Chap. IV: Machines à Courant Continue

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chap. IV: Machines à Courant Continue"

Transcription

1 Chap. IV: Machines à Courant Continue 1. Principes physiques mis en jeu La machine à courant continu (MCC) est une machine réversible. C est à dire qu elle peut : - fonctionner en moteur et donc recevoir de l énergie électrique pour la transformer en énergie mécanique, - fonctionner en génératrice et donc recevoir de l énergie mécanique pour la transformer en énergie électrique. a- Fonctionnement moteur cette machine tourne par action d un champ magnétique constant d induction radiale B sur un courant continu Im passant dans des brins de conducteurs orthogonaux à la direction de l induction (loi de Laplace). b. Fonctionnement en génératrice En fonctionnement génératrice cette machine entraînée en rotation par la partie mécanique voit apparaître une force électromotrice induite aux extrémités de chaque brin de conducteur qui coupe le flux créé par le champ magnétique constant d induction radiale B (loi de Lenz). 2. Constitution de la Machine La machine à courant continue comporte deux parties :

2 - Une partie fixe, appelé Stator, c est un électroaimant qui joue le rôle de l'inducteur. - Une autre partie mobile, appelée Rotor, qui est solidaire de l'arbre moteur : elle joue le rôle d'induit. (Cf. Figure IV-1). a. Le Stator Figure IV-1 : Coupes transversale et longitudinale d une MCC Le stator est appelé aussi inducteur ou champ. Que la machine fonctionne en moteur ou en génératrice, le principe est de créer un champ magnétique constant d induction. Deux moyens peuvent être utilisés : des aimants ou une bobine électrique. Pour canaliser les lignes de champ, un circuit ferromagnétique sera utilisé. Le champ magnétique sera créé dans la partie fixe de la machine appelé Stator (Cf. Figure IV-2). Figure IV-2 : Stator de la MCC Dans le cas de la MCC à aimant permanent il est impossible d inverser le sens du champ magnétique. Au contraire, dans le cas d une machine à inducteur bobiné on peut inverser le sens du champ magnétique en inversant le sens du courant dans la bobine inductrice.

3 b. Le Rotor Appelé aussi induit, il est composé d un ensemble de bobines identiques réparties uniformément autour d un noyau cylindrique et montées sur un arbre qui tourne entre les pôles de l inducteur (Cf. Figure IV-3.a). L induit constitue donc un ensemble de conducteurs qui coupent le flux magnétique. Les bobines sont disposées de telle façon que leurs deux côtés coupent respectivement le flux provenant d un pole nord et d un pole sud de l inducteur. c. Collecteur/Balaies Figure IV-3.a : Rotor de la MCC Le collecteur est un ensemble de lames de cuivre où sont reliées les extrémités du bobinage de l induit. Les balaies (ou charbons) sont situées au stator et frottent sur le collecteur en rotation. Deux balaies fixes et diamétralement opposés appuient sur le collecteur. Ainsi, ils assurent le contact électrique entre l induit et le circuit extérieur (CF. Figure IV-3.b). Le dispositif collecteur/balaies permet de faire circuler un courant dans l induit. Les bobines et l induit peuvent être reliés entre elles et au collecteur de plusieurs manières, une des plus employé est l enroulement imbriqué. Figure IV-3.b : Collecteur et Balaie de la MCC

4 d. Enroulement imbriqué L induit de la figure IV-4 possède 8 bobines identiques distribuées uniformément autour de l induit, à 45 les unes des autres. Elles sont identifiées par les chiffres 1 à 8, et logées dans 8 encoches numérotées. En faisant tourner les 8 bobines à la même vitesse, chaque bobine génère une tension et une polarité correspondant à sa position. Notons que les bobines (1) et (5) sont logées dans les mêmes encoches ; par conséquent leurs tensions ont instantanément la même valeur, mais de polarités contraires. Il en est de même pour les bobines (2) et (6) ; (3) et (7) ; (4) et (8). Si l on considère l instant particulier où la bobine (1) est à 0, la tension dans cette bobine est nulle, et les tensions dans les autres bobines sont celles que présente la figure IV-5. En relions les bobines entre elles (CF. Figure IV-6), on crée un circuit fermé ; la tension résultante est égale à la somme des tensions des 8 bobines qui est nulle algébriquement. Donc, aucun courant ne circule dans la boucle, et les tensions de la figures IV-5 demeurent les mêmes En connectant les bobines à un collecteur à 8 lames, une tension induite apparait entre deux lames consécutives. Si on place les balaies x, y à l endroit indiqué sur la figure IV-7, la tension E xy recueillie est égale à la somme des tensions entre les lames soit E xy = = Cas de la génératrice Multipolaire La figure IV-8 montre le diagramme schématique d une telle machine possédant 72 encoches sur l induit, 72 lames sur le collecteur et 72 bobines. L enroulement est imbriqué, les bobines A et C traversent momentanément la zone neutre, tandis que la bobine B coupe le flux au centre des pôles. 3. Fonctionnement en génératrice a. Tension induite La valeur de la tension induite aux bornes d une génératrice est données par: Z = nombre total de conducteur Zn n = vitesse de rotation en trs/mn E0 60 Φ = flux par pôle en Wb b. Génératrice à excitation séparée La génératrice est à excitation séparée si le courant d excitation est fournit par une source indépendante (Cf. Figure IV-9).

