INDEXATION des IMAGES
|
|
|
- Francine Landry
- il y a 10 ans
- Total affichages :
Transcription
1 INDEXATION des IMAGES Marine Campedel mars 2005
2 Plan du cours Généralités Méthodes Indexation textuelle Indexation par le contenu Récupération de l information (retrieval) Feedback utilisateur Évaluation des systèmes Démonstrations Conclusion
3 Généralités Quelques chiffres : INA : h video h audio de photos 82 Milliards de photos par an dans le monde 390 Millions d images indexées par Google 4250 films commerciaux par an (UNESCO) Motivations : Conservation d un patrimoine (culturel, scientifique, ) Valorisation en facilitant l accès et l exploration Exploitation commerciale (photos numériques, TV numérique, )
4 Généralités : quelles images? biomédical, satellitaires, photos, 2D ou 3D, 3 catégories générales Images d art (auteur, titre, ) Images documentaires (reliées à un texte) Images ordinaires Centres d intérêts actuels : Audio-vidéo, multimédia, 3D
5 Généralités : les acteurs Acteurs industriels QBIC (IBM), Virage, Netra NewPhenix (CEA)
6 Généralités : les acteurs Acteurs académiques VisualSeek (Columbia), IMEDIA (INRIA, Rocquencourt), RETIN (ETIS, Cergy), KIWI (Insa, Lyon), DIVAN (INA) Nombreux projets européens et nationaux
7 Généralités : définition Objectif de l indexation : faciliter l accès à des bases de données en extrayant une information synthétique. Fouille de données (Data Mining), Extraction de connaissances, Vision artificielle
8 Généralités Catalogue : Exploitation de données globales sur le document visuel, indépendantes du contenu Classification : Exploitation d une caractéristique globale du document visuel Indexation Exploitation d une analyse fine du contenu du document visuel
9 Introduction 1980 : Annotation textuelle des images 1990 : Indexation par la couleur, la forme et la texture 1993 : Requête en utilisant la similarité des images 1997 : Requête par images exemplaires et mesure de la pertinence (relevance feedback) 2000 : apprentissage sémantique et adaptation à l utilisateur Enjeux actuels : annotation interactive, formalisation de la connaissance (ontologies), grosses bases de données (problèmes de stockage, de vitesse d accès, ), données hétérogènes,
10 Indexation d images à partir du texte
11 Indexation d images à partir du texte ROME (AFP), :10:52 L'Italienne Clementina Cantoni arrive vendredi 10 juin sur le sol italien après 25 jours de détention en Afghanistan
12 Indexation d images à partir du texte
13 Indexation d images à partir du texte
14 Indexation d images à partir du texte Une image illustre un document mais le document ne décrit pas forcément l image ; Le texte accompagnateur d une image ne suffit généralement pas La richesse du contenu d une image dépend du domaine de connaissances de celui qui la regarde ; Nécessité de modéliser ce domaine Aspects subjectifs du contenu Plus facile de faire une description des objets contenus dans l image que des émotions qui en résultent
15 Indexation d images à partir du texte Avantages : exploite les outils d indexation textuelle, prise en compte plus aisée des aspects sémantiques. Inconvénients : vocabulaire limité difficultés de l annotation : définition du vocabulaire, temps d annotation >> temps réel, subjectivité, etc.
16 Indexation d images à partir du texte
17
18 Ontologies Nécessité de définir un langage de description Limité par le contexte de production Limite l utilisation Définition d ontologies : modélisation du contexte (objets/concepts et relations entre eux) de façon à lever toute ambiguïté d interprétation «Le problème fondamental est de respecter la diversité des langages et des représentations du monde, tout en permettant l'échange d'information.[ ] Identifier, modéliser les concepts d'un domaine, pertinents pour une/des applications, Se mettre d'accord, au sein d'une communauté, sur les termes employés pour se référer à ces concepts.»
