Plan du chapitre «Milieux diélectriques»

Dimension: px
Commencer à balayer dès la page:

Download "Plan du chapitre «Milieux diélectriques»"

Transcription

1 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 1

2 Milieux diélectriques On considère pour l instant des isolants, au sein desquels on ne peut trouver de courant (macroscopique) de charges libres Le champ E peut y être non nul! Expérience de Faraday : L introduction d un isolant entre les armatures d un condensateur en modifie la capacité Dans ce chapitre, on considèrera des champs éventuellement variables dans le temps Milieux diélectriques 2

3 Une molécule peut être assimilée à grande distance à un dipôle Un milieu à structure moléculaire sera caractérisé, à grande distance, par sa densité volumique de moments dipolaires (électriques) On pose : Densité volumique de moment dipolaire ou polarisation P = d p dv m -3 C/m 2 Un milieu diélectrique est une substance qui peut acquérir un moment dipolaire électrique sous l action d un champ électrique extérieur Cm Milieux diélectriques 3

4 La polarisation peut être spontanée ou induite La polarisation spontanée (très rare) concerne les milieux : Pyro-électriques (spontanément polarisés lorsqu ils sont chauffés) Exemple : la tourmaline Ferro-électriques (une polarisation persiste après qu ils aient été soumis pendant un temps à un champ électrique extérieur) Exemple : le titanate de baryum (BaTiO 3 ) La polarisation induite concerne a priori tous les matériaux Milieux diélectriques 4

5 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 1. Moments dipolaires des atomes et des molécules 2. Polarisation électronique 3. Polarisation ionique 4. Polarisation dipolaire 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 5

6 Cas d un atome Un atome isolé dans son état fondamental aura un moment dipolaire nul puisque les barycentres moyens G + et G - seront superposés (principe de Curie) Un champ E appliqué va décaler G + et induire un moment dipolaire (électrique) Ceci reste valable tant que E < seuil d ionisation Concerne par exemple He, Ne, Ar, Kr (gaz nobles) Milieux diélectriques 6

7 Cas d une molécule Il existe deux types de molécules, en fonction des positions relatives des barycentres G + et G - : Les molécules apolaires possèdent un centre de symétrie Mol. diatomiques constituées du même atome (H 2, N 2, O 2 ) Mol. linéaires (CO 2 ) Mol. à symétrie tétragonale ou benzémique (CH 4, C 6 H 6 ) Les molécules polaires ne possèdent pas de centre de symétrie Molécules diatomiques constituées de 2 atomes différents (HCl) ou molécules non linéaires (H 2 O) Molécules plus complexes Milieux diélectriques 7

8 Dipôles permanent et induits Les molécules polaires possèdent un moment permanent Les molécules apolaires sont polarisables par un champ E externe : elles se polarisent mutuellement sous l action du moment dipolaire électrique instantané de l autre molécule Pour une molécule apolaire, il peut exister les 2 types de moments Entre dipôles permanents : force de Keesom Entre dipôles permanents et induits : force de Debye Entre dipôles induits : force de London Milieux diélectriques 8

9 Ordre de grandeur Les distances inter-moléculaires sont 0,1 nm, les moments dipolaires sont en ordre de grandeur : p e d 1, , Cm On exprime souvent les moments dipolaires en Debye 1D = unité CGS de moment dipolaire (10-3 /c) 1 D 0, Cm Cm Les moments dipolaires sont alors voisins de l unité : 1,08 pour HCl ; 1,85 pour H 2 O et 1,5 pour NH 3 Milieux diélectriques 9

10 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 1. Moments dipolaires des atomes et des molécules 2. Polarisation électronique 3. Polarisation ionique 4. Polarisation dipolaire 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 10

11 Elle concerne tous les milieux et résulte du déplacement des nuages électroniques autour des atomes sous l action d un champ E l. On observe expérimentalement que : Pour une molécule apolaire p = α ε 0 E α : polarisabilité de la molécule Pour une molécule polaire G +- : barycentre des charges + et - δ p = α ε 0 E Milieux diélectriques 11

12 Sous l action d un champ E l, un milieu va acquérir une polarisation supplémentaire P donnée par : P = n p = n α ε 0 E En chimie, on utilise souvent les unités CGS. On a alors : α Physique = 4 π α chimie Milieux diélectriques 12

13 Modèle de Mossotti (1/2) On assimile un atome à un noyau (charge Ze) et à une distribution de charge électronique uniforme ρ de rayon a. L application d un champ E a extérieur déplace le nuage électronique wrt au noyau Neutralité électronique : Z e π a3 ρ = 0 r On note r le déplacement du noyau wrt au centre du nuage Nuage Noyau Forces s exerçant sur le noyau : Force électrique : Z e E a Force exercée par le nuage : Gauss : le champ E créé par ρ à la distance r s écrit : Z e E 4 π r 2 E = 1 4 ε 0 3 π r3 ρ E = ρ r = Z e 3ε 0 4 π ε 0 Milieux diélectriques 13 r a 3

14 Modèle de Mossotti (2/2) L équilibre du noyau s écrit : ( ) 2 Z e E a Z e 4 π ε 0 r a 3 = 0 r = 4 π ε 0 a3 Z e E a Il apparaît un moment dipolaire induit : La polarisabilité devient : p = Z e r p = α ε 0 E a α = 4 π a 3 La polarisabilité a la dimension d un volume! En mécanique quantique, on obtient : α MQ =18 π a 3 Pour H 2 dans son état fondamental, a = 52.9 pm α Exp = m 3 α Mossotti = m 3 α MQ = m 3 Milieux diélectriques 14

15 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 1. Moments dipolaires des atomes et des molécules 2. Polarisation électronique 3. Polarisation ionique 4. Polarisation dipolaire 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 15

16 Si une distribution de charges (globalement neutre) est soumise à un champ E, les charges + et se séparent légèrement d où apparition d un moment dipolaire : Au niveau moléculaire (déformation du nuage électronique) Polarisation électronique Au niveau du réseau cristallin (déformation des mailles) Polarisation ionique Pour un cristal cubique tel que NaCl, on observe : P = n p = n α ε 0 E S ajoute à la polarisation électronique qui apparaît pour un champ plus faible On appelle parfois polarisation par déformation les polarisations électronique et ionique Milieux diélectriques 16