5 Figure IV-9 : Génératrice à excitation séparée La source de courant d excitation est raccordée aux bornes a et b. Lorsque les deux pôles sont excités et que l induit est entrainé au moyen d une turbine ou d un moteur quelconque, une tension E 0 apparait aux bornes x et y reliées aux balais (Cf. Figure IV-10) En fonctionnement à vide, la variation du courant d excitation ou de la vitesse de rotation entraîne une variation correspondante de la tension induite. A la saturation du fer de l inducteur et de l induit, le flux reste constant machine saturée (Cf. Figure IV-11). c. Génératrice à excitation shunt Lorsque les bobines excitatrices sont reliés directement aux bornes du générateur, de façon que le courant d excitation soit fourni par l induit, la génératrice est dite à excitation shunt (Cf. Figure IV-12). Figure IV-12 : Génératrice à excitation shunt Le grand avantage de cette connexion réside dans le fait qu elle n exige aucune source extérieure pour le fonctionnement de la machine. Dans un générateur shunt on peut régler la tension induite en faisant varier l intensité du courant d excitation au moyen d une résistance variable intercalée en série avec les bobines excitatrices qui portent le nom de rhéostat d excitation (CF. Figure IV-13).

6 Supposons que la tension entre x et y soit de 120v, lorsque p est au centre du rhéostat. En déplaçant le curseur vers m, la résistance entre a et b diminue, ce qui provoque une augmentation du courant I x entrainant un accroissement du flux et donc une augmentation de la tension induite. Par contre si le curseur est déplacé vers n, la résistance augmente, le courant I x diminue, le flux diminue et la tension induite E 0 diminue. Si l on connait la courbe de saturation et la résistance totale R t du champ et du rhéostat, on peut déterminer la valeur de la tension induite. Il suffit de tracer, sur le graphique de la courbe de saturation, une droite correspondant à la résistance R t. Le point de coupure correspond à la tension induite (CF. Figure IV-14). d. Génératrice en charge On peut représenter le circuit de l induit par une résistance R 0 en série avec une tension E 0, cette dernière représentant la tension induite dans les conducteurs tournants. Lorsque la machine fonctionne à vide la tension entre les balaies est égale à la tension induite E 0. Par contre, lorsqu on relie l induit à une charge, le courant de charge I provoque une chute de tension dans la résistance R 0. La tension obtenue entre les balaies et alors inferieure à E 0. A mesure que la charge augmente, la tension aux bornes de la charge diminue progressivement. 4. Fonctionnement en moteur a. Force contre électromotrice La rotation du moteur induit une tension E 0 appelée Fcem exprimée de la même façon qu une génératrice qui s oppose à la tension de la source. La tension résultante agissant sur le circuit est (E s E 0 ) et le courant I n est limité que par la résistance R 0. Es E I R Lorsque le moteur est au repos, la vitesse est nulle, donc la tension E 0 =0. C'està-dire qu au démarrage le courant est énorme car la résistance de l induit est très basse. En effet le courant de démarrage peut être de 20 à 50 fois plus grand que le courant de pleine charge di moteur. A mesure que la vitesse croit, E 0 augmente et la valeur de la tension résultante (E s E 0 ) diminue. On en conclut que le courant I diminue avec l augmentation de la vitesse. La vitesse limite du moteur est celle qui produit une Fcem 0 0

7 légèrement inferieure à la tension de la source pour permettre le passage d un courant nécessaire à la production du couple. b. Expression du couple La puissance mécanique et le couple sont deux des caractéristiques importantes des moteurs à CC. La puissance électrique fournie à l induit est : P s = E s I et E s =E 0 +R 0 I P s =E 0 I+R 0 I 2 R 0 I 2 représente les pertes Joules dissipées sous forme de chaleur dans l induit. P m =E 0 I est la puissance mécanique développée par le moteur en Watt. P m E 0 I et P m nt 9,55 T Z I 6,28 Avec T = Couple du moteur [N.m] Z = nombre de conducteur sur l induit = flux par pôle [Wb] I = courant dans l induit [A] Cette équation indique qu on peut augmenter le couple d un moteur en augmentant, soit le courant I dans l induit, soit le flux provenant des pôles. c. Réglage de la vitesse par la tension de l induit Si le flux est constant (aimant permanant, courant constant, etc..), la vitesse de rotation varie en fonction de l variation de la tension de la source. En pratique, on peut réaliser cette variation en alimentant l induit du Moteur M avec une génératrice G de tension variable (CF. Figure IV-16). On maintient l excitation I XM de l inducteur du moteur M constante, alors que l on fait varier celle (I XG ) de la génératrice. On peut même changer le sens de rotation du moteur en inversant la polarité de la tension E s produite par la génératrice (inversion du courant d excitation). Une autre façon de faire varier la tension aux bornes de l induit d un moteur pour contrôler sa vitesse, consiste à placer un rhéostat en série avec celui-ci. Le passage du courant dans le rhéostat crée une chute de tension qui, soustraite de la tension de source, réduit la tension aux bornes du moteur (Cf. Figure IV-17). L inconvénient de la méthode est la puissance dissipée inutilement par effet joule dans le rhéostat.

8 d. Réglage de la vitesse par le flux de l inducteur Si la tension de la source est maintenue constante, la vitesse de rotation n du moteur devient inversement proportionnelle au flux. Le schéma de la figure IV- 18 illustre l utilisation d un rhéostat pour commander le flux de l induit. On notera que lorsque le flux se rapproche de 0, le moteur tend à atteindre une vitesse extrêmement élevée, à s emballer. Le moteur pourra être détruit. e. Démarrage du moteur A plein tension, l appelle de courant est énorme, on risque de faire sauter les fusible, bruler l induit, et endommager le collecteur. Il faut donc prendre des précautions appropriées pour limiter le courant de démarrage. Une solution consiste à monter en série avec l induit un rhéostat de démarrage. La résistance introduite est ensuite progressivement diminuée à mesure que le moteur accélère, et finalement enlevée du circuit dès que le moteur atteint sa vitesse de régime permanent (CF. Figure IV-19). L électroaimant lâche la manette si l alimentation de la bobine shunt est coupée accidentellement. Actuellement on utilise des circuits électroniques pour limiter le courant de démarrage. f. Freinage de la MCC Freinage par inversion La méthode consiste à inverser brutalement le sens du courant dans l induit en inversant les bornes de la source (CF. Figure IV-22). Freinage dynamique Consiste à raccorder une résistance extérieure à l induit du moteur. On définit la constante de temps du système de freinage T0 : le temps requis pour que la vitesse de la MCC tombe à 50%. Un système d entraînement électrique peut fonctionner dans 4 quadrants: CF. Figures IV-23

Machine à courant continu

Machine à courant continu Machine à courant continu 1. Présentation générale 1.1. Conversion d énergie La machine à courant continu est réversible, c'est-à-dire que la constitution d'une génératrice (G) est identique à celle du

Plus en détail

La machine à courant continu

La machine à courant continu La machine à courant continu 1 Généralités Historique : 1ere machine industrielle de l histoire Utilisation principalement en moteur de toute puissance (Commande et Vitesse variable simple). => tendance

Plus en détail

Machines à courant continu

Machines à courant continu Plan du cours Constitution Principe de fonctionnement en génératrice Principe de fonctionnement en moteur La réaction d induit Etude des transferts de puissance 1 Constitution bobine inducteur Une machine

Plus en détail

V.1 Présentation de la Machine à Courant Continu (MCC)

V.1 Présentation de la Machine à Courant Continu (MCC) Chapitre V Modélisation et Simulation de la Machine à Courant Continu 36 V.1 Présentation de la Machine à Courant Continu (MCC) V.1 Généralités Les MCC de conception usuelle sont réalisées pour différentes

Plus en détail

I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu

I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu I) Rappel sur la machine à courant continu 1.1 Principe de fonctionnement d un moteur à courant continu Considérons un rotor très simplifié, sur lequel on a bobiné une seule spire, dont les extrémités

Plus en détail

BEP ET Leçon 22 Moteur à courant continu Page 1/10

BEP ET Leçon 22 Moteur à courant continu Page 1/10 BEP ET Leçon 22 Moteur à courant continu Page 1/10 1. FONCTIONNEMENT Stator : il est aussi appelé inducteur ou excitateur et c est lui qui crée le champ magnétique. Rotor : il est aussi appelé induit.

Plus en détail

Moteur à courant continu MACHINE A COURANT CONTINU. L'énergie mécanique se présente sous la forme d'un... tournant à la vitesse... Energie

Moteur à courant continu MACHINE A COURANT CONTINU. L'énergie mécanique se présente sous la forme d'un... tournant à la vitesse... Energie I. PRESENTATION MACHINE A COURANT CONTINU Une machine à courant continu est un... d'énergie. Lorsque l'énergie... est transformée en énergie..., la machine fonctionne en... Lorsque l'énergie mécanique

Plus en détail

MACHINE A COURANT CONTINU

MACHINE A COURANT CONTINU 1) Stator ( ou inducteur ) ACHINE A COURANT CONTINU a) Fonction : il crée un champ magnétique fixe ; il est souvent bipolaire, quelquefois tétrapolaire. On l appelle aussi inducteur. A) STRUCTURE b) Types

Plus en détail

Chapitre 7 : Machine à courant continu à excitation indépendante

Chapitre 7 : Machine à courant continu à excitation indépendante Chapitre 7 : Machine à courant continu à excitation indépendante I / présentation, constitution 1. rappels 2. définition 3. constitution II / fonctionnement en moteur 1. symbole 2. principe du moteur 3.

Plus en détail

MOTEUR A COURANT CONTINU SHUNT

MOTEUR A COURANT CONTINU SHUNT MOTEUR A COURANT CONTINU SHUNT 1 / Rôle Les moteurs à courant continu, jadis très répandus, sont actuellement utilisés pour des applications nécessitant un fort couple ou une régulation vitesse très fine.

Plus en détail

COURS : LES MACHINES A COURANT CONTINU

COURS : LES MACHINES A COURANT CONTINU BTS ATI1 CONSTRUCTION ELECTRIQUE COURS : LES MACHINES A COURANT CONTINU Durée du cours : 2 heures Objectifs du cours : Acquérir les connaissances de base sur les actionneurs électriques. Capacités : Analyser

Plus en détail

CONVERSION D ENERGIE

CONVERSION D ENERGIE CONVERSION D ENERGIE 1- Mise en situation Les principales sources d énergie mises en oeuvre industriellement sont l énergie électrique et l énergie mécanique. Disposant, en général, de l une ou de l autre

Plus en détail

La machine à courant continu (MCC) Année 2006/2007

La machine à courant continu (MCC) Année 2006/2007 La machine à courant continu (MCC) Année 2006/2007 Ventilateur nduit bobiné nducteur Balais Collecteur Composition On distingue les éléments suivants: Les pôles inducteurs avec leurs enroulements (ou leurs

Plus en détail

Chap.1 Conversion de puissance : Machine à courant continu

Chap.1 Conversion de puissance : Machine à courant continu Chap.1 Conversion de puissance : Machine à courant continu 1. Principe de la conversion électromécanique de puissance 1.1. Porteurs de charge d un circuit mobile dans un champ magnétique : bilan de puissance

Plus en détail

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS - ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS LIAISON REFERENTIEL B.11 Les actionneurs Machine à courant continu avec balais. Thèmes : E1 - C122 Conversion électromécanique d énergie E4 C12 Comportement

Plus en détail

LA MACHINE À COURANT CONTINU

LA MACHINE À COURANT CONTINU LA MACHINE À COURANT CONTINU Table des matières 1. Présentation... 2 1.1. Généralités... 2 1.2. Description... 3 1.2.1. Vue d'ensemble... 3 1.2.2. L'inducteur... 3 1.2.3. L'induit... 3 1.2.4. Collecteur

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Table des matières 1. Principe de fonctionnement... 2. Schéma équivalent du moteur à courant continu... 3. Alimentation du moteur... 4. Variation de vitesse

Plus en détail

MACHINES à COURANT CONTINU

MACHINES à COURANT CONTINU CHAPITRE 5 MACHINES à COURANT Gérard-André CAPOLINO 1 Construction de la machine Description Le principal avantage de la machine à courant continu est le contrôle simple du couple et de la vitesse Le stator

Plus en détail

LA MACHINE A COURANT CONTINU

LA MACHINE A COURANT CONTINU LA MACHINE A COURANT CONTINU I) Définition : Une machine à courant continu est une machine électrique tournante mettant en jeu des tensions et des courants continus. II) Principe de fonctionnement : Dans

Plus en détail

Le Moteur àcourant continu

Le Moteur àcourant continu Le Moteur àcourant continu Principe du générateur continu E I = = BLV.. E R Principe du moteur continu F = BIL.. U I = U R E Machine àcourant continu Constitution Enroulements Circulation du courant Création

Plus en détail

CH3 : La machine à courant continu à aimant permanent

CH3 : La machine à courant continu à aimant permanent Enjeu : motorisation des systèmes BTS électrotechnique 2 ème année - Sciences physiques appliquées CH3 : La machine à courant continu à aimant permanent Problématique : Le principal intérêt des moteurs

Plus en détail

MODELISATION D UNE MACHINE A COURANT CONTINU

MODELISATION D UNE MACHINE A COURANT CONTINU 1. Introduction MODELISATION D UNE MACHINE A COURANT CONTINU COURS Une machine à courant continu est une machine électrique. Il s'agit d'un convertisseur électromécanique permettant la conversion bidirectionnelle

Plus en détail

Circuit mobile dans un champ magnétique stationnaire

Circuit mobile dans un champ magnétique stationnaire Circuit mobile dans un champ magnétique stationnaire II. Conversion de puissance mécanique en puissance électrique 1. Retour sur les rails de Laplace ( générateur ) Les rails de Laplace vus dan des chapitres

Plus en détail

CH4 : La machine à courant continu

CH4 : La machine à courant continu BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH4 : La machine à courant continu Objectifs : A l issue de la leçon, l étudiant doit : 3.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 Cours de Physique appliquée La machine synchrone triphasée Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 1 Sommaire 1- Constitution 1-1- Rotor 1-2- Stator 2- Types de fonctionnement

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de... et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT ETC SYMBOLE ACTION

COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT ETC SYMBOLE ACTION 1 PRÉSENTATION Beaucoup d'applications nécessitent un couple de démarrage élevé. Le Moteur à Courant Continu (MCC) possède une caractéristique couple/vitesse de pente importante, ce qui permet de vaincre

Plus en détail

Energie mécanique fournie

Energie mécanique fournie L étude de l électromagnétisme a mis en évidence, le principe de fonctionnement des machines à courant continu: - fonctionnement en moteur, par déplacement d un conducteur parcouru par un courant et placé

Plus en détail

Commande de moteur à courant continu

Commande de moteur à courant continu U = E + R UNIVERSITE D ELOUED DEPARTEMENT D'ELECTROTECHNIQUE Commande de moteur à courant continu 1. Les modes de variation de vitesse Commande par tension d induit Commande par variation de flux magnétique

Plus en détail

GENERALITES SUR LES MACHINES SYNCHRONES

GENERALITES SUR LES MACHINES SYNCHRONES GENERALITES SUR LES MACHINES SYNCHRONES 1. Constitution 1-1. Rotor = inducteur Il est constitué d un enroulement parcouru par un courant d excitation Ie continu créant un champ magnétique 2p polaire. Il

Plus en détail

MOTEURS A COURANT CONTINU

MOTEURS A COURANT CONTINU MOTEURS A COURANT CONTINU I- GENERALITES Les moteurs à courant continu à excitation séparée sont encore utilisés assez largement pour l entraînement à vitesse variable des machines. Leur vitesse de rotation

Plus en détail

LE MOTEUR À COURANT CONTINU

LE MOTEUR À COURANT CONTINU LE MOTEUR À COURANT CONTINU I/ RAPPELS I.1/ Notions de magnétisme! Page 1 Certaines pierres naturelles ont le pouvoir d'attirer et de retenir les matériaux ferreux. On les appelle des. Chaque aimant possède

Plus en détail

Machine à courant continu

Machine à courant continu Sciences de l ngénieur PAGE 172 Machine à courant continu 1 - Magnétisme 1-1 aimant permanent Un aimant permanent est un corps qui a la propriété d'attirer le fer. On distingue Les aimants naturels tels

Plus en détail

LE CIRCUIT DE DEMARRAGE Démarrage 1/7

LE CIRCUIT DE DEMARRAGE Démarrage 1/7 LE CIRCUIT DE DEMARRAGE Démarrage 1/7 I DESCRIPTION - Le circuit est composé d'une batterie, d'un contacteur général et d'un démarreur ( possible : fusible, relais ). + contact + bat. + allumage II FONCTION

Plus en détail

MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU

MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU 1/8 Le Moteur électrique à courant continu MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU Présentation : Le système étudié est un opérateur de positionnement angulaire MAXPID constitué (voir annexe

Plus en détail

RAPPELS DE PRINCIPES PHYSIQUES

RAPPELS DE PRINCIPES PHYSIQUES 1) RAPPELS DE PRINCIPES PHYSIQUES: 1.1) Effet du passage du courant électrique : Un conducteur parcouru par un courant électrique crée un champ magnétique. Le sens du champ dépend du sens de passage du

Plus en détail

Sciences de l Ingénieur. Le moteur à courant continu.

Sciences de l Ingénieur. Le moteur à courant continu. Lycée St-loi, 9 Avenue Jules saac 13626 Aix en Provence 04 42 23 44 99 04 42 21 63 63 Nom : _ Date : _ Sciences de l ngénieur Support de cours Terminale S S. Le moteur à courant continu. Support : Attacheur

Plus en détail

rincipe de fonctionnement

rincipe de fonctionnement Le moteur à courant continu à aimants permanents Principe, caractéristiques Alimentation, variation de vitesse Puissance, rendement Réversibilité Cette technologie de moteur permet une réalisation économique

Plus en détail

Une machine à courant continu est un convertisseur d énergie réversible. Energie mécanique fournie

Une machine à courant continu est un convertisseur d énergie réversible. Energie mécanique fournie L étude de l électromagnétisme a mis en évidence, le principe de fonctionnement des machines à courant continu: - fonctionnement en moteur, par déplacement d un conducteur parcouru par un courant et placé

Plus en détail

Déterminer le sens du courant induit dans la spire sachant que B z. (t) est une fonction croissante du temps.

Déterminer le sens du courant induit dans la spire sachant que B z. (t) est une fonction croissante du temps. PC 13/14 TD INDUCTION AC1 : Loi de Lenz On considère une spire circulaire (C) fixe, conductrice de résistance R soumise à un champ magnétique extérieur uniforme variable et orthogonal à la surface du circuit

Plus en détail

CHAPITRE 2 CONVERTISSEUR ELECTROMECANIQUE

CHAPITRE 2 CONVERTISSEUR ELECTROMECANIQUE CHAPITE 2 CONVETISSE ELECTOECANIQE INTODCTION : C est un convertisseur permettant de convertir l énergie électrique (courant continu) en rotation mécanique. C est le moteur le plus simple à mettre en œuvre.

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1 Présentation générale Tous les résultats présentés dans cette première partie du cours sont valables que la machine fonctionne en moteur ou en génératrice 11 Conversion d énergie

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Centre d Intérêt 6 : CONVETI l'énergie Compétences : MODELISE, ESODE CONVESION ELECTOMECANIQE - Machine à courant continu - Associer les grandeurs physiques à la transmission de puissance Identifier les

Plus en détail

La machine à courant continu

La machine à courant continu Travaux dirigés BTS Maintenance Industrielle Exercice n 1 : Un moteur à courant continu porte sur sa plaque, les indications suivantes Excitation séparée 160 V 2 A Induit : 160 V 22 A 1170 tr.min -1 3,2

Plus en détail

P15 Induction et auto-induction

P15 Induction et auto-induction Induction et auto-induction Le phénomène d induction correspond à l apparition dans un conducteur d une force électromotrice lorsque celui-ci est soumis à un champ magnétique variable. Ceci peut alors

Plus en détail

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine I- Généralités Le point commun des méthodes de production d électricité par éolienne, centrale hydraulique ou centrale nucléaire est la transformation (ou conversion) mécanique/électrique. Elle est présente

Plus en détail

r B Ainsi le rotor se comporte comme une bobine équivalente stationnaire dont le moment magnétique

r B Ainsi le rotor se comporte comme une bobine équivalente stationnaire dont le moment magnétique Etude d une machine à courant continu polyexcitation I - Rappels 1.1 - Constitution La machine est composée de trois parties : - Le stator, partie fixe de la machine, contient les enroulements de l'inducteur.

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE 1. Introduction Un système automatisé domestique ou industriel pouvant être relié au réseau électrique sera donc alimenté par l énergie électrique alternative fournie par EDF. Dans ce cas, l actionneur

Plus en détail

CH5 : La machine à courant continu en régime transitoire

CH5 : La machine à courant continu en régime transitoire BTS électrotechnique 2 ème année - Sciences physiques appliquées CH5 : La machine à courant continu en régime transitoire Motorisation des systèmes. Problématique : Une ligne d usinage de culasses pour

Plus en détail

LE MOTEUR A COURANT CONTINU. 1. Etude des lois régissant le fonctionnement d une MCC à aimant en régime permanent

LE MOTEUR A COURANT CONTINU. 1. Etude des lois régissant le fonctionnement d une MCC à aimant en régime permanent LE MOTEUR A COURANT CONTNU 1. Etude des lois régissant le fonctionnement d une MCC à aimant en régime permanent 1. La force contre électromotrice. COURS Mise en situation : On fait tourner l arbre du moteur

Plus en détail

LA BOBINE ET LE DIPOLE RL

LA BOBINE ET LE DIPOLE RL LA BOBINE ET LE DIPOLE RL Prérequis 1. Cocher les ou la bonne réponse Un champ magnétique peut être produit par : un aimant permanant un corps isolant un corps aimanté un fil de cuivre un solénoïde parcourue

Plus en détail

L électricité : l alternateur

L électricité : l alternateur Document n 1 Les alternateurs alimentent les récepteurs électriques (gestion moteur,éclairage ) quand le moteur thermique fonctionne. Ils rechargent également batterie. la Frontière d étude Fonction globale

Plus en détail

Machines alternatives

Machines alternatives Machines alternatives Si on déplace un aimant, on crée un champ magnétique donc la direction change au cours du temps. Le déplacement de cet aimant au voisinage d une aiguille aimantée (de boussole par

Plus en détail

I) Principe de fonctionnement d un moteur asynchrone triphasé

I) Principe de fonctionnement d un moteur asynchrone triphasé I) Principe de fonctionnement d un moteur asynchrone triphasé Disposition expérimentale Disposition réelle (Stator seul) Disposition expérimentale : Trois bobines, disposés à 20 l une par rapport à l autre,

Plus en détail

Electromécanique I Conversion électromécanique II

Electromécanique I Conversion électromécanique II Electromécanique I Conversion électromécanique II 14 Moteur à courant continu Christian Koechli Objectifs du cours Structure d un moteur à courant continu Principe de fonctionnement Equations caractéristiques

Plus en détail

Prof. Mourad ZEGRARI

Prof. Mourad ZEGRARI Prof. Mourad ZEGRARI Plan Principe. Constitution. Production de la f.é.m. ; Bobinage. Génératrice à courant continu. Moteur à courant continu : caractéristiques électromécaniques. Variation de la vitesse

Plus en détail

Conversion puissance Chap.4 Machine à courant continu - part1

Conversion puissance Chap.4 Machine à courant continu - part1 Conversion puissance Chap.4 Machine à courant continu - part1 1. Description et principe simplifié du fonctionnement d une MCC 1.1. Description de la machine 1.2. Explication simplifiée du principe de

Plus en détail

1.1) Stator ( inducteur )

1.1) Stator ( inducteur ) 1 ) Constitution Ces moteurs sont robustes, faciles à construire et peu coûteux. Ils sont intéressants, lorsque la vitesse du dispositif à entraîner n'a pas à être rigoureusement constante. 1.1) Stator

Plus en détail

Milieux magnétiques. Aimantation

Milieux magnétiques. Aimantation Milieux magnétiques Aimantation La différence entre courants «libres» et courants «liés» La définition du vecteur aimantation La définition du vecteur excitation magnétique L équation de Maxwell-Ampère

Plus en détail

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI .L.Technique FOCTO CORTR : MACH YCHRO.CHAR. Alternateur La machine synchrone est un convertisseur réversible. lle peut fonctionner soit en génératrice soit en moteur. Lorsqu'elle fonctionne en génératrice,

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE LE MOTEUR ASYNCHRONE I Principe de conversion de l énergie électrique en énergie mécanique : Phénomène physique : Un conducteur libre, fermant un circuit électrique, placé dans un champ magnétique, est

Plus en détail

8. PHÉNOMÈNES D INDUCTION ÉLECTROMAGNÉTIQUE Circuit déformable dans un champ d induction magnétique uniforme et constant

8. PHÉNOMÈNES D INDUCTION ÉLECTROMAGNÉTIQUE Circuit déformable dans un champ d induction magnétique uniforme et constant 8. PHÉNOMÈNES D INDUTION ÉLETROMAGNÉTIQUE 8.1 Observations expérimentales 8.1.1 ircuit déformable dans un champ d induction magnétique uniforme et constant On considère l expérience décrite au paragraphe

Plus en détail

LA MACHINE ASYNCHRONE

LA MACHINE ASYNCHRONE Objectif terminal : A la fin de la séquence, l élève sera capable de : _ justifier le choix du convertisseur d énergie FONCTION CONVERTIR L ENERGIE LA MACHINE ASYNCHRONE Objectif intermédiaire : _ identifier

Plus en détail

Principe de fonctionnement. Donc :

Principe de fonctionnement. Donc : Principe de fonctionnement La variation de l induction magnétique sur le barreau entraine l apparition des courants induits dans celui-ci (courants de Foucault). D après la loi de Lenz, le barreau se met

Plus en détail

Le sujet comporte trois parties indépendantes présentées sur 8 pages numérotées de 1 à 8 dont les pages 7 et 8 sont à rendre avec la copie.

Le sujet comporte trois parties indépendantes présentées sur 8 pages numérotées de 1 à 8 dont les pages 7 et 8 sont à rendre avec la copie. Il est rappelé aux candidats que la qualité de la rédaction et la clarté des raisonnements, entreront pour une part importante dans l'appréciation des copies. Le sujet comporte trois parties indépendantes

Plus en détail

Chapitre 7 : Moteur asynchrone

Chapitre 7 : Moteur asynchrone Chapitre 7 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit a) rotor à cage d écureuil b) rotor bobiné 3. Symboles 4. plaque signalétique

Plus en détail

GENERATRICE. Un conducteur non alimenté qui coupe les lignes d un champ magnétique devient le siège d un force électromotrice induite (fem).

GENERATRICE. Un conducteur non alimenté qui coupe les lignes d un champ magnétique devient le siège d un force électromotrice induite (fem). GNRATRIC Un conducteur non alimenté qui coupe les lignes d un champ magnétique devient le siège d un force électromotrice induite (fem). La valeur de cette fem (notée e) est égale à la valeur absolue de

Plus en détail

Machine à courant continu en vitesse variable Ponts à thyristors - hacheurs

Machine à courant continu en vitesse variable Ponts à thyristors - hacheurs Machine à courant continu en vitesse variable Ponts à thyristors - hacheurs 1 Les équations et interactions avec l extérieur Convertisseur Electrique c em u se u i Ω SE i ce CE i e M Ω c res SM Source

Plus en détail

Moteur asynchrone triphasé

Moteur asynchrone triphasé triphasé 1. Constitution et principe de fonctionnement 1.1. Stator = inducteur Il est constitué de trois enroulements (bobines) parcourus par des courants alternatifs triphasés et possède p paires de pôles.

Plus en détail

S2.3 FORCE MOTRICE S2.3 FORCE MOTRICE RNCAP13-S2-3-FORCE-MOTRICE-APP

S2.3 FORCE MOTRICE S2.3 FORCE MOTRICE RNCAP13-S2-3-FORCE-MOTRICE-APP S2.3 FORCE MOTRICE 1 ) MOTEURS A COURANT CONTINU 1.1)Constitution 1.2) Moteur à courant continu à excitation séparée 1.3)Moteurs à courant continu à aimant permanent 1.4)Freinage 2 ) MOTEURS ASYNCHRONES

Plus en détail

- ACTIONNEURS - MACHINE A COURANT ALTERNATIF

- ACTIONNEURS - MACHINE A COURANT ALTERNATIF LIAISON REFERENTIEL B.11 Les actionneurs Machine à courant alternatif. Thèmes : E1 - C122 Conversion électromécanique d énergie E4 C12 Comportement énergétique des systèmes Centre d intérêt : CI3 Systèmes

Plus en détail

MOTEUR ASYNCHRONE TRIPHASE

MOTEUR ASYNCHRONE TRIPHASE I - Principe de fonctionnement Le moteur asynchrone est une machine qui transforme de l énergie ELECTRIQUE en énergie MECANIQUE. Le fonctionnement est basé sur la production d un CHAMP TOURNANT. I.1 PRINCIPE

Plus en détail

Circuit fixe dans un champ magnétique variable

Circuit fixe dans un champ magnétique variable Circuit fixe dans un champ magnétique variable II. Auto-induction 1. Flux propre et inductance propre Soit un circuit filiforme ( par exemple une bobine ) parcouru par un courant d intensité. Ce circuit

Plus en détail

Electromagnétisme. Electromagnetism. Maquette alternateur de démonstration Alternator demonstration scale model. Réf :

Electromagnétisme. Electromagnetism. Maquette alternateur de démonstration Alternator demonstration scale model. Réf : Electromagnetism rançais p 1 English p 10 Version : 8006 Maquette alternateur de démonstration lternator demonstration scale model 1 Généralités 1.1 But de l appareil La maquette alternateur de démonstration

Plus en détail

REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE

REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE Examen Final : EL41 P07. Durée : 2 heures. Documents : non autorisés sauf une feuille manuscrite de format A4. REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE Nom : Prénom : Signature : Problème (10 points)

Plus en détail

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES INSTALLATION ET DEPANNAGE DE MOTEURS ET DE GENERATRICES A COURANT CONTINU

OFPPT ROYAUME DU MAROC RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES INSTALLATION ET DEPANNAGE DE MOTEURS ET DE GENERATRICES A COURANT CONTINU OFPPT ROYAUME DU MAROC Office de la Formation Professionnelle et de la Promotion du Travail DIRECTION RECHERCHE ET INGENIERIE DE FORMATION RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES MODULE N :25 INSTALLATION

Plus en détail

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction MACHINES à INDUCTION Gérard-André CAPOLINO 1 Généralités La machine à induction est utilisée en moteur ou en générateur Toutefois, l utilisation en moteur est plus fréquente. C est le moteur le plus utilisé

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 8-9 Devoir n 6 CONVERSION DE PUISSANCE UTILISATION DE L ENERGIE EOLIENNE Un aéromoteur entraîne une génératrice électrique destinée à alimenter une installation électrique. Pour les aéromoteurs de

Plus en détail

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1 TD ELECTROTECHNIQUE 1 ère année Module MC2-2 V. Chollet - TD-Trotech07-28/08/2006 page 1 IUT BELFORT MONTBELIARD Dpt Mesures Physiques TD ELECTROTECHNIQUE n 1 Avec l aide du cours, faire une fiche faisant

Plus en détail

Moteurs éléctriques à courant continu

Moteurs éléctriques à courant continu Moteurs éléctriques à courant continu Matthieu Schaller matthieu.schaller@epfl.ch 16 mars 2008 Table des matières 1 Introduction 2 2 Partie théorique 2 2.1 Principe de fonctionnement...................

Plus en détail

VI.1 Présentation de Machine Synchrone (MS)

VI.1 Présentation de Machine Synchrone (MS) Chapitre IV Modélisation et Simulation des Machines Synchrones 9 VI. Présentation de Machine Synchrone (MS) La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant

Plus en détail

LE SYSTEME DE CHARGE Elect. 1/8

LE SYSTEME DE CHARGE Elect. 1/8 I Problème posé LE SYSTEME DE CHARGE Elect. 1/8 - Les véhicules disposent de plus en plus fréquemment de systèmes d asservissement électrique et la batterie constitue une réserve d énergie électrique limitée...

Plus en détail

PRINCIPE DES MACHINES À COURANT CONTINU

PRINCIPE DES MACHINES À COURANT CONTINU PRINCIPE DES MACHINES À COURANT CONTINU 1. Les deux types possibles de machine La machine à courant continu est réversible c'est à dire qu'elle peut être utilisée soit en moteur soit en génératrice. Le

Plus en détail

Compteur électrique monophasé 08882

Compteur électrique monophasé 08882 Compteur électrique monophasé 08882 NOTICE Retrouvez l ensemble de nos gammes sur : www.pierron.fr DIDACTIK DACTIK CS 80609 57206 SARREGUEMINES Cedex France Tél. : 03 87 95 14 77 Fax : 03 87 98 45 91 E-mail

Plus en détail

Le moteur asynchrone triphasé. Principe de fonctionnement Liaison au réseau électrique Protection du moteur Variation de vitesse

Le moteur asynchrone triphasé. Principe de fonctionnement Liaison au réseau électrique Protection du moteur Variation de vitesse 1 ) Généralités Le moteur asynchrone triphasé Le moteur asynchrone triphasé. Principe de fonctionnement Liaison au réseau électrique Protection du moteur Variation de vitesse Le moteur asynchrone triphasé

Plus en détail

Rappels: Les machines asynchrones

Rappels: Les machines asynchrones C hapitre I Rappels: Les machines asynchrones triphasés Contenu I. INTRODUCTION... 2 II. CONSTITUTION... 2 II.1. STATOR... 2 II.2. ROTOR... 3 II.2.1. Rotor à cage d'écureuil:... 3 II.2.2. Rotor bobiné

Plus en détail

MACHINES À COURANT CONTINU

MACHINES À COURANT CONTINU O1MM 2 e année MACHINES À COURANT CONTINU Cours et Problèmes Claude CHEVASSU site mach elec 21 septembre 2014 Table des matières 1 Machines à courant continu 1 1.1 Symboles..................................

Plus en détail

1 ) Transformateur monophasé. 1.1) Définition

1 ) Transformateur monophasé. 1.1) Définition Chapitre B...Transformateur monophasé ) Transformateur monophasé.) Définition Un transformateur est un quadripôle formé de deux enroulements enlaçant un circuit magnétique commun. C est une machine statique

Plus en détail

Moteur brushless. Tutoriel

Moteur brushless. Tutoriel Moteur brushless Table des matières 1. Introduction...2 1.1. Composition d'un moteur brushless...2 1.2. Fonctionnement du moteur brushless simple...2 2. Commande des moteurs brushless...3 2.1. Moteur brushless

Plus en détail

Les moteurs asynchrones triphasés

Les moteurs asynchrones triphasés Page : 1 sur 8 1. Problématique La fabrication de produits cosmétiques nécessite le mélange de plusieurs ingrédients à une température donnée dans un malaxeur. Le malaxage est réalisé par un «bras» entraîné

Plus en détail

Machines asynchrones : éléments de correction

Machines asynchrones : éléments de correction Machines asynchrones : éléments de correction VII.Fonctionnement en génératrice (parfois appelé alternateur asynchrone) 1. Réversibilité Les diagrammes de Fresnel ci dessous sont associés à une machine

Plus en détail

A l intention de tous les correcteurs, surveillants et candidats des épreuves de Mesures et Essais.

A l intention de tous les correcteurs, surveillants et candidats des épreuves de Mesures et Essais. Sujet N 0 6 : MOTEUR A COURANT CONTINU A EXCITATION SHUNT A l intention de tous les correcteurs, surveillants et candidats des épreuves de Mesures et Essais. 1. L épreuve dure 4 heures au total (préparation,

Plus en détail

Le courant alternatif

Le courant alternatif PRODUCTION D UNE TENSION ALTERNATIVE On fait tourner à une vitesse constante une boucle de fil de cuivre à l intérieur d un champ magnétique uniforme. On obtient ainsi une tension électrique alternative.

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE DUFOUR GRACZYK Page 1/5 I- Réseau triphasé Il s agit d un réseau de 3 tensions alternatives de même fréquence déphasées dans le temps d un angle de 120 (2. /3 rad) Trois sources

Plus en détail

REPONDRE DIRECTEMENT SUR LA COPIE D EXAMEN

REPONDRE DIRECTEMENT SUR LA COPIE D EXAMEN Examen partiel Durée Documents : heures. : non autorisés sauf une feuille A4-manuscrite REONDRE DIRECTEMENT SUR LA COIE D EXAMEN NOM RENOM SIGNATURE EXERCICE 1 (5 points) : On relève avec l oscilloscope

Plus en détail

Machine synchrone - fonctionnement en génératrice. I - Généralités Structure de la machine synchrone Objectifs poursuivis

Machine synchrone - fonctionnement en génératrice. I - Généralités Structure de la machine synchrone Objectifs poursuivis Machine synchrone - fonctionnement en génératrice I - Généralités La machine synchrone est une machine à champ tournant, elle est réversible comme la machine à courant continu ou la machine asynchrone,

Plus en détail

La variation de vitesse de la machine à courant continu

La variation de vitesse de la machine à courant continu La variation de vitesse de la machine à courant continu g LES PRINCIPES DE LA MACHINE A COURANT CONTINU g LES CONVERTISSEURS STATIQUES g L ARCHITECTURE DE COMMANDE DES ENSEMBLES CONVERTISSEUR/MACHINE Les

Plus en détail

COURANTS ET MOTEURS TRIPHASES. I. Introduction. II. Moteur triphasé. 1. Définition

COURANTS ET MOTEURS TRIPHASES. I. Introduction. II. Moteur triphasé. 1. Définition COURANTS ET MOTEURS TRIPHASES I. Introduction Un système de tension triphasé est un ensemble de trois tensions alternatives qui o même valeur efficace et qui sont décalées les unes par rapport aux autres

Plus en détail

Note d application. Les différentes techniques de commande des moteurs brushless. P13A02 : Conception d une interface de puissance.

Note d application. Les différentes techniques de commande des moteurs brushless. P13A02 : Conception d une interface de puissance. Note d application Les différentes techniques de commande des moteurs brushless P13A02 : Conception d une interface de puissance lahbib Client : M. WALGER Ingénieur chez Renesas Electronics Responsable

Plus en détail

Le champ magnétique. 1. Action d un champ magnétique sur un faisceau d électron

Le champ magnétique. 1. Action d un champ magnétique sur un faisceau d électron Le champ magnétique I. Mise en évidence du champ magnétique 1. Action d un champ magnétique sur un faisceau d électron Dans une ampoule ou règne un vide très pousser, une cathode émissive est chauffé par

Plus en détail