plan du chapitre «Milieux magnétiques» 1. Sources microscopiques de l aimantation en régime statique 2. Etude macroscopique de l aimantation en régime statique 3. Aimantation en régime variable 4. Les

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Complément : les gaz à effet de serre (GES)

Complément : les gaz à effet de serre (GES) Complément : les gaz à effet de serre (GES) n appel «gaz à effet de serre» un gaz dont les molécules absorbent une partie du spectre du rayonnement solaire réfléchi (dans le domaine des infrarouges) Pour

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

5. Les capteurs passifs...3 5.1. Définitions...3 5.2. Exemples...3 5.3. Le conditionneur...4

5. Les capteurs passifs...3 5.1. Définitions...3 5.2. Exemples...3 5.3. Le conditionneur...4 Les capteurs Table des matières 1. Chaine d acquisition et d information...1 2. Définitions...2 3. Type et nature de la sortie...2 4. Capteurs actifs...2 4.1. Effet thermoélectrique...2 4.2. Effet pyroélectrique...2

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

B - LE CHAMP ELECTRIQUE

B - LE CHAMP ELECTRIQUE B - L CHAP LCTRIQU B - 1 - L VCTUR CHAP LCTRIQU L'orientation du vecteur champ électrique dépend de la nature (positive ou négative) de la charge qui le produit. L effet de ce champ (attraction ou répulsion)

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

1. La notion de force

1. La notion de force 1. La notion de force livre page 6 & 7 a) introduction Tu as déjà sûrement entendu le terme de force, c est en effet un mot utilisé fréquemment dans le langage commun : on parle de la force publique, de

Plus en détail

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION DÉFINITIONS L exergie d un système dans des conditions (T, S, U ) données correspond au travail utile maximal que ce système pourrait fournir en

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide La constante d autoprotolyse de l eau, K W, est égale au produit de K a par K b pour un couple acide/base donné : En passant en échelle logarithmique, on voit donc que la somme du pk a et du pk b d un

Plus en détail

OXYDO-REDUCTION. Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons.

OXYDO-REDUCTION. Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons. OXYDO-REDUCTION I) Définitions 1) Oxydant et Réducteur Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons. 2) Couple rédox On parle de

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail

Conductivité conductimétrie

Conductivité conductimétrie Conductivité conductimétrie I. Généralités sur les milieux conducteurs Le courant électrique est dû à un mouvement d'ensemble des porteurs de charges sous l'action d'un champ électrique. Ils sont de trois

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une

Plus en détail

Epreuve d électronique de puissance F. Costa, G. Coquery (Durée 3h, calculatrice et documents autorisés 1 )

Epreuve d électronique de puissance F. Costa, G. Coquery (Durée 3h, calculatrice et documents autorisés 1 ) Epreuve d électronique de puissance F. Costa, G. Coquery (Durée 3h, calculatrice et documents autorisés 1 ) Présentation du sujet La recherche de miniaturisation est actuellement un domaine important dans

Plus en détail

3 Charges électriques

3 Charges électriques 3 Charges électriques 3.1 Electrisation par frottement Expérience : Frottons un bâton d ébonite avec un morceau de peau de chat. Approchonsle de petits bouts de papier. On observe que les bouts de papier

Plus en détail

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+ Chapitre 22 Sciences Physiques - BTS Transfert thermique 1 Généralités 1.1 Température La température absolue est mesuré en Kelvin [K]. La relation de passage entre C et K est : T [K] = [ C ]+ 273,15 Remarque

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 3 : Hypothèses de l écoulement en conduite Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Cinématique d écoulement -Lignes caractéristiques -Vitesses et débits B. Hypothèse

Plus en détail

Résume du cours de Mécanique Analytique

Résume du cours de Mécanique Analytique Résume du cours de Mécanique Analytique jean-eloi.lombard@epfl.ch 22 janvier 2009 Table des matières 1 Équations de Lagrange 1 1.1 Calcul des variations....................... 3 1.2 Principe de moindre

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

Transferts thermiques par conduction

Transferts thermiques par conduction Transferts thermiques par conduction Exercice 1 : Température de contact entre deux corps* On met en contact deux conducteurs thermiques cylindriques, calorifugés sur leurs surfaces latérales. On se place

Plus en détail

Détermination des structures moléculaires Structures et diffraction.

Détermination des structures moléculaires Structures et diffraction. Détermination des structures moléculaires Structures et diffraction. Pr. Richard Welter, Institut de Biologie Moléculaire des Plantes, welter@unitra.fr CONTENU DES ENSEIGNEMENTS 1) Discussion sur la notion

Plus en détail

CHAPITRE 2 : Structure électronique des molécules

CHAPITRE 2 : Structure électronique des molécules CHAPITRE 2 : Structure électronique des molécules I. La liaison covalente 1) Formation d une liaison covalente Les molécules sont des assemblages d atomes liés par des liaisons chimiques résultant d interactions

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Contrôle final de Thermique,

Contrôle final de Thermique, Contrôle final de Thermique, GM3C mars 08 2heures, tous documents autorisés Calculatrices autorisées Problèmes de refroidissement d un ordinateur On se donne un ordinateur qui dissipe une certaine puissance,

Plus en détail

Hélium superfluide. Applications aux procédés de Cryogénie. Physique des solides - 22 mai 2006 1

Hélium superfluide. Applications aux procédés de Cryogénie. Physique des solides - 22 mai 2006 1 Hélium superfluide Applications aux procédés de Cryogénie Physique des solides - 22 mai 2006 1 Introduction L Hélium Z = 2. Point de fusion très bas. Chimiquement inerte. Deux isotopes naturels Physique

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Code_Aster. Indicateurs de décharge et de perte de proportionnalité du chargement en élastoplasticité

Code_Aster. Indicateurs de décharge et de perte de proportionnalité du chargement en élastoplasticité Titre : Indicateurs de décharge et de perte de proportionn[...] Date : 21/07/2009 Page : 1/7 Indicateurs de décharge et de perte de proportionnalité du chargement en élastoplasticité Résumé On présente

Plus en détail

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure Introduction CORRECTION TP Multimètres - Mesures de résistances - La mesure d une résistance s effectue à l aide d un multimètre. Utilisé en mode ohmmètre, il permet une mesure directe de résistances hors

Plus en détail

Chapitre 4 : Etude Energétique

Chapitre 4 : Etude Energétique Cours de Mécanique du Point matériel Chapitre 4 : Energétique SMPC1 Chapitre 4 : Etude Energétique I Travail et Puissance d une force I.1)- Puissance d une force Soit un point matériel M de vitesse!!/!,

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

action de A sur B => B influencé par A : des charges - apparaissent sur la partie de B proche de A et des charges + sur la partie la plus éloignée.

action de A sur B => B influencé par A : des charges - apparaissent sur la partie de B proche de A et des charges + sur la partie la plus éloignée. ère partie hapitre VI Filière SMI Module Physique II Elément : Electricité ours Prof. R.Tadili Influence électrostatique et condensateurs I. Phénomène d influence I. Influence subie par un conducteur isolé

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011 Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 010-011 novembre 010 I Définition d une conique en terme d équation cartésienne On se place dans le repère orthonormé direct (0, i, j ).

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Chapitre 10 : Condensateur et circuit RC I. Notions de base en électricité : a) Courant électrique

Plus en détail

Chimie Physique Appliquée Examen de Janvier 2013

Chimie Physique Appliquée Examen de Janvier 2013 Chimie Physique Appliquée Examen de Janvier 2013 1 Dégradation du PVC À haute température, le PVC se dégrade suivant la réaction suivante (CHCl CH 2 ) (CH = CH) + HCl (1) Cette réaction est irréversible.

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique

Plus en détail

Différents types de matériaux magnétiques

Différents types de matériaux magnétiques Différents types de matériaux magnétiques Lien entre propriétés microscopiques et macroscopiques Dans un matériau magnétique, chaque atome porte un moment magnétique µ (équivalent microscopique de l aiguille

Plus en détail

Le modèle du gaz parfait

Le modèle du gaz parfait Table des matières 1 : énergie interne, équation d état 1.1 Hypothèses........................................... 1. Énergie interne d un GPM................................... 1.3 Équation d état du GPM....................................

Plus en détail

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Surface sphérique : Miroir, dioptre et lentille Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Définition : Les miroirs sphériques Un miroir sphérique est une

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente Lentilles I - UT DE L MNIPULTIN La manipulation consiste à déterminer, par différentes méthodes, la distance focale f d'une lentille mince convergente (on admettra que la lentille est utilisée dans les

Plus en détail

ST2S Thème 2 - ACIDES ET BASES DANS LES MILIEUX BIOLOGIQUES Chapitre 1 : ACIDES FAIBLES ET BASES FAIBLES EN SOLUTION

ST2S Thème 2 - ACIDES ET BASES DANS LES MILIEUX BIOLOGIQUES Chapitre 1 : ACIDES FAIBLES ET BASES FAIBLES EN SOLUTION ST2S Thème 2 - ACIDES ET BASES DANS LES MILIEUX BIOLOGIQUES Chapitre 1 : ACIDES FAIBLES ET BASES FAIBLES EN SOLUTION 1. ECHELLE DE Sur les étiquettes d minérales, on peut lire suivi d une valeur voisine

Plus en détail

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP. Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement

Plus en détail

Master 1 Physique----Université de Cergy-Pontoise. Effet Kerr EFFET KERR. B. AMANA, Ch. RICHTER et O. HECKMANN

Master 1 Physique----Université de Cergy-Pontoise. Effet Kerr EFFET KERR. B. AMANA, Ch. RICHTER et O. HECKMANN EFFET KERR B. AMANA, Ch. RICHTER et O. HECKMANN 1 I-Théorie de l effet Kerr L effet Kerr (1875) est un phénomène électro-optique de biréfringence artificielle. Certains milieux, ordinairement non-biréfringents,

Plus en détail

LA MESURE DE PRESSION PRINCIPE DE BASE

LA MESURE DE PRESSION PRINCIPE DE BASE Page 1 / 6 LA MESURE DE PRESSION PRINCIPE DE BASE 1) Qu est-ce qu un sensor de pression? Tout type de sensor est composé de 2 éléments distincts : Un corps d épreuve soumit au Paramètre Physique φ à mesurer

Plus en détail

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. Séance : Le diagramme de l air humide - Définitions Date :

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. Séance : Le diagramme de l air humide - Définitions Date : TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR Tâche T4.2 : Mise en service des installations Compétence C2.2 : Analyser, vérifier une faisabilité Thème : S4 : Approche scientifique et technique des

Plus en détail

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction La diode à jonction I Introduction La diode est le semi-conducteur de base. Son fonctionnement est assimilable à celui d un interrupteur qui ne laisse passer le courant que dans un seul sens. C est la

Plus en détail

Doc 3 transferts thermiques

Doc 3 transferts thermiques Activité Documentaire Transferts d énergie entre systèmes macroscopiques Doc 1 Du microscopique au macroscopique La description de la matière peut être faite au niveau microscopique ou au niveau macroscopique.

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations 4 THÉORIE CINÉTIQUE DES GAZ 4.1 Échelles d observations et fluctuations On s intéresse à un volume V de gaz très grand : qq m 3 dans les conditions normales de température et de pression. Au sein de ce

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 2 : Électrostatique Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. II- Électrostatique Finalité du chapitre

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES B. MARCHADIER Dépendance et indépendance de deux aléas numériques images Mathématiques et sciences humaines, tome 25 (1969), p. 2534.

Plus en détail

Effet d une onde électromagnétique sur un atome à deux niveaux

Effet d une onde électromagnétique sur un atome à deux niveaux Université Pierre et Marie Curie Master de sciences et technologie Interaction matière-rayonnement Effet d une onde électromagnétique sur un atome à deux niveaux Introduction On considère un système atomique

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

CONSTRUIRE UNE SÉQUENCE PÉDAGOGIQUE UTILISANT UN LOGICIEL DE SIMULATION DE GAZ

CONSTRUIRE UNE SÉQUENCE PÉDAGOGIQUE UTILISANT UN LOGICIEL DE SIMULATION DE GAZ CONSTRUIRE UNE SÉQUENCE PÉDAGOGIQUE UTILISANT UN LOGICIEL DE SIMULATION DE GAZ C.1. Prise en mains rapide du logiciel Atelier Théorie Cinétique pour l'enseignant Sauver les deux fichiers Gaz.htm et gaz.jar

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE TP0 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE I. QU EST-CE QU UNE LENTILLE CONVERGENTE?. Caractéristiques des lentilles disponibles avec le matériel d optique: Définitions : Une lentille est un solide

Plus en détail

B - COURANT ELECTRIQUE

B - COURANT ELECTRIQUE B - COURANT ELECTRIQUE B - I - DEFINITION DE L'INTENSITE D'UN COURANT ELECTRIQUE La propriété des conducteurs solides d'avoir des électrons libres correspond à l'échelle des atomes à un déplacement permanent

Plus en détail

1 Rappels sur les champs électriques

1 Rappels sur les champs électriques Rappels sur les champs électriques. Cadre de l étude On considère un diélectrique homogène ie ayant les mêmes propriétés dans tout le volume). On note E le champ électrique global et D le champ excitation

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012 Cours d électricité Dipôles simples en régime alternatif Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012 Plan du

Plus en détail

Montages non linéaires à amplificateurs opérationnels

Montages non linéaires à amplificateurs opérationnels Montages non linéaires à amplificateurs opérationnels Partie théorique I. omparateur L utilisation la plus simple d un amplificateur opérationnel (AOP) en montage non-linéaire est le comparateur. Deux

Plus en détail

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties L'objet de cette ressource est l'étude des systèmes physiques, de type mécanique, électrique ou microscopique, se comportant

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Moteurs à courant continu Moteurs asynchrones

Moteurs à courant continu Moteurs asynchrones Chapitre 17 Sciences Physiques - BTS Moteurs à courant continu Moteurs asynchrones 1 Loi de Laplace 1.1 Etude expérimentale Le conducteur est parcouru par un courant continu ; il est placé dans un champ

Plus en détail

I- Transfert d énergie par travail mécanique Doc 1. Un homme pousse sa voiture en panne Doc 2. Un parachutiste saute en chute libre

I- Transfert d énergie par travail mécanique Doc 1. Un homme pousse sa voiture en panne Doc 2. Un parachutiste saute en chute libre Chapitre P 9 : Travail d une force constante et énergie Correction Dans le chapitre précédent, nous avons étudié l évolution temporelle de différents systèmes mécaniques en exploitant la seconde loi de

Plus en détail

ECHANGE DE CHALEUR: LA CONDUCTION

ECHANGE DE CHALEUR: LA CONDUCTION ECHANGE DE CHALEUR: LA CONDUCTION Nous n étudierons dans ce chapitre que la conduction en régime permanent, c'est-à-dire lorsque l équilibre thermique est atteint ce qui se caractérise par des températures

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Electromagnétisme. Chapitre 1 : Champ magnétique

Electromagnétisme. Chapitre 1 : Champ magnétique 2 e BC 1 Champ magnétique 1 Electromagnétisme Le magnétisme se manifeste par exemple lorsqu un aimant attire un clou en fer. C est un phénomène distinct de la gravitation, laquelle est une interaction

Plus en détail

Plan du cours : électricité 1

Plan du cours : électricité 1 Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Diag Up Export Spécifications

Diag Up Export Spécifications Diag Up Export Spécifications Présentation Diag Up est une plate forme logicielle qui permet d élaborer des modèles de diagnostic dans des domaines aussi variés que la qualité, la transmission d entreprises,

Plus en détail

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant :

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant : MAGNETISME 1) Les différentes sources de champ magnétique La terre crée le champ magnétique terrestre Les aimants naturels : les magnétites Fe 3 O 4 L acier que l on aimante Les électroaimants et circuits

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale

EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale Hiver 2009 Nom : Chaque question à choix multiples vaut 3 points 1. Dans quelle direction est le potentiel au centre du carré dans la figure suivante?

Plus en détail

1 Préférences du consommateur

1 Préférences du consommateur Université François Rabelais - L AES Cours d Economie Générale Corrigé succint du TD n 5 Automne 04 Il y a deux manière complémentaires de caractériser les préférences d un consommateur. Soit on connait

Plus en détail

Thermochimie - TD 2 Corrigé

Thermochimie - TD 2 Corrigé Thermochimie - TD Corrigé Licence 1 «Groupes Concours & Polytech» - 007 / 008 Exercice 1 : combustion La combustion dans une bombe calorimétrique (volume constant) d une pastille de 3,76 g d acide benzoïque

Plus en détail