19 Taxonomie / Nomenclature Réduction couramment utilisée : Classification Exemple : Corine Land cover Surfaces artificielles Surfaces cultivées Forêts et espaces semi naturels Surfaces humides eau Usine urbaine Transports Réseaux routiers Ports Aéroports
20 Indexation par le contenu : principe (1/2) Images Extraction de caractéristiques Requêtes utilisateur Sélection de caractéristiques Caractéristiques Caract.+ étiquettes Apprentissage Non supervisé Apprentissage supervisé Modèles Modèles étiquetés
21 Principe (2/2) Off-line : production d indexes issus de l analyse du contenu des images Extraction de caractéristiques pertinentes Réduction de la dimensionnalité Organisation par classification On-line : gestion des requêtes d un utilisateur «Gap sémantique» Relevance feedback
22 Extraction de caractéristiques (1/2) Caractéristiques : Spécifiques : points saillants, minuties, Générales : couleur, texture, forme Globale ou locale : Blocs arbitraires, segmentation, information topologique
23 Extraction de caractéristiques
24 Extraction de caractéristiques (2/2) Problème de représentation Caractéristiques numériques, symboliques, graphes, Invariances Translation, rotation, homothétie, non-linéaires?
25 Extraction de caractéristiques
26 Caractéristiques et notion de similarité
27 Images similaires?
28 Similarité de l information (1/5) Visuellement similaires?
29 Similarité de l information (2/5)
30 Similarité de l information (3/5) Deux images seront comparées par l intermédiaire des caractéristiques extraites Sim( Im1, Im2 ) = Sim( f(im1), f(im2) ), avec f la fonction d extraction des caractéristiques Mesures de similarités, distances (A) s( x, x ) = s( y, y ) > s( x, y ) (B) s( x, y ) = s( y, x ) (C) d( x, x) = 0 (D) d(x,y) = 0 x = y (E) d(x, y) <= d(x,z) + d(z,y) (F) d(x,y) <= max( d(x,z), d(z,y) ) similarité dissimilarité distance Ultra-métriqu
31 Similarité de l information (4/5) Distance euclidienne Distance euclidienne généralisée Malahanobis Chi2 Similarité en cosinus Combinaisons linéaires de similarités (ou distances)
32 Similarité de l information (5/5) Comparaison des caractéristiques après une transformation F «Truc du noyau» K(x,y) = < F (x), F (y)>, K semi-defini positif D(x,y) = <x,x> + <y,y> -2<x,y> devient D(F (x), F (y) ) = K(x,x) + K(y,y) -2K(x,y) Intérêt : la spécification de K définit implicitement F Intensivement utilisé pour ACP, la discrimination de Fisher, la classification SVM,
33 Réduction d information (1/2) Réduction de la dimensionnalité ACP Algorithmes de sélection Quantification (forme de clusterisation)
34 Réduction d information (2/2) Sélection = Mettre des poids sur chaque caractéristiques Automatiquement : Supervisé, non supervisé Supervisé, wrapper : SVM-RFE, Fisher, Non supervisé, filter : clusterisation des caractéristiques
35 Organisation de l information (1/2) Classification : données X (caractéristiques) et label Y Exemples : kppv, SVM, Bayes, arbres de décision (C45.1) Évaluation d une classification : Décompte des erreurs Validation croisée
36 Organisation de l information (2/2) Clusterisation : données X Partitionnement : kmeans Hiérarchique : arbres Minimiser la distance intra-classes et maximiser la distance inter-classes Évaluation : pas évidente Estimation du nombre de clusters : indexes de Calinsky, Davies Bouldin, Dunn, Mesure de la qualité?
37 Gestion de l information SGBD Systèmes de Gestion de Bases de données Gestion informatique : interaction avec les requêtes utilisateur, temps d accès, place mémoire, Relationnel : SQL, mysql Objet Relationnel-objet : Oracle, PostGreSQL
38 Requêtes Grande diversité Les systèmes imposent des types de requête : Recherche d une image dans une base Recherche d images similaires à une image exemplaire Recherche d images similaires à des images exemples et dissimilaires à d autres Recherche d images contenant une région de l image exemplaire
39 Feedback utilisateur (1/2) Défaut majeur des systèmes standards : l utilisateur doit s adapter au système Caractéristiques extraites automatiquement non intuitives Fossé entre la formulation des requêtes et le codage de l information Nécessité d adapter le système à l utilisateur Apprentissage : requêtes, mesures de similarités
40 Feedback utilisateur (2/2) Images Extraction de caractéristiques Requêtes utilisateur Sélection de caractéristiques Caractéristiques Caract.+ étiquettes Apprentissage Non supervisé Apprentissage supervisé Modèles Modèles étiquetés
41 Évaluation (1/2) Graphe de rappel-précision calculé en faisant varier le nombre de documents sélectionnés Documents pertinents Documents non pertinents Documents sélectionnés Documents non sélectionnés Documents trouvés et Documents oubliés : silence Documents hors contexte : bruit précision= documentstrouvés documentssélectionnés rappel = documentstrouvés documents pertinents
42 Évaluation (2/2) : autres critères Exploitation du rang de récupération Critère de validation de MPEG7 Rank*(k) = rang(k) si < K(q), 1.25K sinon AVR(q) : moyenne des rangs MRR(q) = AVR(q) 0.5( 1 + NG(q) ) NMRR(q) = MRR(q) / ( 1.25K 0.5(1+NG(q)) ) Critère final : moyenne des NMRR Notations : q = 1 requête ; k = une image pertinente pour la requête ; NG(q) nombre d images pertinentes pour la requête ; K limite de rang acceptable
43 Normalisation : MPEG 7 (1/2) MPEG : Motion Picture Expert group MPEG7 : A Multimedia Content Description Interface, normalisé en 2001 Standard de description du contenu de données multimédia + interprétation du sens de l information S appuie sur XML (langage à balises) Un éditeur gratuit d IBM (pour indexer des videos)
44 Normalisation : MPEG 7 (2/2) Définitions de caractéristiques bas niveau : //www-iplab.ece.ucsb.edu/publications/01ieeemanjunath.htm Évaluation des caractéristiques sur des bases étiquetées manuellement
45 Démonstrations Images 3D :
46 Démonstrations
47 Démonstrations Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen and Ming Ouhyoung, "On Visual Similarity Based 3D Model Retrieval", Computer Graphics Forum (EUROGRAPHICS'03), Vol. 22, No. 3, pp , Sept. 2003
48 Démonstrations www-rocq.inria.fr/imedia/ikona Feedback utilisateur
49 Conclusion Indexation des images : problème non résolu Experts issus de domaines variés (informatique, traitement de l image, psycho visuel, apprentissage machine, ) Deux axes à étudier simultanément : Techniques d analyse d image donc d extraction et de comparaison de l information Pertinence de l information pour un utilisateur Produits commerciaux encore basiques quoique
Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel
Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel Alexis Joly [email protected] INRIA - IMEDIA Alexis Joly cours monitoring p. 1 Plan de l'exposé
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
UE 8 Systèmes d information de gestion Le programme
UE 8 Systèmes d information de gestion Le programme Légende : Modifications de l arrêté du 8 mars 2010 Suppressions de l arrêté du 8 mars 2010 Partie inchangée par rapport au programme antérieur Indications
IODAA. de l 1nf0rmation à la Décision par l Analyse et l Apprentissage / 21
IODAA de l 1nf0rmation à la Décision par l Analyse et l Apprentissage IODAA Informations générales 2 Un monde nouveau Des données numériques partout en croissance prodigieuse Comment en extraire des connaissances
Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar [email protected]
Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar [email protected] Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines
Présentation du module Base de données spatio-temporelles
Présentation du module Base de données spatio-temporelles S. Lèbre [email protected] Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes
Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA
Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide
THOT - Extraction de données et de schémas d un SGBD
THOT - Extraction de données et de schémas d un SGBD Pierre-Jean DOUSSET (France), Benoît ALBAREIL (France) [email protected], [email protected] Mots clefs : Fouille d information, base de données, système
N. Paparoditis, Laboratoire MATIS
N. Paparoditis, Laboratoire MATIS Contexte: Diffusion de données et services locaux STEREOPOLIS II Un véhicule de numérisation mobile terrestre Lasers Caméras Système de navigation/positionnement STEREOPOLIS
Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)
Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant
4. Utilisation d un SGBD : le langage SQL. 5. Normalisation