17 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 1. Moments dipolaires des atomes et des molécules 2. Polarisation électronique 3. Polarisation ionique 4. Polarisation dipolaire 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 17

18 Concerne les molécules qui possèdent un moment dipolaire électrique permanent (H 2 O, HCl). Les dipôles se répartissent avec une orientation aléatoire Les dipôles tendent à minimiser leur énergie potentielle E p = p. E moyenne nulle car n très élevé P = 1 V p = 0 orientation préférentielle dans le 0 P sens du champ n p n : densité moléculaire volumique Milieux diélectriques 18

19 Lien avec la Physique Statistique Langevin a montré par la physique statistique que P(x) = n p L(x) avec L(x) = coth(x) 1 x et x = p E k B T L(x) : fonction de Langevin Si x << 1 (T 300 K) : P // E p 2 P = n α ε 0 E α = 3ε 0 k B T Forte variation avec T Si x >> 1 : P n p Les dipôles sont tous alignés sur le champ : saturation de la polarisation Milieux diélectriques 19

20 Egalement appelée polarisation par orientation On retiendra que la polarisation dipolaire varie fortement avec la température : p 2 α or = 3ε 0 k B T Ce n est pas le cas de la polarisation par déformation : La polarisation électronique ne dépend que de la nature de la molécule La polarisation ionique ne dépend que de la structure du cristal Milieux diélectriques 20

21 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 21

22 Dans l expérience de Faraday, la capacité C = Q/Φ augmente à charge constante : Le champ E doit donc diminuer : des charges opposées aux charges des armatures doivent apparaître. D où viennent-elles? Milieux diélectriques 22

23 Plaque uniformément polarisée On remplace (par la pensée) la plaque par un empilement de dipôles: La charge volumique sera nulle La charge surfacique sera non nulle On appelle charges de polarisation les excédents locaux de charges engendrés par la polarisation Milieux diélectriques 23

24 z Exemple d une polarisation dépendant de la position En remplaçant la polarisation par un empilement de dipôles, on observe cette fois que les densités volumiques et surfaciques sont non nulles Il apparaît un excédent de charges de polarisation dans le volume, lié à P/ z Milieux diélectriques 24

25 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 25

26 On appelle (V) le volume du diélectrique (initialement neutre) et (S) la surface qui l entoure. Le potentiel scalaire correspondant au diélectrique s écrit : On a : P Q. = QM Φ(M ) = Q P QM 1 4 π ε 0 ( ) Diélectrique + P. 1 Q QM P.QM QM 3 = Q P QM ( ) d3 Q + P. QM QM 3 D où : Φ(M ) = 1 P Q. 4 π ε Diélectrique 0 QM Q. QM P ( ) d3 Q Milieux diélectriques 26

27 Φ(M ) = 1 P Q. 4 π ε Diélectrique 0 QM Q. QM P ( ) d3 Q Théorème de la divergence Φ(M ) = 1 4 π ε 0 P. (S) n ds QM 1 4 π ε 0 Diélectrique Q.( P ) QM d3 Q Le potentiel Φ créé par la distribution de dipôles qui constitue le diélectrique est donc égal au potentiel créé par une distribution surfacique σ P et une distribution volumique ρ P telles que : σ P = P. n et ρ P =. P Savoir refaire ce calcul Milieux diélectriques 27

28 Φ(M ) = 1 4 π ε 0 P. (S) n ds QM 1 4 π ε 0 Diélectrique Q.( P ) QM d3 Q σ P = P. n et ρ P =. P Tout se passe comme si on pouvait remplacer le diélectrique et sa polarisation par les distributions de charges σ P et ρ P appelées charges de polarisation D un point de vue macroscopique, la polarisation P du diélectrique est équivalente pour Φ (ou E) à une distribution macroscopique de charges de polarisation Milieux diélectriques 28

29 Ces charges ne sont pas des charges «comme les autres». Ce ne sont pas des charges libres. On les appelle charges liées La signification physique du terme charge liée apparaîtra dans l étude des régimes variables Attention à bien distinguer σ P et ρ P des densités de charges libres σ et ρ si le milieu contient les deux types de charge Pour un régime statique, les charges de polarisation sont fictives du point de vue macroscopique. Les deux descriptions (en polarisation ou en charges) sont équivalentes Milieux diélectriques 29

30 La charge totale portée par le diélectrique est : Q = ρ P dv + σ P ds = Q = Q = 0 (V ) P. n ds + (S) (S) P. n (S) ds (V ). P dv + P. n (S) ds d ʹ après le théorème de la divergence On retrouve que le diélectrique est globalement neutre (car constitués de dipôles) Milieux diélectriques 30

31 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 31

32 Dans un diélectrique de polarisation P, (MG) s écrit : On introduit donc naturellement le vecteur D tel que : D est un vecteur axial. ε 0 E ( ) = ρ libre. La définition de D est étendue au vide pour lequel Le théorème de Gauss s écrit Sous sa forme locale : Sous sa forme intégrale : ( P ). ε 0 E + P D = ε 0 E. D = ρ libre D. ds (S) ( ) = ρ libre = Q libre. E = ρ libre + ρ P ε 0 D = ε 0 E + P C/m 2 Déplacement électrique - Induction électrique - Excitation électrique - Densité de flux électrique - Vecteur D Milieux diélectriques 32

33 Quand utilise-t-on D ou E? Dans le cas général :. D = ρ libre. E = ρ libre + ρ P ε 0 D. ds (S) = Q libre (S) E. ds = ρ tot ε 0 = Q tot ε 0 Les calculs avec E (et donc Φ) utilisent les densités totales. Les calculs avec D utilisent uniquement les densités de charges libres Il est possible d utiliser E ou D indifféremment En particulier, si «P est uniforme», alors ρ P =. P 0 Milieux diélectriques 33

34 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 34

35 Milieu linéaire si les composantes de sa polarisation sont des fonctions linéaires des composantes du champ électrique : P = ε 0 [ χ e ] E Valable pour E «pas trop fort». La limite dépend de chaque corps [χ e ] est le tenseur de susceptibilité diélectrique (matrice 3x3 sur une base orthonormée). Il existe une base principale sur laquelle : χ [ χ e ] = 0 χ χ 3 Les éléments diagonaux χ i sont les susceptibilités diélectriques principales Milieux diélectriques 35

36 Milieu homogène si [χ e ] est indépendante du point de l espace considéré Milieu isotrope si aucune direction n est privilégiée. Cela signifie en particulier que P n a aucune raison d être dans une autre direction que E : P = ε 0 χ e (M, E ) E χ e : susceptibilité électrique χ e est un nombre réel positif sans dimension La susceptibilité électrique χ e est parfois appelée simplement susceptibilité (et notée χ) lorsqu il n existe pas de risque de confusion Milieux diélectriques 36

37 Milieu linéaire, homogène et isotrope (ou lhi) si les valeurs propres de [χ e ] sont égales (isotropie) et indépendantes de l espace (homogénéité) et du champ (linéarité) : P = ε 0 χ E Quelques valeurs : Matériau Phase χ e Air Gaz H 2 Gaz O 2 Gaz H 2 O Liquide polaire 80 Benzène Liquide non polaire 2.8 NaCl Solide cristallin 5.8 BaTiO 3 Solide cristallin 1760 à 120 C Milieux diélectriques 37

38 Déplacement électrique pour un lhi Dans un lhi : P = ε 0 χ E D = ε 0 E + P = ε 0 (1+ χ) E = ε 0 ε r E = ε E Permittivité relative Permittivité absolue Le théorème de Gauss s écrit alors :. D = ρ libre. E = ρ libre = ρ libre ε 0 ε r ε D. ds (S) = Q libre (S) E. ds = Q libre = Q libre ε 0 ε r ε Milieux diélectriques 38

39 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 39

40 Le champ E 0 d un système de conducteurs dans le vide vérifie : E 0 = (MF) 0 (MG). E 0 = ρ libre ε 0 Par la pensée, on peut remplacer le vide par un lhi. Le champ E vérifie alors : E = 0 (MF) (MG).( ε 0 ε r E ) = ρ libre Soit encore : (MF) ε r E ( ) = 0 (MG). ε r E ( ) = ρ libre ε 0 On en déduit que E vérifie : E = E 0 < ε r E 0 Le champ dans le diélectrique lhi est toujours plus faible que dans le vide!! Milieux diélectriques 40

41 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 41

42 Plaque lhi plongée dans un condensateur Les charges libres des armatures créent le champ E 0 = σ libre ε 0 u z E 0 induit dans le diélectrique une polarisation P de même sens Il apparaît sur les faces du diélectrique des densités de charges de polarisation σ = P. n = ± P Ces charges créent un autre champ dans le diélectrique E P = σ P P u z = ε 0 ε 0 Milieux diélectriques 42

43 E P = P ε 0 E P est de sens opposé à E 0 Le champ total dans la plaque vaut : E = E 0 + E P = E 0 P ε 0 Généralisation : le champ E P créé par la polarisation est toujours de sens opposé à E 0 (loi de modération). On l appelle champ dépolarisant (même s il n est associé à aucun mécanisme de dépolarisation) Milieux diélectriques 43

44 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 44

45 Equations de Maxwell Pour une polarisation statique :. D = ρ libre B = µ 0 J E = 0. B = 0 (MG) (MA) (MF) (MΦ) On en déduit : (MF) : continuité de E T (MΦ) : continuité de B N (MA) : discontinuité de B T (MG) : discontinuité de D N E T2 = E T1 B T2 B T1 = µ 0 K n 1 2 B N2 = B N1 Seule modification par rapport au vide Milieux diélectriques 45

46 Discontinuité de D N σ libre : densité de charge libres sur la surface de séparation dans un modèle surfacique. On a : σ P1 = P 1. n 1 2 et σ P2 = P 2. n 1 2 La condition de passage pour la composante normale de E s écrit : E 2 ( E 1 ). n 1 2 = σ tot ε 0 = σ libre +σ P1 +σ P2 ε 0 Ou encore pour D N : ε 0 E 2 + P 2 ( ). n 1 2 ε 0 E 1 + P ( 1 ). ( D 1 ). n 1 2 = σ libre D 2 D N2 D N1 = σ libre n 1 2 n 1 2 = σ libre Milieux diélectriques 46

47 Réfraction des lignes de champ pour 2 lhi E T2 = E T1 D N2 D N1 = σ libre n 1 2 Si σ libre = 0, on en déduit : E 1 sin(α 1 ) = E 2 sin(α 2 ) ε 1 E 1 cos(α 1 ) = ε 2 E 2 cos(α 2 ) D où : tan(α 1 ) ε 1 = tan(α 2 ) ε 2 tan(α 1 ) ε r1 = tan(α 2 ) ε r2 Cette relation caractérise la réfraction des lignes de champ à la traversée de la surface (S) En passant dans un milieu de ε plus élevé, le champ E s écarte de la normale Milieux diélectriques 47

48 Exemple de la sphère uniformément polarisée E i = P 3ε 0 Les champs internes E i et externe E e créés par une polarisation P selon u z sont (cf TD) : et E e = P R 3 3ε 0 r 3 [ ] 2 cos(θ) u r +sin(θ) u θ A l extérieur, on retrouve le champ d un dipôle de moment placé au centre de la sphère Le signe «-» est très général et caractérise le champ dépolarisant p = 4 3 π R3 P P, E et D créés par la sphère (différents des champs totaux) Milieux diélectriques 48

49 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 49

50 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 1. Approche intuitive des charges de polarisation 2. Densités de charges équivalentes 3. Vecteur D 4. Relations constitutives 5. Milieu lhi plongé dans un champ constant 6. Exemple du condensateur à lame diélectrique : champ dépolarisant 7. Séparation de deux milieux lhi 8. Force électromagnétique s exerçant sur un milieu diélectrique 9. Complément sur les densités de charges équivalentes 3. Susceptibilité diélectrique 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 50

51 Pour passer des densités vraies aux densités nivelées, on utilise une fonction de nivellement continue, centrée sur la charge en r i et à symétrie sphérique, vérifiant : f ( r ) dv =1 Espace Une charge ponctuelle q i en r i est remplacée par la fonction continue ρ i : ρ i = q i f ( r r i ) La densité nivelée s écrit : ρ = q i f ( r r i i ) La forme de la fonction f fait que dans la pratique, seules les charges proches de r sont prises en compte Milieux diélectriques 51

52 On extrapole ceci aux charges liées : On coupe le diél. en groupe de particules de charge totale nulle On note r N la position du centre de masse du groupe N et r Nk les positions relatives par rapport au centre de masse des k charges qui composent le groupe N Comme la charge q k est située en r N + r Nk, la densité nivelée devient : ρ( r ) = N k q Nk f ( r r N r Nk ) De la même manière, on peut écrire la polarisation P à partir des moments p N : P ( r ) = p N f ( r r N ) avec p N = q Nk r Nk N k Milieux diélectriques 52

53 ρ( r ) = N k q Nk f ( r r N r Nk ) Par définition, f varie peu à l échelle des variations de ρ, d où : f ( r r N r Nk ) f ( r r N ) r Nk. f ( r r N ) [ ] On en déduit ρ : ρ( r ) q Nk N k f ( r r N ) N k q Nk r Nk. f ( r r N ) [ ] = 0 car la charge totale de chaque groupe est nulle Moment dipolaire du groupe N p N = k q Nk r Nk Finalement : ρ( r ) p N N [ ]. f ( r r N ) Milieux diélectriques 53

54 On peut écrire : P ( r ) = p N f ( r r N ).( f p N ) = f.( p N )+ p N. ( f ) Puisque seul f dépend de r, on a :. P = p N f ( r r N ) N N ( ) En comparant avec l expression de ρ du transparent précédent, il reste : ρ( r ). P Cette expression ne conserve que le caractère dipolaire de la distribution. Les autres termes ne sont pas pris en compte Milieux diélectriques 54

55 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 1. Champ local E l 2. Formule de Clausius-Mossotti 3. Variations de la susceptibilité 4. Cas particuliers 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 55

56 Champs microscopiques et macroscopiques Le champ microscopique e est le champ dans le vide entre les particules du milieu. Il a une structure très «tourmentée» Dans un solide cristallin, il varie considérablement sur des distances de l ordre de la maille (quelques Å) Le champ macroscopique E est la moyenne spatiale de e au voisinage du point M E = 1 V V e dv V : volume mésoscopique E varie plus lentement que e. C est E qui est utilisé dans les équations de Maxwell On ne peut plus raisonner ainsi avec la polarisabilité Milieux diélectriques 56

57 On soumet un diélectrique à un champ E 0 constant créé par un condensateur Le champ macroscopique E dans le diélectrique est : E = E 0 + E P avec E P = P ε 0 E P : champ dépolarisant dû aux charges de polarisation portées par le diélectrique On considère une molécule M du diélectrique. Le champ qui agit sur M n est pas E qui est la moyenne spatiale du champ au voisinage de M. Le champ à considérer est le champ créé en M par toutes les molécules autres que M Ce champ local E l est le champ ressenti par la molécule C est lui qui intervient dans le moment dipolaire Milieux diélectriques 57

58 Pour les molécules apolaires, on utilise pour E l une expression due à Lorentz (1920) On suppose que la présence ou non de l élément polarisable ne modifie pas le champ autour de M On obtient alors : E l = E P E est le champ + 3ε 0 macroscopique Cette expression n est qu une approximation pour les milieux denses (liquides et solides) et est complètement fausse pour les cristaux non cubiques Pour les molécules polaires, on utilise pour E l une expression plus complexe due à Onsager (1936) Milieux diélectriques 58

59 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 1. Champ local E l 2. Formule de Clausius-Mossotti 3. Variations de la susceptibilité 4. Cas particuliers 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 59

60 Clausius-Mossotti (1/2) On a (en supposant la forme de Lorentz du champ local) : P P = n α ε 0 E l = n α ε 0 E + n α P = 3ε 0 1 n α /3 ε 0 E Polarisabilité Soit pour un milieu lhi : χ e = n α 1 n α /3 Savoir refaire ce calcul µ : masse volumique M : masse molaire N 0 : nombre d Avogadro ε r =1+ χ e µ = n M N 0 M ε r 1 = N 0 α µ ε r Formule de Clausius-Mossotti Milieux diélectriques 60

61 M ε r 1 = N 0 α µ ε r Clausius-Mossotti (2/2) L énorme intérêt de ce modèle est de permettre une mesure de α (paramètre microscopique) à l aide de paramètres macroscopiques Pour un milieu peu dense (χ e << 1) : χ n α M µ ε r 1 ( ) N 0 α Milieux diélectriques 61

62 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 1. Champ local E l 2. Formule de Clausius-Mossotti 3. Variations de la susceptibilité 4. Cas particuliers 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 62

63 Variation de la polarisabilité avec la température Pour un milieu peu dense : χ n α Milieux apolaires : Uniquement polarisation électronique et ionique qui ne dépendent pas de la température α ne doit pas dépendre de T Milieux polaires : La polarisation dipolaire dépend de la température : α = α elec +α ion +α dipolaire = α 0 + p 0 2 3ε 0 k B T Polarisations électronique et ionique Milieux diélectriques 63

64 α = α elec +α ion +α dipolaire = α 0 + HCl p 0 2 3ε 0 k B T HI CH 4 La pente de ses courbes fournit le moment dipolaire L ordonnée à l origine fournit la polarisabilité α 0 On en déduit que : HCl a un plus grand moment dipolaire que HI HI a une plus grande polarisabilité électronique que HCl (HI est plus grosse) CH 4 est apolaire (logique puisque possède un centre de symétrie) Milieux diélectriques 64

65 Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 1. Champ local E l 2. Formule de Clausius-Mossotti 3. Variations de la susceptibilité 4. Cas particuliers 4. Polarisation en régime variable 5. Aspects énergétiques des milieux diélectriques Milieux diélectriques 65

66 χ e = n α 1 n α /3 «Catastrophe de polarisation» ou ferroélectricité (1/2) χ e va diverger pour n α/3 = 1 Exemple du titanate de Baryum BaTiO 3 A 400 C, diélectrique «ordinaire» (χ e 500) Si T, n et χ e plusieurs milliers Lorsque T atteint sa température de Curie (120 C), apparition d un état ferroélectrique, caractérisé par l apparition d une polarisation spontanée en l absence de champ appliqué (χ e = ) P est alors due à l existence pour les ions Ti 4+ et Ba 2+ de nouvelles positions d équilibre décalées wrt aux nœuds du réseau initial Milieux diélectriques 66

Plan du chapitre «Milieux magnétiques»

Plan du chapitre «Milieux magnétiques» Plan du chapitre «Milieux magnétiques» 1. Sources microscopiques de l aimantation en régime statique 2. Etude macroscopique de l aimantation en régime statique 3. Aimantation en régime variable 4. Les

Plus en détail

Etude macroscopique de la polarisation, du champ électrique E et du vecteur D dans les milieux diélectriques.

Etude macroscopique de la polarisation, du champ électrique E et du vecteur D dans les milieux diélectriques. Sébastien Bourdreux Agrégation de Physique Université Blaise Pascal - Clermont-Ferrand Etude macroscopique de la polarisation, du champ électrique E et du vecteur D dans les milieux diélectriques. Mai

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

Principes généraux de la biochimie

Principes généraux de la biochimie Principes généraux de la biochimie «La biochimie a pour but de décrire, expliquer et exploiter les structures et le comportement des molécules biologiques en se servant de la chimie, de la physique et

Plus en détail

Master 1 Physique----Université de Cergy-Pontoise. Effet Kerr EFFET KERR. B. AMANA, Ch. RICHTER et O. HECKMANN

Master 1 Physique----Université de Cergy-Pontoise. Effet Kerr EFFET KERR. B. AMANA, Ch. RICHTER et O. HECKMANN EFFET KERR B. AMANA, Ch. RICHTER et O. HECKMANN 1 I-Théorie de l effet Kerr L effet Kerr (1875) est un phénomène électro-optique de biréfringence artificielle. Certains milieux, ordinairement non-biréfringents,

Plus en détail

CHAPITRE CP1 C Conversion électromagnétique statique

CHAPITRE CP1 C Conversion électromagnétique statique PSI Brizeux Ch. CP1: Conversion électromagnétique statique 1 CHAPITRE CP1 C Conversion électromagnétique statique Les sources d énergie, naturelles ou industrielles, se trouvent sous deux formes : thermique

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 2 : Électrostatique Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. II- Électrostatique Finalité du chapitre

Plus en détail

Complément : les gaz à effet de serre (GES)

Complément : les gaz à effet de serre (GES) Complément : les gaz à effet de serre (GES) n appel «gaz à effet de serre» un gaz dont les molécules absorbent une partie du spectre du rayonnement solaire réfléchi (dans le domaine des infrarouges) Pour

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique ELECTROTATIQUE - 2 1. Rappels 2. Outils mathématiques 2.1. ystèmes classiques de coordonnées 2.2. Volume élémentaire dans chaque système de coordonnées 2.3. Intégrales des fonctions de points 2.4. Circulation

Plus en détail

Cours CH2. Molécules & solvants moléculaires

Cours CH2. Molécules & solvants moléculaires Cours C2 Molécules & solvants moléculaires David Malka MPSI 2015-2016 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Structure des ions et des molécules - Modèle de la

Plus en détail

Electromagnétique 4 (1 ère session)

Electromagnétique 4 (1 ère session) Licence SP Sem4 mardi 30 mai 2006 (1 ère session) Durée : 2 h 00 Document autorisé : aucun Calculatrice : non autorisée I. Equations locales : En intégrant les équations locales en considérant un régime

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S THERMODYNAMIQUE Lycée F.BUISSON PTSI D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S Ce chapitre pourrait s appeler du monde moléculaire

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

TP n o 1 Électrostatique : mesure d un potentiel et d une capacité

TP n o 1 Électrostatique : mesure d un potentiel et d une capacité TP n o 1 Électrostatique : mesure d un potentiel et d une capacité PREPARATION (à rédiger avant de venir en TP) Il s agit de trouver une méthode pour mesurer la capacité C d un condensateur, en étudiant

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Energétique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND LE PUBLIE

Plus en détail

Les interactions de faible énergie Pierre-Alexis GAUCHARD

Les interactions de faible énergie Pierre-Alexis GAUCHARD Chapitre 5 : Les interactions de faible énergie Pierre-Alexis GAUCHARD UE1 : Chimie Chimie physique Agrégé de chimie, Docteur ès sciences Année universitaire 2011/2012 Université Joseph Fourier de Grenoble

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Effet d une onde électromagnétique sur un atome à deux niveaux

Effet d une onde électromagnétique sur un atome à deux niveaux Université Pierre et Marie Curie Master de sciences et technologie Interaction matière-rayonnement Effet d une onde électromagnétique sur un atome à deux niveaux Introduction On considère un système atomique

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

Electromagnétisme des milieux diélectriques et magnétiques.

Electromagnétisme des milieux diélectriques et magnétiques. Chapitre C-XII Electromagnétisme des milieux diélectriques et magnétiques. Joël SORNETTE met ce cours à votre disposition selon les termes de la licence Creative Commons : Pas d utilisation commerciale.

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

La transduction piézoélectrique

La transduction piézoélectrique La transduction piézoélectrique STÉPHANE DURAND ET HERVÉ LISSEK Table des matières Objectifs 5 I - Exercice : QUESTIONNAIRE D'ENTRÉE 7 II - L'effet piézoélectrique 9 A. Découverte de la piézoélectricité...9

Plus en détail

5. Les capteurs passifs...3 5.1. Définitions...3 5.2. Exemples...3 5.3. Le conditionneur...4

5. Les capteurs passifs...3 5.1. Définitions...3 5.2. Exemples...3 5.3. Le conditionneur...4 Les capteurs Table des matières 1. Chaine d acquisition et d information...1 2. Définitions...2 3. Type et nature de la sortie...2 4. Capteurs actifs...2 4.1. Effet thermoélectrique...2 4.2. Effet pyroélectrique...2

Plus en détail

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre

Plus en détail

M4 OSCILLATEUR HARMONIQUE

M4 OSCILLATEUR HARMONIQUE M4 OSCILLATEUR HARMONIQUE I Modèle de l oscillateur harmonique (O.H.) I. Exemples Cf Cours I. Définition Définition : Un oscillateur harmonique à un degré de liberté x (X, θ,... ) est un système physique

Plus en détail

Quelques généralités et faits historiques sur les

Quelques généralités et faits historiques sur les Quelques généralités et faits historiques sur les phénomènes électriques L. Villain 1 Notion de charge électrique 1.1 Historiques et principaux faits La notion fondamentale à la base de la description

Plus en détail

FORME DES MOLECULES. La théorie donne l arrangement des paires liantes et non liantes autour de l atome central.

FORME DES MOLECULES. La théorie donne l arrangement des paires liantes et non liantes autour de l atome central. FORME DES MOLECULES I) Répulsion des paires électroniques La forme des molécules dépend des angles de liaison. Un angle de liaison est défini par l angle entre deux atomes formant une liaison. Les angles

Plus en détail

Clemenceau. Du gaz parfait monoatomique aux fluides réels et aux phases condensées. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Du gaz parfait monoatomique aux fluides réels et aux phases condensées. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. Lycée Clemenceau CSI (O.Granier) Du gaz parfait monoatomique aux fluides réels et aux phases condensées La thermodynamique? La thermodynamique? La thermodynamique est fondamentalement la science des transformations

Plus en détail

Matériaux Diélectriques

Matériaux Diélectriques Matériaux Diélectriques Master Matériaux Pr. Welter, Institut Le Bel, 9 ème étage nord Introduction Matériaux diélectriques : isolant ou large diversité de matériaux non métalliques. Trois propriétés fondamentales

Plus en détail

Cours de physico-chimie. appliquée aux capteurs L1PC. Marcel Carrère 2011-2012

Cours de physico-chimie. appliquée aux capteurs L1PC. Marcel Carrère 2011-2012 Cours de physico-chimie appliquée aux capteurs L1PC Marcel Carrère 2011-2012 Livre support de ce cours «les capteurs en instrumentation industrielle» G. Asch et ses collaborateurs, aux éditions Dunod.

Plus en détail

Chapitre 4 : Les bases du magnétisme application à la RMN. Dr. Hervé GUILLOU

Chapitre 4 : Les bases du magnétisme application à la RMN. Dr. Hervé GUILLOU UE 3-1: Physique Chapitre 4 : Les bases du magnétisme application à la RMN Dr. Hervé GUILLOU Année universitaire 2014/2015 Université Joseph Fourier (UJF) Grenoble I - Tous droits réservés Finalité du

Plus en détail

Chapitre 3 : Liaisons chimiques. GCI 190 - Chimie Hiver 2009

Chapitre 3 : Liaisons chimiques. GCI 190 - Chimie Hiver 2009 Chapitre 3 : Liaisons chimiques GCI 190 - Chimie Hiver 2009 Contenu 1. Liaisons ioniques 2. Liaisons covalentes 3. Liaisons métalliques 4. Liaisons moléculaires 5. Structure de Lewis 6. Électronégativité

Plus en détail

CHAPITRE 2 : Structure électronique des molécules

CHAPITRE 2 : Structure électronique des molécules CHAPITRE 2 : Structure électronique des molécules I. La liaison covalente 1) Formation d une liaison covalente Les molécules sont des assemblages d atomes liés par des liaisons chimiques résultant d interactions

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

Syllabus d électricité. G. Barmarin

Syllabus d électricité. G. Barmarin Syllabus d électricité G. Barmarin 2012-2013 1 2 3 Table des matières 4 Electrostatique Histoire 5 Expérience : Conclusion : il existe deux types de charges que l on qualifiera de positive et négative

Plus en détail

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+ Chapitre 22 Sciences Physiques - BTS Transfert thermique 1 Généralités 1.1 Température La température absolue est mesuré en Kelvin [K]. La relation de passage entre C et K est : T [K] = [ C ]+ 273,15 Remarque

Plus en détail

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique ÉCOLE POLYTECHNIQUE FILIÈRE MP CONCOURS D ADMISSION 2007 COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est autorisée pour cette épreuve. Quelques aspects de la fusion contrôlée

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

Systèmes embarqués Cours 6

Systèmes embarqués Cours 6 Principes Systèmes embarqués Cours 6 Systèmes embarqués Sylvain Tisserant - ESIL Système physique Capteurs avec conditionnement Actionneurs avec conditionnement CAN CNA Système numérique de contrôle commande

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome PHYSIQUE-CHIMIE Ce sujet traite de quelques propriétés de l aluminium et de leurs applications. Certaines données fondamentales sont regroupées à la fin du texte. Partie I - Propriétés de l atome I.A -

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

L oscillateur OSCILLATEUR HARMONIQUE. Chapitre 1. I. Introduction, définitions. I.1. Exemple. I.2. Caractérisation du mouvement

L oscillateur OSCILLATEUR HARMONIQUE. Chapitre 1. I. Introduction, définitions. I.1. Exemple. I.2. Caractérisation du mouvement Chapitre 1 OSCILLATEUR HARMONIQUE harmonique étudié dans ce chapitre est un oscillateur mécanique constitué d un ressort et d une masse. Cet exemple simple permettra L oscillateur d introduire le concept

Plus en détail

Cours n 15 : Champ magnétique

Cours n 15 : Champ magnétique Cours n 15 : Champ magnétique 1) Champ magnétique 1.1) Définition et caractérisation 1.1.1) Définition Comme nous l avons fait en électrostatique en introduisant la notion de champ électrique, on introduit

Plus en détail

Différents types de matériaux magnétiques

Différents types de matériaux magnétiques Différents types de matériaux magnétiques Lien entre propriétés microscopiques et macroscopiques Dans un matériau magnétique, chaque atome porte un moment magnétique µ (équivalent microscopique de l aiguille

Plus en détail

Thermodynamique et gaz parfaits

Thermodynamique et gaz parfaits Université Paris 7 PCEM 1 Cours de Physique Thermodynamique et gaz parfaits Étienne Parizot (APC Université Paris 7) É. Parizot Physique PCEM 1 ère année page 1 Résumé du cours précédent : travail énergie

Plus en détail

1) Explications (Expert) :

1) Explications (Expert) : 1) Explications (Expert) : Mesures expérimentales : Dans nos conditions d expérience, nous avons obtenu les résultats suivants : Les dimensions des récipients sont : 1) bocal vide : épaisseur de verre

Plus en détail

Problème 1 : Genèse d un coup de foudre

Problème 1 : Genèse d un coup de foudre PC*1/ PC* /PC DEVOIR SURVEILLE DE PYSIQUE N 7 31 janvier 15 1 Problème 1 : Genèse d un coup de foudre Le processus de formation des nuages dans l atmosphère suit un ensemble complexe d étapes dont la connaissance

Plus en détail

CHAPITRE 2 LES COMPOSÉS CHIMIQUES ET LES LIAISONS

CHAPITRE 2 LES COMPOSÉS CHIMIQUES ET LES LIAISONS CHAPITRE 2 LES COMPOSÉS CHIMIQUES ET LES LIAISONS 2.1 - La formation de liaisons ioniques et covalentes 2.2 - Les noms et les formules des composés ioniques et moléculaires 2.3 - Une comparaison des propriétés

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

CHAPITRE IV : La charge électrique et la loi de Coulomb

CHAPITRE IV : La charge électrique et la loi de Coulomb CHAPITRE IV : La charge électrique et la loi de Coulomb IV.1 IV.1 : La Force électrique Si on frotte vigoureusement deux règles en plastique avec un chiffon, celles-ci se repoussent. On peut le constater

Plus en détail

Devoir de Physique en autocorrection n 5 pour le 15 avril 2014

Devoir de Physique en autocorrection n 5 pour le 15 avril 2014 DA 5 pour le 15 avril 2014 Devoir de Physique en autocorrection n 5 pour le 15 avril 2014 Problème : Essuie-vitre à détecteur de pluie Si, au cours de l épreuve, un candidat repère ce qui lui semble être

Plus en détail

Electricité et magnétisme - TD n 1 Loi de Coulomb

Electricité et magnétisme - TD n 1 Loi de Coulomb 1. Force électrique Electricité et magnétisme - TD n 1 Loi de Coulomb Calculer le rapport entre force gravitationnelle et électrique entre le proton et l électron dans l atome d hydrogène. Soit a 0 la

Plus en détail

PHYSIQUE & CHIMIE COMPOSITION n 2 PREMIERES S 1, S 2, S 3, S 4 & S 5

PHYSIQUE & CHIMIE COMPOSITION n 2 PREMIERES S 1, S 2, S 3, S 4 & S 5 PYSIQUE & CIMIE COMPOSITION n PREMIERES S 1, S, S 3, S 4 & S 5 Février 014 Total des points : 40 Durée : 3h00 calculatrice autorisée PARTIE 1 Etude d un solide ionique, l iodure de potassium (9 points)

Plus en détail

Effets inductifs et mésomères

Effets inductifs et mésomères CHIMIE RGANIQUE (Stage de pré-rentrée UE1) Effets inductifs et mésomères bjectifs: Découvrir les effets électroniques inductifs et mésomères. Aborder l ordre de priorité des groupes fonctionnels donneurs

Plus en détail

Transferts thermiques par conduction

Transferts thermiques par conduction Transferts thermiques par conduction Exercice 1 : Température de contact entre deux corps* On met en contact deux conducteurs thermiques cylindriques, calorifugés sur leurs surfaces latérales. On se place

Plus en détail

Modélisation et optimisation de dispositifs non-linéaires d amortissement de structures par systèmes

Modélisation et optimisation de dispositifs non-linéaires d amortissement de structures par systèmes Modélisation et optimisation de dispositifs non-linéaires d amortissement de structures par systèmes piézoélectriques commutés Julien Ducarne To cite this version: Julien Ducarne. Modélisation et optimisation

Plus en détail

Capacité Métal-Isolant-Semiconducteur (MIS)

Capacité Métal-Isolant-Semiconducteur (MIS) apacité Métal-solant-Semiconducteur (MS) 1-onstitution Une structure Métal-solant-Semiconducteur (MS) est constituée d'un empilement de trois couches : un substrat semiconducteur sur lequel on a déposé

Plus en détail

NOTICE DOUBLE DIPLÔME

NOTICE DOUBLE DIPLÔME NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des

Plus en détail

Détermination des structures moléculaires Structures et diffraction.

Détermination des structures moléculaires Structures et diffraction. Détermination des structures moléculaires Structures et diffraction. Pr. Richard Welter, Institut de Biologie Moléculaire des Plantes, welter@unitra.fr CONTENU DES ENSEIGNEMENTS 1) Discussion sur la notion

Plus en détail

ECHANGE DE CHALEUR: LA CONDUCTION

ECHANGE DE CHALEUR: LA CONDUCTION ECHANGE DE CHALEUR: LA CONDUCTION Nous n étudierons dans ce chapitre que la conduction en régime permanent, c'est-à-dire lorsque l équilibre thermique est atteint ce qui se caractérise par des températures

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une

Plus en détail

Description du programme de physique et estimation horaire

Description du programme de physique et estimation horaire Description du programme de physique et estimation horaire Description du programme de physique première année et estimation horaire En italiques : les points incertains. 1. Description des états de la

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

TP Cours Ferromagnétisme - Transformateur

TP Cours Ferromagnétisme - Transformateur TP Cours Ferromagnétisme - Transformateur 1. PROPRIETES DES MILIEUX FERROMAGNETIQUES La réalisation de transformateurs nécessite l utilisation de matériaux fortement aimantables. Ce sont les ferromagnétiques.

Plus en détail

PHYSIQUE-CHIMIE. Traitements des surfaces. Partie I - Codépôt électrochimique cuivre-zinc.

PHYSIQUE-CHIMIE. Traitements des surfaces. Partie I - Codépôt électrochimique cuivre-zinc. PHYSIQUE-CHIMIE Traitements des surfaces Partie I - Codépôt électrochimique cuivre-zinc IA - Pour augmenter la qualité de surface d une pièce en acier, on désire recouvrir cette pièce d un alliage cuivre-zinc

Plus en détail

5. Les conducteurs électriques

5. Les conducteurs électriques 5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,

Plus en détail

Le rôle d un thermomètre est d assurer la liaison entre la grandeur thermométrique et la matière dont on veut repérer la température.

Le rôle d un thermomètre est d assurer la liaison entre la grandeur thermométrique et la matière dont on veut repérer la température. COURS DE THERMODYNAMIQUE de Mme F. Lemmini, Professeur STU-SVI CHAPITRE I : TEMPERATURE ET CHALEUR I.1 Température I.1.1 Notion de température La température est liée à la sensation physiologique du chaud

Plus en détail

Concours Centrale-Supélec 2005 7/12

Concours Centrale-Supélec 2005 7/12 Problème - type centrale Partie - Couplage des phénomènes de conduction thermique et électrique en régime linéaire. Étude d un réfrigérateur à effet Peltier Le but de cette partie est de montrer que, dans

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques. Détection par effet mirage Mesures photothermiques

Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques. Détection par effet mirage Mesures photothermiques 1 Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques 1 Introduction Détection par effet mirage Mesures photothermiques La méthode de détection par effet mirage fait partie de méthodes

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale

EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale Hiver 2009 Nom : Chaque question à choix multiples vaut 3 points 1. Dans quelle direction est le potentiel au centre du carré dans la figure suivante?

Plus en détail

Chapitre 0-2 Introduction générale au cours de BCPST1

Chapitre 0-2 Introduction générale au cours de BCPST1 Chapitre 0-2 Introduction générale au cours de BCPST Extrait du programme I. Les grandeurs en sciences physiques Définition : une grandeur est une observable du système On peut la mettre en évidence a.

Plus en détail

OXYDO-REDUCTION. Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons.

OXYDO-REDUCTION. Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons. OXYDO-REDUCTION I) Définitions 1) Oxydant et Réducteur Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons. 2) Couple rédox On parle de

Plus en détail

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens.

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Objectifs Connaître les caractéristiques de la structure gaussienne d un faisceau laser (waist, longueur

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

Test d auto-évaluation 2010

Test d auto-évaluation 2010 SwissPhO Olympiade Suisse de Physique 2010 Test d auto-évaluation 2010 Ce test permet aux intéressés d évaluer leurs capacités à résoudre des problèmes et de reconnaître des lacunes dans certaines notions.

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

Résonance Magnétique Nucléaire : RMN

Résonance Magnétique Nucléaire : RMN 21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

III CAPILLARITE TENSION SUPERFICIELLE

III CAPILLARITE TENSION SUPERFICIELLE III CAPILLAITE TENSION SUPEFICIELLE La «tension de surface» est un phénomène qui fait apparaître une grandeur intensive propre aux liquides qui peut revêtir une grande importance dans des problèmes spécifiques

Plus en détail

la matièr cuivre (II) Donner la 2) Déterminer et Cu 2+ + Correction : ions chlorure. 1) Chlorure de cuivre neutralité CuCl 2. = =

la matièr cuivre (II) Donner la 2) Déterminer et Cu 2+ + Correction : ions chlorure. 1) Chlorure de cuivre neutralité CuCl 2. = = 1) Chlorure de cuivre Le chlorure de cuivre (II) est un composé ionique constitué d'ions chlorure Cl - et d'ions cuivre (II) Cu 2+. Donner la formule statistique de ce composé. Écrire l'équation de sa

Plus en détail

Molécules et Liaison chimique

Molécules et Liaison chimique Molécules et liaison chimique Molécules et Liaison chimique La liaison dans La liaison dans Le point de vue classique: l approche l de deux atomes d hydrogd hydrogènes R -0,9-1 0 0,5 1 1,5,5 3 3,5 4 R

Plus en détail

Théories analytiques du transport des ions en solution - Application aux poreux chargés.

Théories analytiques du transport des ions en solution - Application aux poreux chargés. Atelier MoMAS PARIS 2010 Théories analytiques du transport des ions en solution Application aux poreux chargés. O. Bernard, J.F. Dufrêche, P. Turq. Laboratoire Physicochimie des Electrolytes Colloides

Plus en détail

Energie. L intérêt de ce milieu amplificateur est que la fréquence de la transition laser, ν 0 = E 2 E 1

Energie. L intérêt de ce milieu amplificateur est que la fréquence de la transition laser, ν 0 = E 2 E 1 1 Université Paris XI Centre d Orsay Master 1 de Physique Fondamentale Magistère de Physique Fondamentale 2 ième année Examen de Physique des Lasers Examen de 2 ieme cycle Première session 2011-2012 Épreuve

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

Electricité. Chapitre 1: Champ électrique

Electricité. Chapitre 1: Champ électrique 2 e BC 1 Champ électrique 1 Electricité L interaction électromagnétique a été évoqué dans la partie «Interactions fondamentales» en énonçant la loi de Coulomb, et en analysant des phénomènes macroscopiques

Plus en détail

PROGRAMME DES UNITES DE VALEUR DE LA FILIERE PHYSIQUE NIVEAU I

PROGRAMME DES UNITES DE VALEUR DE LA FILIERE PHYSIQUE NIVEAU I REPUBLIQUE DU CAMEROUN Paix Travail - Patrie UNIVERSITE DE YAOUNDE 1 FACULTE DES SCIENCES BP 812 Yaoundé Tel/Fax : (237) 223 53 86 Telex UY4243KN Division de la Programmation et du Suivi des Activités

Plus en détail

Corrigés du Thème 1 :

Corrigés du Thème 1 : Thème 1 : Corrigés des exercices Page 1 sur 9 Corrigés du Thème 1 : Création : juin 2 003 Dernière modification : juin 2005 Exercice T1_01 : Evaluation de la taille d une molécule d eau Dans 1g ( 1 cm

Plus en détail

LP 203 Champ électrique et magnétique, induction

LP 203 Champ électrique et magnétique, induction Objectifs : LP 203 Champ électrique et magnétique, induction Savoir calculer le champ électrique créé par des distributions simples de charge. Savoir calculer le champ magnétique créé par des distributions

Plus en détail

GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS

GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS GRANDEURS PHYSIQUES et EQUATIONS AUX DIMENSIONS Par Silicium 628 La physique décrit la matière et l espace, leurs propriétés et leurs comportements. Les propriétés mesurables sont nommées GRANDEURS PHYSIQUES.

Plus en détail

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide La constante d autoprotolyse de l eau, K W, est égale au produit de K a par K b pour un couple acide/base donné : En passant en échelle logarithmique, on voit donc que la somme du pk a et du pk b d un

Plus en détail

Sujet E3A 2012 Physique (Seulement) Option MP

Sujet E3A 2012 Physique (Seulement) Option MP Sujet E3A 2012 Physique (Seulement) ption MP Première partie : Caméra de contrôle des plaques d immatriculation A / Propagation de la lumière A1. Question de cours : position de Bessel La position de Bessel

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail