Sujet de mathématiques du brevet des collèges
|
|
|
- Sébastien Dupuis
- il y a 9 ans
- Total affichages :
Transcription
1 Sujet de mathématiques du brevet des collèges POLYNÉSIE Juin 2014 Durée : 2h00 Calculatrice autorisée Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour chaque question, si le travail n est pas terminé, laisser tout de même une trace de la recherche, elle sera prise en compte dans la notation. Exercice 1 On place des boules toutes indiscernables au toucher dans un sac. Sur chaque boule colorée est inscrite une lettre. Le tableau suivant présente la répartition des boules : Lettre Couleur Rouge Vert Bleu A B Combien y a-t-il de boules dans le sac? 2. On tire une boule au hasard, on note sa couleur et sa lettre. Exercice 2 (a) Vérifier qu il y a une chance sur dix de tirer une boule bleue portant la lettre A. (b) Quelle est la probabilité de tirer une boule rouge? (c) A-t-on autant de chance de tirer une boule portant la lettre A que de tirer une boule portant la lettre B? Pour construire un mur vertical, il faut parfois utiliser un coffrage et un étayage qui maintiendra la structure verticale le temps que le béton sèche. Cet étayage peut se représenter par le schéma suivant. Les poutres de fer sont coupées et fixées de façon que : B Les segments [AB] et [AE] sont perpendiculaires ; C est situé sur la barre [AB] ; D est situé sur la barre [BE] ; AB = 3,5 m ; AE = 2,625 m et CD = 1,5 m. D C E A 1. Calculer BE. 2. Les barres [CD] et [AE] doivent être parallèles. À quelle distance de B faut-il placer le point C? Exercice 3 La copie d écran ci-dessous montre le travail effectué par Léa pour étudier trois fonctions f, g et h telles que : f(x)=x 2 + 3x 7 g(x)=4x+5 h est une fonction affine dont Léa a oublié d écrire l expression dans la cellule A4. 6 points
2 Σ = =B1*B1+3*B1-7 A B C D E F 1 x f(x)=x 2 + 3x g(x)=4x h(x) Donner un nombre qui a pour image 7 par la fonction f. 2. Vérifier à l aide d un calcul détaillé que f(6)= Expliquer pourquoi le tableau permet de donner une solution de l équation : x 2 + 3x 7=4x+5. Quelle est cette solution? 4. À l aide du tableau, retrouver l expression algébrique h(x) de la fonction affine h. Exercice 4 Deux affirmations sont données ci-dessous. Pour chacune des affirmations, indiquer si elle est vraie ou fausse. On rappelle que toutes les réponses doivent être justifiées. Affirmation 1 : Les diviseurs communs à 12 et 18 sont les mêmes que les diviseurs de 6. Affirmation 2 : ( 2 ) 50 et ( 2 ) 100 sont des nombres entiers. Exercice 5 Les appareils de la maison consomment de l énergie même quand ils sont en veille. La feuille de calcul ci-dessous donne la consommation en kilowattheures (kwh) des appareils en veille d une famille pour une année et les dépenses correspondantes en euros : A B C D E 1 Appareil Nombre d appareils Consommation en veille par an pour un appareil (en kwh) Prix du kilowattheure (ene) Dépenses (ene) 2 Téléviseur ,13 30,03 3 Ordinateur ,13 27,17 4 Parabole ,13 34,06 5 Four ,13 11,18 6 Démodulateur satellite ,13 23,01 7 Lecteur DVD ,13 15,08 8 Machine à laver ,13 6,63 9 Console de jeu ,13 5,46 10 Four à micro-ondes ,13 3,25 11 Téléphone sans fil ,13 3,25 12 Lave-vaisselle ,13 2,21 13 Chargeur batterie ,13 6,76 14 Dépense Totale 168,09 Données extraites du site de l ADEME 1. (a) Quel calcul permet de vérifier le résultat 34,06 affiché dans la cellule E4? (b) Quelle formule a-t-on saisie dans la cellule E2 avant de la recopier vers le bas? (c) Une des quatre formules ci-dessous a été saisie dans la cellule E14 pour obtenir le montant total des dépenses dues aux veilles. Recopier sur la copie cette formule. = SOMME(E2 : E13) = E2 : E13 = E2+E13 = SOMME(E2 : E14) 2. Dans une pièce de cette maison, les appareils qui sont en veille sont : un téléviseur un ordinateur une console de jeu un lecteur DVD La consommation de l ordinateur représente-t-elle plus de la moitié de la consommation totale des appareils de cette pièce?
3 Exercice 6 8 points Une famille de quatre personnes hésite entre deux modèles de piscine. Elle regroupe des informations afin de prendre sa décision. Information 1 : les deux modèles de piscine : La piscine «ronde» La piscine «octogonale» Hauteur intérieure : 1,20 m Vue du dessus : un cercle de rayon 1,70 m Hauteur intérieure : 1,20 m Vue du dessus : un octogone régulier de diamètre extérieur 4,40 m 1,70 m 4,40 m Information 2 : La construction d une piscine de surface au sol de moins de 10m 2 ne nécessite aucune démarche administrative. Information 3 : Surface minimale conseillée par baigneur : 3,40 m 2 Information 4 : Aire d un octogone régulier : A octogone = 2 2 R 2. où R est le rayon du disque extérieur à l octogone. Information 5 : Débit du robinet de remplissage : 12 litres d eau par minute. 1. Chacun des modèles proposés impose-t-il des démarches administratives? 2. Les quatre membres de la famille veulent se baigner en même temps. Expliquer pourquoi la famille doit dans ce cas choisir la piscine octogonale. 3. On commence le remplissage de cette piscine octogonale le vendredi à 14 h 00 et on laisse couler l eau pendant la nuit, jusqu au samedi matin à 10 h 00. La piscine va-t-elle déborder?
4 Exercice 7 6 points Dans tout cet exercice, on travaille avec des triangles ABC isocèles en A tels que : BC = 5 cm. La mesure de l angle ÂBC peut varier. On va alors s intéresser aux angles extérieurs de ces triangles, c est-à-dire, comme l indique la figure ci-après, aux angles qui sont supplémentaires et adjacents avec les angles de ce triangle. x Angle extérieur A Angle extérieur y C B Angle extérieur z 1. Dans cette question uniquement, on suppose que ÂBC=40. (a) Construire le triangle ABC en vraie grandeur. Aucune justification n est attendue pour cette construction. (b) Calculer la mesure de chacun de ses 3 angles extérieurs. (c) Vérifier que la somme des mesures de ces 3 angles extérieurs est égale à Est-il possible de construire un triangle ABC isocèle en A tel que la somme des mesures de ses trois angles extérieurs soit différente de 360?
5 Correction POLYNÉSIE - Juin 2014 Exercice = 20 Il y a 20 boules dans le sac. 2.a Il y a 2 boules bleues portant la lettre A. La probabilité d obtenir une boule bleue portant la lettre A est donc 2 20 = b Il y a = 5 boules rouges. Exercice 3 1. On lit la colonne C Le nombre 0 a pour image 7 par la fonction f 2. f (6) = = = 54 7 = 47 Donc f (6) = On lit la colonne E et on constate que f (4) = g(4) 4 est une solution de l équation x 2 + 3x 7 = 4x h est une fonction affine, elle est donc de la forme h(x) = ax + b où a et b sont les deux nombres que nous cherchons. En lisant la ligne 4 on constate que h(0) = 5 donc l ordonnée à l origine b = 5. De plus h(2) = 1 ce qui signifie que 2 a + 5 = 1 2a + 5 = 1 La probabilité d obtenir une boule rouge est donc 5 20 = c Il y a = 10 boules portant la lettre A et = 10 boules portant la lettre B. Ces deux probabilités sont donc égales. 2a = 1 5 2a = 4 a = 2 Exercice 2 1. Dans le triangle ABE rectangle en A D après le théorème de Pythagore on a : La longueur EB = 4,375 m AE 2 + AB 2 = EB 2 2, ,5 2 = EB 2 EB 2 = 19, EB = 19, EB = 4,375 La fonction affine cherchée est h(x) = 2x + 5 Exercice 4 Affirmation 1 Les diviseurs de 12 sont 1, 2, 3, 4, 6 et 12 Les diviseurs de 18 sont 1, 2, 3, 6, 9, 18 Les diviseurs communs de 12 et 18 sont 1, 2, 3 et 6 Or les diviseurs de 6 sont 1, 2, 3 et 6 L affirmation 1 est vraie Affirmation 2 On sait que ( 2) 2 = 2 ( 2) 50 = (( 2) 2 ) 25 = 2 25 De même ( 2) 100 = (( 2) 2 ) 50 = et 2 50 sont deux nombres entiers. L affirmation 2 est vraie 2. Supposons que les droites (CD) et (AE) sont parallèles Dans le triangle ABE comme C [BE] et D [BD] D après le théorème de Thalès on a : Ainsi BC = 3,5 1,5 2,625 = 2 Le point C est placé à 2 m du point B BC BA = BD BE = CD BE BC 3,5 = BD 4,375 = 1,5 2,625 Exercice 5 1.a Il faut effectuer ,13 = 34,06 1.b Il faut saisir = B2 C2 D2 1.c = SOMME(E2 : E13) 2. Un téléviseur en veille consomme 77 kwh, un ordinateur 209 kwh, une console de jeu 42 kwh et un lecteur DVD 58 kwh. 77 kwh kwh + 42 kwh + 58 kwh = 386 kwh > = 1 2
6 La consomation en veille de l ordinateur représente plus de la moitié de la consomation totale de la pièce. Exercice 6 1. Il faut calculer la mesure de la surface au sol des deux piscines. Piscine cylindrique : π (1,70 m) 2 9,07 m 2 Piscine prisme octogonal : 2 2 (2,20 m) 2 13,69 m 2 La piscine en forme de prisme octogonal demande une autorisation administrative. 2. Il faut 3,40 m 2 par baigneur. 9,07 m 2 4 2,27 m 2 13,69 m 2 4 3,42 m 2 La piscine en forme de prisme octogonal permet à 4 personnes de se baigner. 3. Calculons le volume de cette piscine. Volume 13,69 m 2 1,20 m 16,43 m 3 Or on sait que 1 m 3 = L La piscine contient donc L L min = donc min = 22 h 49 min Du vendredi 12h00 au samedi 12h00, il y a 24h donc il y a 22h jusque samedi 10h00. La piscine ne va pas déborder car il reste encore 49 min de remplissage. Exercice 7 1.a A C B 1.b On sait que dans un triangle la somme des angles vaut 180 o. Comme les deux angles à la base d un triangle isocèle sont égaux, ils mesurent chacun 40 o, il reste donc 100 o pour l angle au sommet A. Les angles extérieurs sont supplémentaires à chacun des angles intérieurs, leur somme avec les angles intérieurs vaut 180 o Ils mesurent respectivement 140 o, 140 o et 80 o 1.c 140 o o + 80 o = 360 o 2. Remplaçons la valeur 40 o de la question précédente par x. Les trois angles du triangles mesurent donc x, x et 180 o 2x Comme les angles extérieurs sont supplémentaires des angles du triangle, ils mesurent 180 o x, 180 o x et 180 o (180 o 2x) = 2x Au final (180 o x) + (180 o x) + 2x = 360 o 2x + 2x = 360 o La somme des angles extérieurs vaut donc toujours 360 o, on ne peut pas construire le triangle demandé!
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
Du Premier au Second Degré
Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
point On obtient ainsi le ou les points d inter- entre deux objets».
Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.
Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG
Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : [email protected] La maquette
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Plan académique de formation. Le socle commun : formation, évaluation, validation
ACADÉMIE DE BORDEAUX Plan académique de formation Le socle commun : formation, évaluation, validation Nous devons valider les sept compétences du palier 3 du Livret personnel de compétences (LPC). Nous
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................
2 / ENONCER ET DECRIRE LES FONCTIONS DE SERVICE A REALISER
A / ENONCER LE BESOIN B / ENONCER ET DECRIRE LES FONCTIONS A SATISFAIRE C / LE RESPECT DES FONCTIONS DE SERVICE et LES CONTRAINTES ECONOMIQUES D / LE CAHIER DES CHARGES ET L ORGANISATION DU TRAVAIL et
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
EVALUATIONS FIN CM1. Mathématiques. Livret élève
Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les
Le contexte. Le questionnement du P.E.R. :
Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES
ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier
Trois personnes mangent dans un restaurant. Le serveur
29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte
Sommaire de la séquence 12
Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................
Plus petit, plus grand, ranger et comparer
Unité 11 Plus petit, plus grand, ranger et comparer Combien y a-t-il de boules sur la tige A? Sur la tige B? A B Le nombre de boules sur la tige A est plus grand que sur la tige B. On écrit : > 2 On lit
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
Seconde MESURER LA TERRE Page 1 MESURER LA TERRE
Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
PROBABILITÉS CONDITIONNELLES
PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais
Lecture graphique. Table des matières
Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................
Ch.G3 : Distances et tangentes
4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas
Les probabilités. Chapitre 18. Tester ses connaissances
Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable
Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
4. Exercices et corrigés
4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au
PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE
PROPORTIONNALITÉ LES ÉCHELLES 0 000 000 Dossier n 2 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C.D.R. AGRIMEDIA
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
MATHEMATIQUES GRANDEURS ET MESURES
FICHE GM.01 Objectif : Choisir la bonne unité de mesure Pour chaque objet, choisis entre les trois propositions celle qui te paraît la plus juste : ta règle ton cahier une coccinelle ta trousse la Tour
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Construction de la bissectrice d un angle
onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite
Brevet 2007 L intégrale d avril 2007 à mars 2008
Brevet 2007 L intégrale d avril 2007 à mars 2008 Pondichéry avril 2007................................................. 3 Amérique du Nord juin 2007......................................... 7 Antilles
Comment démontrer que deux droites sont perpendiculaires?
omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré
1 000 W ; 1 500 W ; 2 000 W ; 2 500 W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.
EXERCICES SUR LA PUISSANCE DU COURANT ÉLECTRIQUE Exercice 1 En zone tempérée pour une habitation moyennement isolée il faut compter 40 W/m 3. Sur un catalogue, 4 modèles de radiateurs électriques sont
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
DEFI «MISE EN VEILLE»
DEFI «MISE EN VEILLE» La consommation de nuit et de week end dépasse souvent 25% de la facture électrique de l école Quel gaspillage énergétique, écologique et financier! Le défi à relever est de découvrir
Chapitre 14. La diagonale du carré
Chapitre 4 La diagonale du carré Préambule Examinons un puzzle tout simple : on se donne deux carrés de même aire et on demande, au moyen de quelques découpages, de construire un nouveau carré qui aurait
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
1 Problème 1 : L avion solaire autonome (durée 1h)
Problèmes IPhO 2012 1 NOM : PRENOM : LYCEE : 1 Problème 1 : L avion solaire autonome (durée 1h) Nous souhaitons dans ce problème aborder quelques aspects de la conception d un avion solaire autonome. Les
Mode d emploi du kit de mesure
Conseil en maîtrise de l énergie et énergies renouvelables Mode d emploi du kit de mesure Présentation Dans le cadre du défi «Familles à Energie positive», ce kit est remis au capitaine de chaque équipe.
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
Ressources pour la classe de seconde
Mathématiques Lycée Ressources pour la classe de seconde - Fonctions - Ce document peut être utilisé librement dans le cadre des enseignements et de la formation des enseignants. Toute reproduction, même
FÊTE DE LA SCIENCE 2005 (Village des Sciences)
FÊTE DE LA SCIENCE 2005 (Village des Sciences) Présentation des applications de réalité virtuelle et augmentée présentées par le Laboratoire LISA les samedi 15 et dimanche 16 octobre 2005 à l Ecole Supérieure
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005
UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE
Les problèmes. Répond aux questions des problèmes en utilisant le tableau.
Les problèmes Répond aux questions des problèmes en utilisant le tableau. 1. Monsieur Pierre pèse 53 kg. Pendant les vacances, il a grossi de 5 kg. Combien pèse-t-il maintenant? Il grossit Combien? Monsieur
Sommaire de la séquence 8
Sommaire de la séquence 8 Séance 1........................................................................................................ Je prends un bon départ.......................................................................................
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
L ALGORITHMIQUE. Algorithme
L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
Programme de calcul et résolution d équation
Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme
Cours de tracés de Charpente, Le TRAIT
Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication
MATHÉMATIQUES APPLIQUÉES S4 Exercices
Unité D Probabilité Exercice 1 : Chemins 1. Aline habite la maison illustrée ci-dessous. Le diagramme illustre les murs et les portes. a) Combien existe-t-il de chemins possibles entre la pièce A et la
EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)
EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