Base de données S. Lèbre [email protected] Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :
Intégration de la dimension sémantique dans les réseaux sociaux
Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI [email protected] 1 Contexte : Recommandation dans les réseaux sociaux
Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique
Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55
Master Informatique Aix-Marseille Université
Aix-Marseille Université http://masterinfo.univ-mrs.fr/ Département Informatique et Interactions UFR Sciences Laboratoire d Informatique Fondamentale Laboratoire des Sciences de l Information et des Systèmes
Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales
Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire
SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)
SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients
Systèmes d information et bases de données (niveau 1)
Systèmes d information et bases de données (niveau 1) Cours N 1 Violaine Prince Plan du cours 1. Bibliographie 2. Introduction aux bases de données 3. Les modèles 1. Hiérarchique 2. Réseau 3. Relationnel
Catalogue des formations Edition 2015
Antidot - Formations Catalogue des formations Edition 2015 : catalogue_formation_2015 Révision du 06.01.2015 Sommaire!!"##$%&'( )! $*$+,(-'(."##'+.'&( /!,'.0+"1"2%'( /!!."3'( /! $(3&"3"!(-4(5(.$,$1"24'(-'!(6"&#$,%"+!(7('-%,%"+()89:(;(
L'intelligence d'affaires: la statistique dans nos vies de consommateurs
L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires
Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours
Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres [email protected] LIA/Université d Avignon Cours/TP
FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis
FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités
Bases de données Cours 1 : Généralités sur les bases de données
Cours 1 : Généralités sur les bases de données POLYTECH Université d Aix-Marseille [email protected] http://odile.papini.perso.esil.univmed.fr/sources/bd.html Plan du cours 1 1 Qu est ce qu une
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
GED: Gestion Electronique de Document (Support de cours) R. MAHMOUDI ([email protected]) www.research-ace.net/~mahmoudi 1 Gestion Electronique de Documents Plan du cours - Introduction générale - Spécificités
Projet Business Object
Projet Business Object Rapports parties 1 et 2 Alexandre DUPONT, Guillaume COUSIN, Laurent PACHAREU et Yoann KERMORVANT Etudiants en licence professionnelle Conception de Systèmes Décisionnels Page 1 sur
Christophe CANDILLIER Cours de DataMining mars 2004 Page 1
Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe
Business Intelligence avec Excel, Power BI et Office 365
Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10
ACCÈS SÉMANTIQUE AUX BASES DE DONNÉES DOCUMENTAIRES
ACCÈS SÉMANTIQUE AUX BASES DE DONNÉES DOCUMENTAIRES Techniques symboliques de traitement automatique du langage pour l indexation thématique et l extraction d information temporelle Thèse Défense publique
Bases de données Outils de gestion
11/03/2010 Bases de données Outils de gestion Mise en place d outils pour gérer, stocker et utiliser les informations d une recherche biomédicale ent réalisé par L. QUINQUIS d épidémiologie et de biostatistique
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Introduction du cours Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers pré[email protected] Département d informatique Conservatoire
2 Serveurs OLAP et introduction au Data Mining
2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité
Introduction à la B.I. Avec SQL Server 2008
Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide
Gestion collaborative de documents
Gestion collaborative de documents ANT box, le logiciel qui simplifie votre GED Les organisations (entreprises, collectivités, associations...) génèrent chaque jour des millions de documents, e-mails,
Webinar. Découvrez Rubedo, la première solution CMS open-source tirant profit des atouts de Zend Framework et du NoSQL. avec la participation de
En partenariat avec Webinar Découvrez Rubedo, la première solution CMS open-source tirant profit des atouts de Zend Framework et du NoSQL avec la participation de 19 mars 2013 Qui sommes-nous? INTRODUCTION
CATALOGUE FORMATIONS 2015. DOMAINE Bases de données
DOMAINE Bases de données Version 1.0 - Octobre 2014 1, 2, 3 juin 2015 1, 2, 3 octobre 2015 CATALOGUE Analyse et conception d une base de données Elaboration de fiches de collecte de données Techniques
Cours Base de données relationnelles. M. Boughanem, IUP STRI
Cours Base de données relationnelles 1 Plan 1. Notions de base 2. Modèle relationnel 3. SQL 2 Notions de base (1) Définition intuitive : une base de données est un ensemble d informations, (fichiers),
Analyse Sémantique de Nuages de Points 3D et d Images dans les Milieux Urbains
Analyse Sémantique de Nuages de Points 3D et d Images dans les Milieux Urbains Andrés Felipe SERNA MORALES Directrice de thèse: Beatriz MARCOTEGUI ITURMENDI [email protected] MINES ParisTech, Mathématiques
Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique
Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché
Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.
2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle
Gestion du parc informatique matériel et logiciel de l Ensicaen. Rapport de projet. Spécialité Informatique 2 e année. SAKHI Taoufik SIFAOUI Mohammed
6, bd maréchal Juin F-14050 Caen cedex 4 Spécialité Informatique 2 e année Rapport de projet Gestion du parc informatique matériel et logiciel de l Ensicaen SAKHI Taoufik SIFAOUI Mohammed Suivi ENSICAEN
Analyses croisées de sites Web pour détecter les sites de contrefaçon. Prof. Dr. Olivier Biberstein
Analyses croisées de sites Web pour détecter les sites de contrefaçon Prof. Dr. Olivier Biberstein Division of Computer Science 14 Novembre 2013 Plan 1. Présentation générale 2. Projet 3. Travaux futurs
INTRODUCTION AU DATA MINING
INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre
Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12
Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 2 Discrimination Invariance Expressions faciales Age Pose Eclairage 11/12/2012 3 Personne Inconnue Identité
Sommaire. 1 Introduction 19. 2 Présentation du logiciel de commerce électronique 23
1 Introduction 19 1.1 À qui s adresse cet ouvrage?... 21 1.2 Comment est organisé cet ouvrage?... 22 1.3 À propos de l auteur... 22 1.4 Le site Web... 22 2 Présentation du logiciel de commerce électronique
SQL Server 2012 et SQL Server 2014
SQL Server 2012 et SQL Server 2014 Principales fonctions SQL Server 2012 est le système de gestion de base de données de Microsoft. Il intègre un moteur relationnel, un outil d extraction et de transformation
Portail collaboratif Intranet documentaire Dématérialisation de processus
Portail collaboratif Intranet documentaire Dématérialisation de processus 2 Le groupe Divalto, Solutions de gestion Catalyseur de performance Créé en 1982, le groupe Divalto propose des solutions de gestion
Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.
des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le
Séance 1 Introduction aux bases de données
Introduction aux bases de données Séance 1 Introduction aux bases de données Sébastien Combéfis mardi 24 février 2015 Ce(tte) œuvre est mise à disposition selon les termes de la Licence Creative Commons
Structuration des décisions de jurisprudence basée sur une ontologie juridique en langue arabe
Structuration des décisions de jurisprudence basée sur une ontologie juridique en langue arabe Karima Dhouib, Sylvie Després Faiez Gargouri ISET - Sfax Tunisie, BP : 88A Elbustan ; Sfax [email protected],
Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications
L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET [email protected] http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d
Jean-François Boulicaut & Mohand-Saïd Hacid
e siècle! Jean-François Boulicaut & Mohand-Saïd Hacid http://liris.cnrs.fr/~jboulica http://liris.cnrs.fr/mohand-said.hacid Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205
Ebauche Rapport finale
Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide
GKR. Geological Knowledge Representation Base de connaissances métallogéniques
GKR Geological Knowledge Representation Base de connaissances métallogéniques Objets Organiser un ensemble d informations complexes et hétérogènes pour orienter l exploration minière aux échelles tactiques
Les algorithmes de fouille de données
Février 2005 Les algorithmes de fouille de données DATAMINING Techniques appliquées à la vente, aux services client, interdictions. Cycle C Informatique Remerciements Je remercie les personnes, les universités
Information utiles. [email protected]. webpage : Google+ : http://www.ibisc.univ-evry.fr/ digiusto/
Systèmes de gestion de bases de données Introduction Université d Evry Val d Essonne, IBISC utiles email : [email protected] webpage : http://www.ibisc.univ-evry.fr/ digiusto/ Google+ : https://plus.google.com/u/0/b/103572780965897723237/
CESI Bases de données
CESI Bases de données Introduction septembre 2006 Bertrand LIAUDET EPF - BASE DE DONNÉES - septembre 2005 - page 1 PRÉSENTATION GÉNÉRALE 1. Objectifs généraux L objectif de ce document est de faire comprendre
Cognit Ive Cas d utilisation
Cognit Ive Cas d utilisation 96-98, rue de Montreuil - 75011 Paris _ opicot@ _ + 33 (0)1 40 09 71 55 Sommaire Présentation de la plateforme Cognit Ive SemanticMail : Traitement sémantique des mails Projets
Enjeux mathématiques et Statistiques du Big Data
Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, [email protected] Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris
BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise
BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la
PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN
PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN 1. DÉVELOPPEMENT D'APPLICATION (CONCEPTEUR ANALYSTE) 1.1 ARCHITECTURE MATÉRIELLE DU SYSTÈME INFORMATIQUE 1.1.1 Architecture d'un ordinateur Processeur,
COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES
COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET 4 : Modélisation non-supervisée
Parcours en deuxième année
Parcours en deuxième année Unités d Enseignement (UE) ECTS Ingénierie des réseaux haut 4 débit Sécurité des réseaux et 4 télécoms Réseaux mobiles et sans fil 4 Réseaux télécoms et 4 convergence IP Infrastructure
Spécificités, Applications et Outils
Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala [email protected] http://chirouble.univ-lyon2.fr/~ricco/data-mining
La problématique de la Préservation des Bases de Données. Olivier ROUCHON CINES Groupe PIN Jeudi 7 Octobre
La problématique de la Préservation des Bases de Données Olivier ROUCHON CINES Groupe PIN Jeudi 7 Octobre Définition des bases de données Terme du langage courant base de données Utilisé pour désigner
Chaîne opératoire de réalisation d une base de données. ANF «Comment concevoir une base de données» (29-30/01/2015)
Chaîne opératoire de réalisation d une base de données ANF «Comment concevoir une base de données» (29-30/01/2015) En introduction 1- Phase d analyse ou d audit 2- Modélisation & développement de la base
CRÉER, ROUTER ET GÉRER UNE NEWSLETTER, UN E-MAILING
CRÉER, ROUTER ET GÉRER UNE NEWSLETTER, UN E-MAILING Durée : 3J / 21H Formateur : Consultant expert en PAO et Web-marketing. Groupe de : 4 max Formation au web marketing Objectifs : Mettre en oeuvre des
Intégration de données complexes pour une vision 360 du client. Chloé Clavel EDF R&D Département ICAME
Intégration de données complexes pour une vision 360 du client Chloé Clavel EDF R&D Département ICAME Contexte : projet R&D sur l intégration de données complexes pour la connaissance client Objectif :
Une comparaison de méthodes de discrimination des masses de véhicules automobiles
p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans
4.2 Unités d enseignement du M1
88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter
BREVE PRESENTATION DU SERVICE «EDITEURS ACADEMIQUES ENLIGNE» ELISABETH DE PABLO (MSH- ESCOM, 1997)
1 BREVE PRESENTATION DU SERVICE «EDITEURS ACADEMIQUES ENLIGNE» ELISABETH DE PABLO (MSH- ESCOM, 1997) 2 Sommaire I. Description générale...3 II. Description détaillée...4 III. Visualisation de la consultation...
SMPMKPOO=aKbKbKpK=qÉÅÜåáèìÉë=kìã êáèìéë=éí= jìäíáã Çá~=J=abbpqkj
SMPMKPOO=aKbKbKpK=qÉÅÜåáèìÉë=kìã êáèìéë=éí= jìäíáã Çá~=J=abbpqkj 6030.3221 - Référentiel de formation A - Objectif, prérequis, motivation et emplois visés : Objectif Donner les principes fondamentaux concernant
La solution pour gérer vos connaissances techniques et scientifiques
La solution pour gérer vos connaissances techniques et scientifiques La solution pour gérer, sécuriser et réutiliser vos connaissances techniques et scientifiques TEEXMA est le premier outil collaboratif
Table des matières La gestion de musée en toute simplicité Atouts fonctionnels Atouts techniques > > > > > > > > > > > > > >
Table des matières La gestion de musée en toute simplicité > > Une complexité croissante 5 > > La solution 5 > > Un système complet 7 > > Avantages en un coup d œil 7 Atouts en matière de design > > Modulaire
Mercredi 15 Janvier 2014
De la conception au site web Mercredi 15 Janvier 2014 Loïc THOMAS Géo-Hyd Responsable Informatique & Ingénierie des Systèmes d'information [email protected] 02 38 64 26 41 Architecture Il est
et les Systèmes Multidimensionnels
Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées
BASES DE DONNÉES. CNAM Centre associé de Clermont-Ferrand Cycle A Année 1997-98. J. Darmont I. INTRODUCTION II. LES SYSTÈMES HIÉRARCHIQUES
BASES DE DONNÉES CNAM Centre associé de Clermont-Ferrand Cycle A Année 1997-98 J. Darmont I. INTRODUCTION II. LES SYSTÈMES HIÉRARCHIQUES III. LES SYSTÈMES RÉSEAU IV. LES SYSTÈMES RELATIONNELS V. LE LANGAGE
Concevoir sa stratégie de recherche d information
Concevoir sa stratégie de recherche d information Réalisé : mars 2007 Dernière mise à jour : mars 2011 Bibliothèque HEC Paris Contact : [email protected] 01 39 67 94 78 Cette création est mise à disposition
Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION
Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION Classe de terminale de la série Sciences et Technologie du Management et de la Gestion Préambule Présentation Les technologies de l information
La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM
La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,
Introduction aux bases de données: application en biologie
Introduction aux bases de données: application en biologie D. Puthier 1 1 ERM206/Technologies Avancées pour le Génome et la Clinique, http://tagc.univ-mrs.fr/staff/puthier, [email protected] ESIL,
Les bases de données Page 1 / 8
Les bases de données Page 1 / 8 Sommaire 1 Définitions... 1 2 Historique... 2 2.1 L'organisation en fichier... 2 2.2 L'apparition des SGBD... 2 2.3 Les SGBD relationnels... 3 2.4 Les bases de données objet...
FICHE DE POSTE. Gestionnaire des données du Portail des savoirs (H/F)
Paris Sciences et Lettres FICHE DE POSTE Intitulé du poste Gestionnaire des données du Portail des savoirs (H/F) Positionnement dans la structure Le gestionnaire des données du Portail des savoirs est
Evolution et architecture des systèmes d'information, de l'internet. Impact sur les IDS. IDS2014, Nailloux 26-28/05/2014 pascal.dayre@enseeiht.
Evolution et architecture des systèmes d'information, de l'internet. Impact sur les IDS IDS2014, Nailloux 26-28/05/2014 [email protected] 1 MVC et le web 27/05/14 2 L'évolution des systèmes informatiques
Module BD et sites WEB
Module BD et sites WEB Cours 8 Bases de données et Web Anne Doucet [email protected] 1 Le Web Architecture Architectures Web Client/serveur 3-tiers Serveurs d applications Web et BD Couplage HTML-BD
Ressources lexicales au service de recherche et d indexation des images
RECITAL 2011, Montpellier, 27 juin - 1er juillet 2011 Ressources lexicales au service de recherche et d indexation des images Inga Gheorghita 1,2 (1) ATILF-CNRS, Nancy-Université (UMR 7118), France (2)
Intégration de données hétérogènes et réparties. Anne Doucet [email protected]
Intégration de données hétérogènes et réparties Anne Doucet [email protected] 1 Plan Intégration de données Architectures d intégration Approche matérialisée Approche virtuelle Médiateurs Conception
CHAPITRE 1. Introduction aux bases de données
CHAPITRE 1 Contenu du chapitre 1 Pourquoi utiliser une bases de? Définitions et objectifs d'un SGBD Niveaux d'abstraction des Méthodes de modélisation d une BD Modèles de structuration des Structure globale
Entrepôt de données 1. Introduction
Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de
Business Intelligence
avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................
Visual Paradigm Contraintes inter-associations
Visual Paradigm Contraintes inter-associations Travail de Bachelor d'informaticien de gestion Partie C Présentation de Visual Paradigm 1 Présentation de Visual Paradigm For UML L objet du travail de Bachelor
Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données
Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques
RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources
Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils
