Une bibliothèque de templates pour CUDA

Dimension: px
Commencer à balayer dès la page:

Download "Une bibliothèque de templates pour CUDA"

Transcription

1 Une bibliothèque de templates pour CUDA Sylvain Collange, Marc Daumas et David Defour Montpellier, 16 octobre 2008

2 Types de parallèlisme de données Données indépendantes n threads pour n jeux de données distincts Ex : rendu graphique Code d'un thread = corps de boucle parallèle Données dépendantes n threads pour 1 jeu de données Ex : multiplication de deux matrices 100x100 Utilisation de bibliothèques GPU : cublas, cufft, CUDPP... Mixte n*m threads pour n jeux de données Ex : calcul sur 100 matrices 10x10 Pas de solution existante sur GPU 2

3 Application Résolution de simplexes pour solveurs de Bernstein Collaboration avec Dominique Michelucci, Université de Bourgogne Résoudre ~10000 simplexes de 100x100 Portage sur GPU en cours de développement 3

4 Objectifs Développer une bibliothèque logicielle sur GPU Mettre en œuvre des algorithmes parallèles pour du parallélisme «mixte» Simplifier la programmation pour GPU Rester efficace 4

5 Plan NVidia CUDA Algorithmes parallèles et CUDPP Notre bibliothèque 5

6 Répartir le travail Sur CPU multicœur / SMP / NUMA Parallélisme à gros grain Découpler les données des threads pour limiter les conflits et communications Sur GPU Parallélisme à grain fin Entrelacer les données des threads pour optimiser la localité et exploiter les mémoires locales T0 T1 T2 T3 T0 T1 T2 T3 6

7 Architecture GPU NVidia simplifiée Unités de calcul Cœur Registres Mém partagée Mém constantes Unité mémoire Controleur memoire Mémoire globale Cluster x8 7

8 NVidia CUDA Compilateur et bibliothèque pour les GPU NVidia Organisation des threads par l'utilisateur Code SPMD : un seul programme pour tous les threads 8

9 Organisation logicielle des threads Ordonnancement des threads par le GPU/driver Tous les threads d'un bloc sont ordonnancés sur le même cœur Les blocs sont ordonnancés en fonction des ressources disponibles 9

10 Mémoires 10

11 Localité Exécution en SIMT (Single Instruction, Multiple Threads) Le programmeur écrit du code sur des données scalaires Le matériel exécute ce code sur des vecteurs Branchement Peut prendre plusieurs directions différentes dans le vecteur Il faut exécuter tous les cas, masquer les résultats Cas particulier : tous les threads du vecteur suivent le même chemin 11

12 Instructions load/store Chaque thread du vecteur peut demander une adresse différente Devient gather/scatter Cas particulier : toutes les adresses dans une même ligne mémoire Une seule requête mémoire à faire (coalesced reads/writes) Gain de performance significatif Privilégier la localité 12

13 Limitations Pas de mécanismes d'abstraction de la mémoire Mémoire partagée à allouer manuellement Calculs d'index en fonction du numéro de thread Pour respecter les règles de coalescing Architecture peu documentée 13

14 Plan NVidia CUDA Algorithmes parallèles et CUDPP Notre bibliothèque 14

15 Algorithmes parallèles Réduction Sommation, produit scalaire Somme préfixe (scan) Multiplication matrice creuse x vecteur Compaction Transposition Optimisation des motifs d'accès mémoire 15

16 CUDPP CUDA Data Parallel Primitives Library University of California Davis, NVidia Bibliothèque C sur CPU Algorithmes de scan CUDPPConfiguration config; config.op = CUDPP_ADD; config.datatype = CUDPP_FLOAT; config.algorithm = CUDPP_SCAN; config.options = CUDPP_OPTION_FORWARD CUDPP_OPTION_EXCLUSIVE; CUDPPHandle scanplan = 0; cudppplan(&scanplan, config, numelements, 1, 0); cudppscan(scanplan, d_odata, d_idata, numelements); 16

17 CUDPP Avantages Pas besoin de programmer en CUDA Algorithmes parallèles efficaces Limitations Pas de parallèlisme possible entre plusieurs calculs : opérations effectuées séquentiellement Coût de lancement du calcul, communications avec le CPU Types de données et opérations possibles limitées : opérateurs paramétrables mais non programmables 17

18 Plan NVidia CUDA Algorithmes parallèles et CUDPP Notre bibliothèque 18

19 Contenu Des conteneurs Pour abstraire la gestion des mémoires Des algorithmes parallèles Pour la communication entre threads d'un bloc Source et destination dans les registres Réduction parallèle (vote), broadcast,... Des fonctions haut-niveau Source ou destination en mémoire globale 19

20 CUDA : C ou C++? Support officiel C++ sur CPU sauf exceptions C uniquement sur GPU «sauf templates simples» En pratique Utilisation de classes et templates dans CUDPP Projet auquel participe NVidia Front-end CUDA basé sur le front-end C++ d'edg Respecte 100% de la norme C++ Rumeurs : support du C++ dans une prochaine version de CUDA? Toujours possible de passer par un compilateur C++ C 20

21 Métaprogrammation Les templates C++ fournissent un langage fonctionnel Exécuté à la compilation Récursivité possible template<int n> struct fact { enum { val = n * fact<n-1>::val }; }; template<> struct fact<0> { enum { val = 1 }; }; fact<6>::val -> 720 Permet de générer des constantes et du code 21

22 Découpage d'un bloc CUDA Une dimension explicite, une dimension implicite Quelle est la plus interne? Calcul sur n blocs indépendants de taille m Array Of Structures Calcul sur un bloc de m vecteurs de taille p Structure Of Arrays Dépend de l'application On généralise : n blocs indépendants de m vecteurs de taille p Les dimensions n et p sont implicites Classe Shape passée en argument de template Dimensions connues à la compilation n m m p p m n 22

23 Mémoire partagée En CUDA : allocation statique uniquement Pour toute la durée de l'exécution Pas de pile Une classe pour gérer la mémoire Allocation statique en pile template<class T, class Shape, int Size, class ParentFrame = root_frame, int Alignment = 4> struct shared_array { device shared_array(shape s); device T & operator[] (size_t index); }; Brique de base de la bibliothèque // Dimensions du bloc // Nombre d'éléments // (dimension explicite) // Cadre de pile 23

24 Mémoire privée Où stocker les données privées? Registres : rapide (0-4 cycles), limité (~32/thread), non indexable Mémoire partagée : rapide (4 cycles), limitée (~8/th), indexable Mémoire locale : lente (500 cycles), ~illimitée, indexable Mémoire globale : lente (500 cycles), ~illimitée, indexable En CUDA : quatre syntaxes différentes Choix à faire au début de la conception Devrait être fait lors de l'optimisation Abstraction du type de mémoire : template<class T, class Shape, int Size, class ParentFrame, StorageArea Storage> struct private_array; template<class T, class Shape, class ParentFrame, StorageArea Storage> struct private_scalar; 24

25 Réduction Opération à effectuer Somme, min, max, etc. Fonction passée en paramètre template Réduction dans la dimension m Utilisation d'un arbre de réduction Algorithme récursif exécuté à la compilation Aucun contrôle de flot dans le code GPU Passage par la mémoire partagée Résultat aux threads d'indice 0 dans la dimension m m f p? n 0 25

26 Broadcast Suit généralement une réduction Tous les threads de la dimension m reçoivent la valeur du thread i Passage par la mémoire partagée m p n i 26

27 Algorithmes dérivés Fonctions intégrées Accès en mémoire globale avec adressage implicite Lecture de scalaire en mémoire globale (read+broadcast) Réductions depuis un tableau en mémoire Recherche d'un élément satisfaisant un prédicat dans un tableau Objectif : porter les fonctions standard de <algorithm> for_each, transform, fill, find, search, count, max_element... Presque toutes implémentables avec les briques de base Nécessité de trouver un équivalent parallèle aux itérateurs 27

28 Decuda Langage machine GPU NVidia non documenté Désassembleur issu d'un travail de reconstruction à partir de la sortie binaire du compilateur Wladimir van der Laan, Rijksuniversiteit Groningen, NL Permet de connaître exactement le code généré 28

29 Problèmes rencontrés Front-end C++ Pas de fonctions membres template Niveaux de protection (private,...) non respectés par l'émulation logicielle Erreurs internes du compilateur Back-end Échec de l'inférence du type de mémoire pointée «Optimisations» nécessitant trop de registres Langage pas encore stabilisé 29

30 Résultats Réduction depuis la mémoire avec 512 threads Comparaison avec la réduction 6 de Mark Harris (code C optimisé de NVidia) Byte/clock Harris Byte/clock CUTL K 256K 4MB 64MB Pas de surcoût notable dû à la généricité 30

31 Conclusion Évolution progressive des langages GPU bas-niveau Assembleurs en 2002 (DX shaders, ARBfp) Dérivés du C simplifiés en 2003 (Cg, GLSL, HLSL) Dérivé du C parallèle en 2005 (Brook) C parallèle en 2006 (CUDA) Prochaines étapes C++ Bibliothèques de structures de données et d'algorithmes Reste à construire 31

32 OpenCL? Présenté à SIGGRAPH 08 // This kernel computes FFT of length The 1024 length FFT is decomposed into // calls to a radix 16 function, another radix 16 function and then a radix 4 function kernel void fft1d_1024 ( global float2 *in, global float2 *out, local float *smemx, local float *smemy) { int tid = get_local_id(0); int blockidx = get_group_id(0) * tid; float2 data[16]; // starting index of data to/from global memory in = in + blockidx; out = out + blockidx; globalloads(data, in, 64); // coalesced global reads fftradix16pass(data); // in-place radix-16 pass twiddlefactormul(data, tid, 1024, 0); // local shuffle using local memory localshuffle(data, smemx, smemy, tid, (((tid & 15) * 65) + (tid >> 4))); fftradix16pass(data); // in-place radix-16 pass twiddlefactormul(data, tid, 64, 4); // twiddle factor multiplication localshuffle(data, smemx, smemy, tid, (((tid >> 4) * 64) + (tid & 15))); // four radix-4 function calls fftradix4pass(data); fftradix4pass(data + 4); fftradix4pass(data + 8); fftradix4pass(data + 12); // coalesced global writes globalstores(data, out, 64); } 32

Informatique légale : FPGA vs. GPU

Informatique légale : FPGA vs. GPU Informatique légale : FPGA vs. GPU Sylvain Collange, Yoginder S. Dandass, Marc Daumas et David Defour 03/06/2008 Problématiques Analyse de disque dur Recherche de contenu illégal connu Y compris dans des

Plus en détail

Algorithmes évolutionnaires sur. et GPU. Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline

Algorithmes évolutionnaires sur. et GPU. Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline Algorithmes évolutionnaires et GPU Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline graphique Introduction au parallélisme de données Exemple de simulation Les langages de haut-niveau

Plus en détail

M2-Images. Rendu Temps Réel - OpenGL 4 et compute shaders. J.C. Iehl. December 18, 2013

M2-Images. Rendu Temps Réel - OpenGL 4 et compute shaders. J.C. Iehl. December 18, 2013 Rendu Temps Réel - OpenGL 4 et compute shaders December 18, 2013 résumé des épisodes précédents... création des objets opengl, organisation des données, configuration du pipeline, draw,... opengl 4.3 :

Plus en détail

CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES

CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES Trois types de formation LES FORMATEURS Les experts techniques AS+ Groupe EOLEN disposent d une réelle expérience pratique

Plus en détail

Introduction à CUDA. gael.guennebaud@inria.fr

Introduction à CUDA. gael.guennebaud@inria.fr 36 Introduction à CUDA gael.guennebaud@inria.fr 38 Comment programmer les GPU? Notion de kernel exemple (n produits scalaires): T ci =ai b ( ai, b : vecteurs 3D, ci for(int i=0;i

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

Introduction à la Programmation Parallèle: MPI

Introduction à la Programmation Parallèle: MPI Introduction à la Programmation Parallèle: MPI Frédéric Gava et Gaétan Hains L.A.C.L Laboratoire d Algorithmique, Complexité et Logique Cours du M2 SSI option PSSR Plan 1 Modèle de programmation 2 3 4

Plus en détail

Practice HPC. Retour d expérience Xeon PHI. Février 2012. Damien DUBUC Expert HPC software. 28/03/2013 ANEO Tous droits réservés 1

Practice HPC. Retour d expérience Xeon PHI. Février 2012. Damien DUBUC Expert HPC software. 28/03/2013 ANEO Tous droits réservés 1 Retour d expérience Xeon PHI Damien DUBUC Expert HPC software Février 2012 28/03/2013 ANEO Tous droits réservés 1 Quel est notre rôle? Présenter o Gérer un portefeuille clients nécessitant des optimisations

Plus en détail

. Plan du cours. . Architecture: Fermi (2010-12), Kepler (12-?)

. Plan du cours. . Architecture: Fermi (2010-12), Kepler (12-?) Plan du cours Vision mate riel: architecture cartes graphiques NVIDIA INF 560 Calcul Paralle le et Distribue Cours 3 Vision logiciel: l abstraction logique de l architecture propose e par le langage CUDA

Plus en détail

Cours 1 : La compilation

Cours 1 : La compilation /38 Interprétation des programmes Cours 1 : La compilation Yann Régis-Gianas yrg@pps.univ-paris-diderot.fr PPS - Université Denis Diderot Paris 7 2/38 Qu est-ce que la compilation? Vous avez tous déjà

Plus en détail

Réalisation d un serveur CTI-CSTA sur TCP/IP

Réalisation d un serveur CTI-CSTA sur TCP/IP Alcôve http://www.alcove.fr 1/28 Réalisation d un serveur CTI-CSTA sur TCP/IP Julien Gaulmin Cette présentation est librement diffusable sous les termes de la GNU Free Documentation

Plus en détail

Optimisation de code

Optimisation de code Optimisation de code Brique ASC Samuel Tardieu sam@rfc1149.net École Nationale Supérieure des Télécommunications Samuel Tardieu (ENST) Optimisation de code 1 / 77 But L optimisation cherche à améliorer

Plus en détail

Évaluation et implémentation des langages

Évaluation et implémentation des langages Évaluation et implémentation des langages Les langages de programmation et le processus de programmation Critères de conception et d évaluation des langages de programmation Les fondations de l implémentation

Plus en détail

INSTALLATION ET CONFIGURATION POUR LA PROGRAMMATION

INSTALLATION ET CONFIGURATION POUR LA PROGRAMMATION INSTALLATION ET CONFIGURATION POUR LA PROGRAMMATION PARALLELES SOUS WINDOWS I. PREPARATION DE L ENVIRONNEMENT Tous d abord il va vous falloir télécharger quelques logiciels afin de pouvoir commencer à

Plus en détail

Portage et optimisation d applications de traitement d images sur architecture Kalray Mppa-Manycore Journées de la Compilation

Portage et optimisation d applications de traitement d images sur architecture Kalray Mppa-Manycore Journées de la Compilation Portage et optimisation d applications traitement d images sur architecture Kalray Mppa-Manycore Journées la Compilation Pierre Guillou Centre recherche en informatique Mines ParisTech 4 décembre 2013

Plus en détail

Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC

Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC JSO HPC-Desk - 20 mai 2014 Vincent Ducrot, Sébastien Monot AS+ - Groupe Eolen Donnons de la suite à vos idées PRÉSENTATION

Plus en détail

Introduction au calcul parallèle avec OpenCL

Introduction au calcul parallèle avec OpenCL Introduction au calcul parallèle avec OpenCL Julien Dehos Séminaire du 05/01/2012 Sommaire Introduction Le calculateur du CGR/LISIC/LMPA Généralités sur OpenCL Modèles Programmation Optimisation Conclusion

Plus en détail

Argument-fetching dataflow machine de G.R. Gao et J.B. Dennis (McGill, 1988) = machine dataflow sans flux de données

Argument-fetching dataflow machine de G.R. Gao et J.B. Dennis (McGill, 1988) = machine dataflow sans flux de données EARTH et Threaded-C: Éléments clés du manuel de références de Threaded-C Bref historique de EARTH et Threaded-C Ancêtres de l architecture EARTH: Slide 1 Machine à flux de données statique de J.B. Dennis

Plus en détail

Optimisations des SGBDR. Étude de cas : MySQL

Optimisations des SGBDR. Étude de cas : MySQL Optimisations des SGBDR Étude de cas : MySQL Introduction Pourquoi optimiser son application? Introduction Pourquoi optimiser son application? 1. Gestion de gros volumes de données 2. Application critique

Plus en détail

Cours de compilation

Cours de compilation Cours de compilation 1 Introduction Un compilateur est un logiciel de traduction d un langage source vers un langage cible. D ordinaire le langage source est un langage de programmation évolué, comme C++

Plus en détail

Délégation GPU des perceptions agents : application aux boids de Reynolds

Délégation GPU des perceptions agents : application aux boids de Reynolds Délégation GPU des perceptions agents : application aux boids de Reynolds JFSMA 2015 LIRMM - Université de Montpellier - CNRS Emmanuel Hermellin, Fabien Michel {hermellin, fmichel}@lirmm.fr Mercredi 1

Plus en détail

Benchmarks. Ensemble de codes permettant de tester la fonctionnalité et les performances d'une solution HPC dans son ensemble.

Benchmarks. Ensemble de codes permettant de tester la fonctionnalité et les performances d'une solution HPC dans son ensemble. Ensemble de codes permettant de tester la fonctionnalité et les performances d'une solution HPC dans son ensemble. (Merci à Ludovic Saugé) Françoise BERTHOUD, Francoise.Berthoud@grenoble.cnrs.fr Les benchmarks

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

Contributions au calcul sur GPU : considérations arithmétiques et architecturales

Contributions au calcul sur GPU : considérations arithmétiques et architecturales I École doctorale Energie Environnement ED305 Contributions au calcul sur GPU : considérations arithmétiques et architecturales HABILITATION À DIRIGER LES RECHERCHES présentée et soutenue publiquement

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

Gestion mémoire et Représentation intermédiaire

Gestion mémoire et Représentation intermédiaire Gestion mémoire et Représentation intermédiaire Pablo de Oliveira March 23, 2015 I Gestion Memoire Variables locales Les variables locales sont stockées: Soit dans un registre,

Plus en détail

C ellules. Gestion et récupération automatique de mémoire. Principes des lang. de progr. INE 11. Allocation dynamique de mémoire.

C ellules. Gestion et récupération automatique de mémoire. Principes des lang. de progr. INE 11. Allocation dynamique de mémoire. Principes des lang. de progr. INE 11 Michel Mauny ENSTA ParisTech Prénom.Nom@ensta.fr Michel Mauny (ENSTA ParisTech) INE 11 Prénom.Nom@ensta.fr 1 / 37 Gestion et récupération automatique de mémoire lanage

Plus en détail

IRL : Simulation distribuée pour les systèmes embarqués

IRL : Simulation distribuée pour les systèmes embarqués IRL : Simulation distribuée pour les systèmes embarqués Yassine El Khadiri, 2 ème année Ensimag, Grenoble INP Matthieu Moy, Verimag Denis Becker, Verimag 19 mai 2015 1 Table des matières 1 MPI et la sérialisation

Plus en détail

Abstractions Performantes Pour Cartes Graphiques

Abstractions Performantes Pour Cartes Graphiques UNIVERSITÉ PIERRE ET MARIE CURIE ÉCOLE DOCTORALE INFORMATIQUE, TÉLÉCOMMUNICATIONS ET ÉLECTRONIQUE Abstractions Performantes Pour Cartes. Graphiques MATHIAS BOURGOIN sous la direction d Emmanuel Chailloux

Plus en détail

Machines Virtuelles. et bazard autour. Rémi Forax

Machines Virtuelles. et bazard autour. Rémi Forax Machines Virtuelles et bazard autour Rémi Forax Avant propos Quelle est la complexité du code ci-dessous? Avec un processeur à 1Ghz, combien de temps le calcul prendra t'il? public static void main(string[]

Plus en détail

DE L ALGORITHME AU PROGRAMME INTRO AU LANGAGE C 51

DE L ALGORITHME AU PROGRAMME INTRO AU LANGAGE C 51 DE L ALGORITHME AU PROGRAMME INTRO AU LANGAGE C 51 PLAN DU COURS Introduction au langage C Notions de compilation Variables, types, constantes, tableaux, opérateurs Entrées sorties de base Structures de

Plus en détail

4. Groupement d objets

4. Groupement d objets Conception objet en Java avec BlueJ une approche interactive 4. Groupement d objets Collections et itérateurs David J. Barnes, Michael Kölling version française: Patrice Moreaux Rédigé avec 1.0 Principaux

Plus en détail

Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère

Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère L'héritage et le polymorphisme en Java Pour signifier qu'une classe fille hérite d'une classe mère, on utilise le mot clé extends class fille extends mère En java, toutes les classes sont dérivée de la

Plus en détail

TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile

TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile Dans ce TP, vous apprendrez à définir le type abstrait Pile, à le programmer en Java à l aide d une interface

Plus en détail

DEMARCHE ET MISE EN ŒUVRE

DEMARCHE ET MISE EN ŒUVRE Chapitre I : CONVENTIONS D ECRITURE 15 CHAPITRE I DEMARCHE ET MISE EN ŒUVRE Le développement de fonctions mathématiques peut répondre à plusieurs critères ou objectifs tels que la vitesse d exécution,

Plus en détail

Compilation séparée. Compilation séparée. ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1

Compilation séparée. Compilation séparée. ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1 Compilation séparée Compilation séparée ENSIIE: Programmation avancée, Compilation séparée, Modularité, Spécifications algébriques 1 Compilation séparée Modularité GCC : 4 millions de lignes de code Noyau

Plus en détail

Instructions assembleur

Instructions assembleur Instructions assembleur 0001011011110110 0001011101101101 10001001 Instruction vue par le programmeur assembleur ou instruction élémentaire cible d'un compilateur Réalise une modification de l'état interne

Plus en détail

C++ Programmer. en langage. 8 e édition. Avec une intro aux design patterns et une annexe sur la norme C++11. Claude Delannoy

C++ Programmer. en langage. 8 e édition. Avec une intro aux design patterns et une annexe sur la norme C++11. Claude Delannoy Claude Delannoy Programmer en langage C++ 8 e édition Avec une intro aux design patterns et une annexe sur la norme C++11 Groupe Eyrolles, 1993-2011. Groupe Eyrolles, 2014, pour la nouvelle présentation,

Plus en détail

Chapitre 3 Structures de données linéaires : listes, piles et files

Chapitre 3 Structures de données linéaires : listes, piles et files Chapitre 3 Structures de données linéaires : listes, piles et files 1. Introduction Le but de ce chapitre est de décrire des représentations des structures de données de base telles les listes en général

Plus en détail

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué

Plus en détail

Une dérivation du paradigme de réécriture de multiensembles pour l'architecture de processeur graphique GPU

Une dérivation du paradigme de réécriture de multiensembles pour l'architecture de processeur graphique GPU Une dérivation du paradigme de réécriture de multiensembles pour l'architecture de processeur graphique GPU Gabriel Antoine Louis Paillard Ce travail a eu le soutien de la CAPES, agence brésilienne pour

Plus en détail

Prénom : Matricule : Sigle et titre du cours Groupe Trimestre INF1101 Algorithmes et structures de données Tous H2004. Loc Jeudi 29/4/2004

Prénom : Matricule : Sigle et titre du cours Groupe Trimestre INF1101 Algorithmes et structures de données Tous H2004. Loc Jeudi 29/4/2004 Questionnaire d'examen final INF1101 Sigle du cours Nom : Signature : Prénom : Matricule : Sigle et titre du cours Groupe Trimestre INF1101 Algorithmes et structures de données Tous H2004 Professeur(s)

Plus en détail

RPC Remote Procedure Call. Benmoussa Yahia Université M hamed Bougara de Boumerdès yahia.benm@gmail.com

RPC Remote Procedure Call. Benmoussa Yahia Université M hamed Bougara de Boumerdès yahia.benm@gmail.com RPC Remote Procedure Call Benmoussa Yahia Université M hamed Bougara de Boumerdès yahia.benm@gmail.com Objectifs Le rôle de RPC comme middleware Positionner RPC dans le modèle OSI Développement d application

Plus en détail

Limitations of the Playstation 3 for High Performance Cluster Computing

Limitations of the Playstation 3 for High Performance Cluster Computing Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire

Plus en détail

Initiation au HPC - Généralités

Initiation au HPC - Généralités Initiation au HPC - Généralités Éric Ramat et Julien Dehos Université du Littoral Côte d Opale M2 Informatique 2 septembre 2015 Éric Ramat et Julien Dehos Initiation au HPC - Généralités 1/49 Plan du cours

Plus en détail

INF6500 : Structures des ordinateurs. Sylvain Martel - INF6500 1

INF6500 : Structures des ordinateurs. Sylvain Martel - INF6500 1 INF6500 : Structures des ordinateurs Sylvain Martel - INF6500 1 Cours 4 : Multiprocesseurs Sylvain Martel - INF6500 2 Multiprocesseurs Type SISD SIMD MIMD Communication Shared memory Message-passing Groupe

Plus en détail

Classes et Objets en Ocaml.

Classes et Objets en Ocaml. Classes et Objets en Ocaml. Didier Rémy 2001-2002 http://cristal.inria.fr/ remy/mot/2/ http://www.enseignement.polytechnique.fr/profs/informatique/didier.remy/mot/2/ Cours Exercices Slide 1 1. Objets 2.

Plus en détail

Calcul multi GPU et optimisation combinatoire

Calcul multi GPU et optimisation combinatoire Année universitaire 2010 2011 Master recherche EEA Spécialité : SAID Systèmes Automatiques, Informatiques et Décisionnels Parcours : Systèmes Automatiques Calcul multi GPU et optimisation combinatoire

Plus en détail

Logiciel Libre Cours 3 Fondements: Génie Logiciel

Logiciel Libre Cours 3 Fondements: Génie Logiciel Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli zack@pps.univ-paris-diderot.fr Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/

Plus en détail

Optimiser les performances de Magento

Optimiser les performances de Magento Optimiser les performances de Magento Philippe Humeau (NBS System / Wikigento) Bargento, Paris le 02/02/09 Sommaire I. Introduction II. Etat des lieux III. Oùse trouve les leviers? IV. Les méthodes d optimisation

Plus en détail

Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux

Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux CO 2 maîtrisé Carburants diversifiés Véhicules économes Raffinage propre Réserves prolongées Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux J-M. Gratien,, M. Hacene, T. Guignon

Plus en détail

Table des matières PRESENTATION DU LANGAGE DS2 ET DE SES APPLICATIONS. Introduction

Table des matières PRESENTATION DU LANGAGE DS2 ET DE SES APPLICATIONS. Introduction PRESENTATION DU LANGAGE DS2 ET DE SES APPLICATIONS Depuis SAS 9.2 TS2M3, SAS propose un nouveau langage de programmation permettant de créer et gérer des tables SAS : le DS2 («Data Step 2»). Ces nouveautés

Plus en détail

Retour d expérience : portage d une application haute-performance vers un langage de haut niveau

Retour d expérience : portage d une application haute-performance vers un langage de haut niveau Retour d expérience : portage d une application haute-performance vers un langage de haut niveau Mathias Bourgoin, Chailloux Emmanuel, Jean-Luc Lamotte To cite this version: Mathias Bourgoin, Chailloux

Plus en détail

Conventions d écriture et outils de mise au point

Conventions d écriture et outils de mise au point Logiciel de base Première année par alternance Responsable : Christophe Rippert Christophe.Rippert@Grenoble-INP.fr Introduction Conventions d écriture et outils de mise au point On va utiliser dans cette

Plus en détail

QCM systèmes d exploitation (Quarante questions)

QCM systèmes d exploitation (Quarante questions) QCM systèmes d exploitation (Quarante questions) QUIZZ OS N 1 (10 questions avec réponses) Question 1: Aux origines de l informatique, l'interface utilisateur des systèmes d exploitations était composée

Plus en détail

Certificat Big Data - Master MAthématiques

Certificat Big Data - Master MAthématiques 1 / 1 Certificat Big Data - Master MAthématiques Master 2 Auteur : Sylvain Lamprier UPMC Fouille de données et Medias Sociaux 2 / 1 Rich and big data: Millions d utilisateurs Millions de contenus Multimedia

Plus en détail

Université du Québec à Chicoutimi. Département d informatique et de mathématique. Plan de cours. Titre : Élément de programmation.

Université du Québec à Chicoutimi. Département d informatique et de mathématique. Plan de cours. Titre : Élément de programmation. Université du Québec à Chicoutimi Département d informatique et de mathématique Plan de cours Titre : Élément de programmation Sigle : 8inf 119 Session : Automne 2001 Professeur : Patrice Guérin Local

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l

Plus en détail

Plan du cours 2014-2015. Cours théoriques. 29 septembre 2014

Plan du cours 2014-2015. Cours théoriques. 29 septembre 2014 numériques et Institut d Astrophysique et de Géophysique (Bât. B5c) Bureau 0/13 email:.@ulg.ac.be Tél.: 04-3669771 29 septembre 2014 Plan du cours 2014-2015 Cours théoriques 16-09-2014 numériques pour

Plus en détail

Segmentation d'images à l'aide d'agents sociaux : applications GPU

Segmentation d'images à l'aide d'agents sociaux : applications GPU Segmentation d'images à l'aide d'agents sociaux : applications GPU Richard MOUSSA Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 Université de Bordeaux - France Laboratoire de recherche

Plus en détail

EPREUVE OPTIONNELLE d INFORMATIQUE CORRIGE

EPREUVE OPTIONNELLE d INFORMATIQUE CORRIGE EPREUVE OPTIONNELLE d INFORMATIQUE CORRIGE QCM Remarque : - A une question correspond au moins 1 réponse juste - Cocher la ou les bonnes réponses Barème : - Une bonne réponse = +1 - Pas de réponse = 0

Plus en détail

1 Architecture du cœur ARM Cortex M3. Le cœur ARM Cortex M3 sera présenté en classe à partir des éléments suivants :

1 Architecture du cœur ARM Cortex M3. Le cœur ARM Cortex M3 sera présenté en classe à partir des éléments suivants : GIF-3002 SMI et Architecture du microprocesseur Ce cours discute de l impact du design du microprocesseur sur le système entier. Il présente d abord l architecture du cœur ARM Cortex M3. Ensuite, le cours

Plus en détail

Gene-Auto, Projet ITEA 05018 IDM pour la génération de code critique certifié Validation et Vérification de transformations

Gene-Auto, Projet ITEA 05018 IDM pour la génération de code critique certifié Validation et Vérification de transformations Gene-Auto, Projet ITEA 05018 IDM pour la génération de code critique certifié Validation et Vérification de transformations Journées GDR GPL Transformations de modèles et de programmes 18 janvier 2008

Plus en détail

Informatique industrielle A7-19571 Systèmes temps-réel J.F.Peyre. Partie I : Introduction

Informatique industrielle A7-19571 Systèmes temps-réel J.F.Peyre. Partie I : Introduction Informatique industrielle A7-19571 Systèmes temps-réel J.F.Peyre Partie I : Introduction Plan de la première partie Quelques définitions Caractéristiques communes des applications temps-réel Exemples d

Plus en détail

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par

Plus en détail

Calcul Québec - Université Laval. Atelier CUDA/GPU

Calcul Québec - Université Laval. Atelier CUDA/GPU Atelier CUDA/GPU Maxime Boissonneault Université Laval - Octobre 2014 Adaptation du "CUDA/GPU Workshop", par Dan Mazur , Université McGill

Plus en détail

Processus! programme. DIMA, Systèmes Centralisés (Ph. Mauran) " Processus = suite d'actions = suite d'états obtenus = trace

Processus! programme. DIMA, Systèmes Centralisés (Ph. Mauran)  Processus = suite d'actions = suite d'états obtenus = trace Processus 1) Contexte 2) Modèles de Notion de Points de vue Modèle fourni par le SX Opérations sur les 3) Gestion des Représentation des Opérations 4) Ordonnancement des Niveaux d ordonnancement Ordonnancement

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Liste B. Jacob IC2/LIUM 15 février 2010 Plan 1 Définition du TDA Liste 2 Réalisation du TDA Liste 3 Type de stockage des éléments 4 Recherche d un élément Dans une liste non triée Dans une

Plus en détail

Chapitre VI- La validation de la composition.

Chapitre VI- La validation de la composition. Chapitre VI- La validation de la composition. Objectifs du chapitre : Expliquer les conséquences de l utilisation de règles de typage souples dans SEP. Présenter le mécanisme de validation des connexions

Plus en détail

6 - Le système de gestion de fichiers F. Boyer, UJF-Laboratoire Lig, Fabienne.Boyer@imag.fr

6 - Le système de gestion de fichiers F. Boyer, UJF-Laboratoire Lig, Fabienne.Boyer@imag.fr 6 - Le système de gestion de fichiers F. Boyer, UJF-Laboratoire Lig, Fabienne.Boyer@imag.fr Interface d un SGF Implémentation d un SGF Gestion de la correspondance entre la structure logique et la structure

Plus en détail

UE Programmation Impérative Licence 2ème Année 2014 2015

UE Programmation Impérative Licence 2ème Année 2014 2015 UE Programmation Impérative Licence 2 ème Année 2014 2015 Informations pratiques Équipe Pédagogique Florence Cloppet Neilze Dorta Nicolas Loménie prenom.nom@mi.parisdescartes.fr 2 Programmation Impérative

Plus en détail

Notions de langage machine

Notions de langage machine Notions de langage machine 18 décembre 2009 Rappels et introduction Architecture de Van Neumann : Processeur = UC + UAL Mémoire interne au processeur = les registres (soit seulement l accumulateur, soit

Plus en détail

ÉCOLE NORMALE SUPÉRIEURE DE LYON Laboratoire de l Informatique du Parallélisme

ÉCOLE NORMALE SUPÉRIEURE DE LYON Laboratoire de l Informatique du Parallélisme N d ordre : 303 N attribué par la bibliothèque : 04ENSL303 ÉCOLE NORMALE SUPÉRIEURE DE LYON Laboratoire de l Informatique du Parallélisme THÈSE pour obtenir le grade de Docteur de l École Normale Supérieure

Plus en détail

Programmation en VBA

Programmation en VBA Programmation en VBA Présentation de Visual Basic Visual Basic : Basic : dérivé du langage Basic (Biginner s All purpose Symbolic Instruction Code) des années 60 Visual : dessin et aperçu de l interface

Plus en détail

Systèmes d exploitation. Introduction. (Operating Systems) http://www.sir.blois.univ-tours.fr/ mirian/

Systèmes d exploitation. Introduction. (Operating Systems) http://www.sir.blois.univ-tours.fr/ mirian/ Systèmes d exploitation (Operating Systems) Introduction SITE : http://www.sir.blois.univ-tours.fr/ mirian/ Systèmes d exploitation - Mírian Halfeld-Ferrari p. 1/2 Qu est-ce qu un SE? Ensemble de logiciels

Plus en détail

Compilation (INF 564)

Compilation (INF 564) Présentation du cours Le processeur MIPS Programmation du MIPS 1 Compilation (INF 564) Introduction & architecture MIPS François Pottier 10 décembre 2014 Présentation du cours Le processeur MIPS Programmation

Plus en détail

C++ COURS N 2 : CLASSES, DONNÉES ET FONCTIONS MEMBRES Classes et objets en C++ Membres d'une classe Spécification d'une classe Codage du comportement

C++ COURS N 2 : CLASSES, DONNÉES ET FONCTIONS MEMBRES Classes et objets en C++ Membres d'une classe Spécification d'une classe Codage du comportement C++ COURS N 2 : CLASSES, DONNÉES ET FONCTIONS MEMBRES Classes et objets en C++ Membres d'une classe Spécification d'une classe Codage du comportement des objets d'une classe Utilisation d'une classe Droit

Plus en détail

Solaris pour la base de donnés Oracle

<Insert Picture Here> Solaris pour la base de donnés Oracle Solaris pour la base de donnés Oracle Alain Chéreau Oracle Solution Center Agenda Compilateurs Mémoire pour la SGA Parallélisme RAC Flash Cache Compilateurs

Plus en détail

Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs. Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle

Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs. Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle 1 CEA R & D for Nuclear Energy 5 000 people Nuclear systems

Plus en détail

Tableaux (introduction) et types de base

Tableaux (introduction) et types de base Tableaux (introduction) et types de base A. Motivation..................................................... 4 B. Les tableaux.................................................... 5 C. Construction des tableaux.......................................

Plus en détail

Environnements de développement (intégrés)

Environnements de développement (intégrés) Environnements de développement (intégrés) Tests unitaires, outils de couverture de code Patrick Labatut labatut@di.ens.fr http://www.di.ens.fr/~labatut/ Département d informatique École normale supérieure

Plus en détail

Portage d elsa sur GPU

Portage d elsa sur GPU ENSEIRB Informatique PRCD CERFACS CSG Portage d elsa sur GPU Auteur : Julien BRUNEAU Maître de stage : Tuteur de stage : Mme. Isabelle D Ast M. Brice Goglin PFE Année 2009/2010 Résumé Ce rapport présente

Plus en détail

Brefs rappels sur la pile et le tas (Stack. / Heap) et les pointeurs

Brefs rappels sur la pile et le tas (Stack. / Heap) et les pointeurs Brefs rappels sur la pile et le tas (Stack / Heap) et les pointeurs (exemples en C) v1.11 - Olivier Carles 1 Pile et Tas Mémoire allouée de manière statique Mémoire Allouée Dynamiquement variables locales

Plus en détail

Configuration et Déploiement d Applications Réparties par Intégration de l Hétérogénéité des Implémentations dans un Langage de Description d

Configuration et Déploiement d Applications Réparties par Intégration de l Hétérogénéité des Implémentations dans un Langage de Description d Configuration et Déploiement d Applications Réparties par Intégration de l Hétérogénéité des Implémentations dans un Langage de Description d Architecture Doctorant: Directeurs de thèse: Bechir ZALILA

Plus en détail

Architectures logicielles pour les systèmes embarqués temps réel

Architectures logicielles pour les systèmes embarqués temps réel ETR 07 4 septembre 2007 Architectures logicielles pour les systèmes embarqués temps réel Jean-Philippe Babau, Julien DeAntoni jean-philippe.babau@insa-lyon.fr 1/31 Plan Architectures logicielles pour les

Plus en détail

Introduction à la programmation des GPUs

Introduction à la programmation des GPUs Introduction à la programmation des GPUs Anne-Sophie Mouronval Mesocentre de calcul de l Ecole Centrale Paris Laboratoire MSSMat Avril 2013 Anne-Sophie Mouronval Introduction à la programmation des GPUs

Plus en détail

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1

Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Cours 7 : fonctions recursives, arithmétique binaire, flottants 1 Les types énumérés On peut aussi définir des types qui ont un nombre fini de valeurs (ex: jours de la semaine, couleurs primaires, etc.)

Plus en détail

Contexte et motivations Les techniques envisagées Evolution des processus Conclusion

Contexte et motivations Les techniques envisagées Evolution des processus Conclusion Vérification de logiciels par analyse statique Contexte et motivations Les techniques envisagées Evolution des processus Conclusion Contexte et motivations Specification Design architecture Revues and

Plus en détail

Architectures des ordinateurs Caches et mémoire virtuelle. Daniel Etiemble de@lri.fr. Capacité mémoire SRAM. X 4 tous les trois ans.

Architectures des ordinateurs Caches et mémoire virtuelle. Daniel Etiemble de@lri.fr. Capacité mémoire SRAM. X 4 tous les trois ans. Architectures des ordinateurs Caches et mémoire virtuelle Daniel Etiemble de@lri.fr Capacité mémoire 1M (bits) DRAM.5 T 1M 1M 1K 1K Date d apparition 1K 1978 1981 1984 1987 199 1993 1996 Surface SRAM/DRAM

Plus en détail

1. Structure d un programme C. 2. Commentaire: /*..texte */ On utilise aussi le commentaire du C++ qui est valable pour C: 3.

1. Structure d un programme C. 2. Commentaire: /*..texte */ On utilise aussi le commentaire du C++ qui est valable pour C: 3. 1. Structure d un programme C Un programme est un ensemble de fonctions. La fonction "main" constitue le point d entrée pour l exécution. Un exemple simple : #include int main() { printf ( this

Plus en détail

Java - la plateforme

Java - la plateforme Java - la plateforme Java la plateforme Java? VM GC JIT Java Aujourd'hui 3 environnements d'exécutions différents Java ME (Micro Edition) pour PDA, téléphone Android (Java SE moins certain paquetages)

Plus en détail

Compilation d applications de traitement du signal sur accélérateurs matériels à haute efficacité énergétique

Compilation d applications de traitement du signal sur accélérateurs matériels à haute efficacité énergétique Contexte Travaux recherche Activités annexes Conclusion Compilation d applications traitement du signal sur accélérateurs matériels à haute efficacité énergétique Rapport d avancement 1 re année Pierre

Plus en détail

Cours intensif Java. 1er cours: de C à Java. Enrica DUCHI LIAFA, Paris 7. Septembre 2009. Enrica.Duchi@liafa.jussieu.fr

Cours intensif Java. 1er cours: de C à Java. Enrica DUCHI LIAFA, Paris 7. Septembre 2009. Enrica.Duchi@liafa.jussieu.fr . Cours intensif Java 1er cours: de C à Java Septembre 2009 Enrica DUCHI LIAFA, Paris 7 Enrica.Duchi@liafa.jussieu.fr LANGAGES DE PROGRAMMATION Pour exécuter un algorithme sur un ordinateur il faut le

Plus en détail

Métriques de performance pour les algorithmes et programmes parallèles

Métriques de performance pour les algorithmes et programmes parallèles Métriques de performance pour les algorithmes et programmes parallèles 11 18 nov. 2002 Cette section est basée tout d abord sur la référence suivante (manuel suggéré mais non obligatoire) : R. Miller and

Plus en détail

1. Systèmes d entrée/sortie 2. Systèmes de fichiers 3. Structure de mémoire de masse (disques)

1. Systèmes d entrée/sortie 2. Systèmes de fichiers 3. Structure de mémoire de masse (disques) Chapitre 4 Le système de Gestion de Fichiers 1. Systèmes d entrée/sortie 2. Systèmes de fichiers 3. Structure de mémoire de masse (disques) 1 Systèmes d entrée/sortie Concepts importants : Matériel E/S

Plus en détail

Calcul scientifique haute performance sur GPUs.

Calcul scientifique haute performance sur GPUs. Calcul scientifique haute performance sur GPUs. David Michéa(1), Dimitri Komatitsch(2,3), Gordon Erlebacher(4) and Dominik Göddeke(5) Portage de SPECFEM3D (SEM) sous CUDA + MPI Portage CUDA du code différences

Plus en détail

Fiche de TD-TP no. 4

Fiche de TD-TP no. 4 Master 1 Informatique Programmation Fonctionnelle, p. 1 Fiche de TD-TP no. 4 Exercice 1. Voici trois façons différentes de définir le type Image : type Image = [[ Int ]] data Image = Image [[ Int ]] newtype

Plus en détail

Bases de programmation. Cours 5. Structurer les données

Bases de programmation. Cours 5. Structurer les données Bases de programmation. Cours 5. Structurer les données Pierre Boudes 1 er décembre 2014 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. Types char et

Plus en détail

Programmation C. Apprendre à développer des programmes simples dans le langage C

Programmation C. Apprendre à développer des programmes simples dans le langage C Programmation C Apprendre à développer des programmes simples dans le langage C Notes de cours sont disponibles sur http://astro.u-strasbg.fr/scyon/stusm (attention les majuscules sont importantes) Modalités

Plus en détail

Introduction. Les performances d une machine sont liées au: 1. nombre d instructions. 2. temps de cycle horloge

Introduction. Les performances d une machine sont liées au: 1. nombre d instructions. 2. temps de cycle horloge Introduction Les performances d une machine sont liées au: 1. nombre d instructions 2. temps de cycle horloge 3. nombre de cycle horloge par instructions. C est: le compilateur et l architecture du jeu

Plus en détail