1. Symboles utilisés. 2. Constantes. 3. Formules. Formules importantes de physique
|
|
|
- Angèle Trudeau
- il y a 9 ans
- Total affichages :
Transcription
1 Formules importantes de physique 1. Symboles utilisés x: distance [m] t: temps [s] v: vitesse [m / s] a: accélération [m / s2] F: force [N = kg m / s2] m: masse [kg] w: poids [N] τ: moment de force [N m] ω: vitesse angulaire [rad / s] α: accélération angulaire [rad / s2] I: moment d'inertie W: travail [J = N m] P: puissance [W = J / S] p: quantité de mouvement E: module de Young 2. Constantes G: N(m)2(kg)-2 3. Formules Chapitre 1: mouvement rectiligne - vitesse constante v (moyenne) = x/ t = x(2) - x(1) / t(2) - t(1) v (instantanée) = dx / dt - augmentation linéaire de la vitesse a (moyenne) = v / t Plan incliné (θ) = g sin (θ) v = v0 + a t x = v0 t + 1/2 a ( t)2 v (moyenne) = 1/2 (v0 + v) x = 1/2 (x0 + x) t v2 = v a x
2 - à la surface de la Terre: g = 9.81 m/s2 Chapitre 2: mouvement dans deux dimensions - vecteurs v = v(x) + v(y) a = a(x) x + a(y) y - mouvement d'un objet x = v0(x) t + 1/2 a(x) ( t)2 y = v0(y) t + 1/2 a(y) ( t)2 v(x) = v0(x) + a(x) t v(y) = v0(y) + a(y) t - projectiles a(x) = 0 a(y) = -g - mouvement rectiligne uniforme (MRU) x = v0 x t v(x) = v0(x) - mouvement rectiligne uniformément accéléré (MRUA) y = v0(y) t - 1/2 g ( t)2 v(y) = v0(y) - g t ces formules sont utilisables pour décrire le saut des animaux - projectiles en biomécanique portée = 2(v0)2 sin(θ) cos(θ) / g = [(v0)2 / g] sin (2θ) t = 2 v0(y) / g portée sur un plan horizontal: 2 v(0x) v(0y) / g hauteur maximum: v(0)2 sin (2θ) / 2g portée maximum: v(0)2 sin (2θ) / 2g - compléments
3 v = (v x2 + v y2) a = (a x2 + a y2) Chapitre 3: les lois de Newton F = m a L'accélération a la même direction que la force. - force gravitationnelle w = m g - force de gravitation entre deux masses F = G m m' / x2 - poids effectif: w(e) = m g - m a Chapitre 4: statique - moment de force τ = r F sin (α) - à l'équilibre F = 0 et τ = 0 - avantage mécanique (AM) AM: FR / FA FR: force résultante FA: force appliquée - si les forces sont perpendiculaires au levier AM = x(a) / x(r) - leviers w(1) / w(2) = x(2) / x(1) - centre de gravité
4 x = x(1) w(1) + x(2) w(2) + x(3) w(3) + - poulies AM = w / FA proportionnel au nombre de cordes parallèles supportant la poulie à laquelle le poids est attaché. Chapitre 5: mouvement circulaire a(r) = v2 / r F = m a(r) = m v2 / r - position angulaire θ = s / r [rad] 1 rad = 360 / 2 = tour = 2 rad = vitesse angulaire ω = θ / t - vitesse linéaire d'un point d'objet en rotation v = rω [m/s] - accélération angulaire α = ω / t - accélération tangentielle a(t) = r α a(r) = v2 / r = -ω2 r a = a(r) + a(t) donc, en cas de mouvement circulaire: v -> ω x -> θ a -> α
5 - moment d'inertie I = m(1) r(1)2 + m(2) r(2)2 + τ = I α la formule est comparable à F = m a Chapitre 6: travail, énergie et puissance - travail: W = F x cos (θ) - énergie cinétique (K) K = K0 + W K = 1/2 m v2 - énergie potentielle (U) U = m g h W(grav) = - m g (h-h0) U - U0 = - W(grav) K + U = K0 + U0 + W(externe) - puissance P(moyenne) = W / t P = dw / dt Chapitre 7: quantité de mouvement et moment cinétique - quantité de mouvement p = m v - impulsion F t = p' - p - conservation de la quantité de mouvement p(1) + p(2) = p(1)' + p(2)' si les forces externes sont nulles - collision complètement inélastique
6 K' = (m(1) / m(1) + m(2)) K0 - collision frontale entre un objet au repos et un objet en mouvement m(1) v(1) = m(1) v(1)' + m(2) v(2)' K(1) = K(1)' + K(2)' K(1)' = K (m(1) - m(2))2 / (m(1) + m(2))2 - mouvement cinétique d'un corps solide τ t = IW' - IW moment cinétique: L = IW impulsion angulaire: τ t = L' - L si le moment des forces appliquées est nul, le moment cinétique est conservé - collision élastique K(1) + K(2) = K(1)' + K(2)' pour une particule ayant une vitesse v, et tournant le long d'une trajectoire sphérique, le moment cinétique vaut: L = r x p L = m v r = m ω r = m ω r2 = I ω - quantité de mouvement dans les exercices sportifs MV = mv' + MV' M = m v' / V-V' m: masse de la balle M: masse effective du dispositif de lancement V: vitesse du dispositif de lancement v: vitesse de la balle Chapitre 8: propriétés élastiques des matériaux - déformation ε = l / l - effort
7 σ = F / A A: section droite perpendiculaire à la force appliquée Pour de faibles déformations: l'effort est proportionnel à la déformation - compression et traction ε = σ / E - cisaillement ε = σ / G G: module de cisaillement ε = / h : déplacement du plan sur lequel on agit h: épaisseur de la pièce σ = F / A A: section perpendiculaire à la force appliquée - flexion d'une poutre τ = I(s) / R I(s): moment d'inertie de la section droite de la poutre R: rayon de courbure τ: moment des forces internes Sauts et lois d'échelle - énergie pour effectuer un saut W a = m g d + 1/2 m v(0)2 = mg (h + d) si d (élan) est négligeable par rapport à h (hauteur): W a =~ m g h - vitesse quand les pattes quittent le sol v = 2 g h course à pied la force dépensée (f) est toujours inférieure à la force maximale (Fmax) - puissance dissipée
8 P = f v - force dissipative D = C v C: constante de la force dissipative P = C v2 - énergie stockée (E0) E0 = 193'000 J - taux de conversion de l'énergie métabolique σ = 3'300 W Chapitre 9: Mouvement vibratoire - Force de rappel (F(r)) F(r) = -K x K: coefficient de raideur du ressort -K x = m a - fréquence f = 1 / t - détermination de la position en fonction du temps x = a sin (ω t + φ) ω: K / m = 2 / t = 2 f φ: phase - pour masse-ressort f = (1/2 ) (K / m) T = 2 (m / K) T: période - pendule composé θ = θ(max) sin (ω t + φ) ω = (m g d / I) f = I / T = (1 / 2 ) m g d / I
9 v = ω a (cos (ω t + φ)) a = -ω2 A (sin (ω t + φ)) v(max) = ω A = (K / m) A a(max) = ω2 A = A K / M - pendule simple f = 1/T = 1/2 (m g d l / m l2) = 1/2 g / L U = 1/2 m g d θ2 - énergie dans le mouvement harmonique simple U = 1/2 k x2 si F(ext) = 0: E = 1/2 K A2 si x = 0: E = 1/2 m v(max)2 v(max) = A (K/m) - oscillation amortie m a = - k x - γ v γ: constante d'amortissement - vibrations sur les personnes a(max) = (2 f)2 A
La gravitation universelle
La gravitation universelle Pourquoi les planètes du système solaire restent-elles en orbite autour du Soleil? 1) Qu'est-ce que la gravitation universelle? activité : Attraction universelle La cohésion
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au
1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof
Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof
PHYS-F-104_C) Physique I (mécanique, ondes et optiques) Solutions des questions d'examens (2004-2013)
PRESSES UNIVERSITAIRES DE BRUXELLES UNIVERSITÉ LIBRE DE BRUXELLES Physique I (mécanique, ondes et optiques) Solutions des questions d'examens (004-013) Pascal VANLAER Titulaire Notes rédigées par Pierre
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent
TS Physique Satellite à la recherche de sa planète Exercice résolu
P a g e 1 Phsique atellite à la recherche de sa planète Exercice résolu Enoncé Le centre spatial de Kourou a lancé le 1 décembre 005, avec une fusée Ariane 5, un satellite de météorologie de seconde génération
TD de Physique n o 1 : Mécanique du point
E.N.S. de Cachan Département E.E.A. M FE 3 e année Phsique appliquée 011-01 TD de Phsique n o 1 : Mécanique du point Exercice n o 1 : Trajectoire d un ballon-sonde Un ballon-sonde M, lâché au niveau du
MECANIQUE DU POINT. y e y. z e z. ] est le trièdre de référence. e z. où [O, e r. r est la distance à l'axe, θ l'angle polaire et z la côte
I) Cinématique du point matériel: 1) Référentiel: MECANIQUE DU POINT L ensemble de tous les systèmes d axes de coordonnées liés à un même solide de référence S constitue un repère Soit une horloge permettant
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?
EXERCICE 1 : QUESTION DE COURS Q1 : Qu est ce qu une onde progressive? Q2 : Qu est ce qu une onde mécanique? Q3 : Qu elle est la condition pour qu une onde soit diffractée? Q4 : Quelles sont les différentes
Chapitre 5. Le ressort. F ext. F ressort
Chapitre 5 Le ressort Le ressort est un élément fondamental de plusieurs mécanismes. Il existe plusieurs types de ressorts (à boudin, à lame, spiral etc.) Que l on comprime ou étire un ressort, tel que
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Michel Henry Nicolas Delorme
Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université
Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]
Les moments de force Les submersibles Mir peuvent plonger à 6 000 mètres, rester en immersion une vingtaine d heures et abriter 3 personnes (le pilote et deux observateurs), dans une sphère pressurisée
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Test : principe fondamental de la dynamique et aspect énergétique
Durée : 45 minutes Objectifs Test : principe fondamental de la dynamique et aspect énergétique Projection de forces. Calcul de durée d'accélération / décélération ou d'accélération / décélération ou de
Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites
I- Les trois lois de Kepler : Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites Les lois de Kepler s'applique aussi bien pour une planète en mouvement
MATIE RE DU COURS DE PHYSIQUE
MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
Travaux dirigés de mécanique du point
Travaux dirigés de mécanique du point Année 011-01 Arnaud LE PADELLEC Magali MOURGUES [email protected] [email protected] Travaux dirigés de mécanique du point 1/40 P r é s e n t a t
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Audioprothésiste / stage i-prépa intensif - 70 Chapitre 8 : Champ de gravitation - Satellites I. Loi de gravitation universelle : (
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Chapitre 5 : Le travail d une force :
Classe de 1èreS Chapitre 5 Physique Chapitre 5 : Le travail d une force : Introduction : fiche élève Considérons des objets qui subissent des forces dont le point d application se déplace : Par exemple
Cours de résistance des matériaux
ENSM-SE RDM - CPMI 2011-2012 1 Cycle Préparatoire Médecin-Ingénieur 2011-2012 Cours de résistance des matériau Pierre Badel Ecole des Mines Saint Etienne Première notions de mécanique des solides déformables
FICHE TECHNIQUE. Domaines d applications. Stockage / Mise en oeuvre. Caractéristiques physiques et techniques STOCKAGE MISE EN OEUVRE
FICHE TECHNIQUE PLANS DE TRAVAIL EGGER EUROSPAN Les plans de travail EGGER EUROSPAN se composent d un panneau support EUROSPAN à faible émission de formaldéhyde E1 et d un stratifié décoratif plaqué uniformément
FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12
1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX
SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX 1. EXPERIENCE 1 : APPLICATION DE LA LOI FONDAMENTALE DE LA DYNAMIQUE a) On incline d un angle α la table à digitaliser (deuxième ou troisième cran de la table).
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Chapitre 1: Facteurs d'échelle
Chapitre 1: Facteurs d'échelle Des considérations générales sur la taille des objets ou des êtres vivants et leur influence sur différents paramètres, permettent d'établir simplement quelques lois ou tendances,
SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système
SCIENCES INDUSTRIELLES POUR L INGÉNIEUR COMPORTEMENT DYNAMIQUE D UN VEHICULE AUTO-BALANCÉ DE TYPE SEGWAY Partie I - Analyse système Poignée directionnelle Barre d appui Plate-forme Photographies 1 Le support
Etude du SIMULATEUR DE VOL «FLY-HO»
ECOLE NATIONALE DE L AVIATION CIVILE Session 212 CONCOURS DE RECRUTEMENT D ELEVES INGENIEURS DU CONTROLE DE LA NAVIGATION AERIENNE Epreuve optionnelle obligatoire de SCIENCES INDUSTRIELLES POUR L INGENIEUR
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières
Physique Générale SYSTEME DE PARTICULES DYNAMIQUE DU SOLIDE (suite) TRAN Minh Tâm Table des matières Applications de la loi de Newton pour la rotation 93 Le gyroscope........................ 93 L orbite
Université de Caen. Relativité générale. C. LONGUEMARE Applications version 2.0. 4 mars 2014
Université de Caen LMNO Relativité générale C. LONGUEMARE Applications version.0 4 mars 014 Plan 1. Rappels de dynamique classique La force de Coulomb Le principe de moindre action : lagrangien, hamiltonien
Mécanique. 1 Forces. 1.1 Rappel. 1.2 Mesurer des forces. 3BC - AL Mécanique 1
3BC - AL Mécanique 1 Mécanique 1 Forces 1.1 Rappel Pour décrire les effets d une force, nous devons préciser toutes ses propriétés : son point d application ; sa droite d action, c est-à-dire sa direction
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
TD 9 Problème à deux corps
PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile
Chapitre 5: Oscillations d un pendule élastique horizontal
1 re B et C 5 Oscillations d'un pendule élastique horizontal 40 Chapitre 5: Oscillations d un pendule élastique horizontal 1. Définitions a) Oscillateur écanique * Un systèe écanique qui effectue un ouveent
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Cours et Exercices de Mécanique :
Cours et Eercices de Mécanique : Mécanique du Point Ingénieur CESI Préparation au tests de sélection Version 40-1 - Programme de physique B Mécanique Chapitre 5 : Statique - Forces, moments de forces,
Quantité de mouvement et moment cinétique
6 Quantité de mouvement et moment cinétique v7 p = mv L = r p 1 Impulsion et quantité de mouvement Une force F agit sur un corps de masse m, pendant un temps Δt. La vitesse du corps varie de Δv = v f -
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
supports métalliques basse fréquence gamme "Polycal-Ressort" standard définition R P 3 5-4 1
supports métalliques basse fréquence définition E V K J L D e Ød (x2) U G R M Ho série RP3 Isolateurs de vibrations basses fréquences à chargement vertical entièrement métallique. Endurance et fiabilité
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Mécanique du point et des systèmes matériels Version préliminaire sans garantie DEUG SMA2 2003 04, module PHYS-SP32
Mécanique du point et des systèmes matériels Version préliminaire sans garantie DEUG SMA2 2003 04, module PHYS-SP32 Jean-Marc Richard Version du 2 novembre 2003 Table des matières Introduction 5. Avertissement.................................
W i r e l e s s B o d y S c a l e - i B F 5 T h a n k y o u f o r p u r c h a s i n g t h e W i r e l e s s B o d y S c a l e i B F 5. B e f o r e u s i n g t h i s u n i t f o r t h e f i r s t t i m
Chap 8 - TEMPS & RELATIVITE RESTREINTE
Chap 8 - TEMPS & RELATIVITE RESTREINTE Exercice 0 page 9 On considère deux évènements E et E Référentiel propre, R : la Terre. Dans ce référentiel, les deux évènements ont lieu au même endroit. La durée
Chapitre 7 - Relativité du mouvement
Un bus roule lentement dans une ville. Alain (A) est assis dans le bus, Brigitte (B) marche dans l'allée vers l'arrière du bus pour faire des signes à Claude (C) qui est au bord de la route. Brigitte marche
Algorithmes pour la planification de mouvements en robotique non-holonome
Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot
MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN
MOTO ELECTRIQUE MISE EN SITUATION La moto électrique STRADA EVO 1 est fabriquée par une société SUISSE, située à LUGANO. Moyen de transport alternatif, peut-être la solution pour concilier contraintes
LE GÉNIE PARASISMIQUE
LE GÉNIE PARASISMIQUE Concevoir et construire un bâtiment pour qu il résiste aux séismes 1 Présentation de l intervenant Activité : Implantation : B.E.T. structures : Ingénierie générale du bâtiment. Siège
I - Quelques propriétés des étoiles à neutrons
Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR
BACCALAURÉAT TECHNOLOGIQUE SÉRIE SCIENCES ET TECHNIQUES INDUSTRIELLES GÉNIE ÉLECTROTECHNIQUE SESSION 2008 ÉPREUVE: ÉTUDE DES CONSTRUCTIONS Durée: 4 heures Coefficient : 6 POSITIONNEUR DE PANNEAU SOLAIRE
BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE
BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE ÉPREUVE DE SCIENCES DE L INGÉNIEUR ÉPREUVE DU VENDREDI 20 JUIN 2014 Session 2014 Durée de l épreuve : 4 heures Coefficient 4,5 pour les candidats ayant choisi un
DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique
DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique Le centre spatial de Kourou a lancé le 21 décembre 200, avec une fusée Ariane, un satellite
Premier principe de la thermodynamique - conservation de l énergie
Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse
TUBES ET ACCESSOIRES Serrurier A ailettes Construction Canalisation Spéciaux
TUBES ET ACCESSOIRES 47 Serrurier A ailettes Construction Canalisation Spéciaux Possibilité d autres sections sur demande. Les caractéristiques indiquées sont théoriques et non garanties. TUBES 48 TUBES
Interactions des rayonnements avec la matière
UE3-1 : Biophysique Chapitre 2 : Interactions des rayonnements avec la matière Professeur Jean-Philippe VUILLEZ Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés.
CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.
CABLECAM de HYMATOM La société Hymatom conçoit et fabrique des systèmes de vidéosurveillance. Le système câblecam (figure 1) est composé d un chariot mobile sur quatre roues posé sur deux câbles porteurs
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere
Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?
LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance
Mesure de la dépense énergétique
Mesure de la dépense énergétique Bioénergétique L énergie existe sous différentes formes : calorifique, mécanique, électrique, chimique, rayonnante, nucléaire. La bioénergétique est la branche de la biologie
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
Analyse statique d une pièce
Analyse statique d une pièce Contrainte de Von Mises sur une chape taillée dans la masse 1 Comportement d un dynamomètre On considère le dynamomètre de forme globalement circulaire, excepté les bossages
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS
Généralités Aperçu Introduction Précision Instruction de montage Lubrification Conception page............................. 4............................. 5............................. 6.............................
G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction
DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner
II - 2 Schéma statique
II - 2 Schéma statique [email protected] version 7 septembre 2006 Schéma statique Définition Appuis et liaisons [Frey, 1990, Vol. 1, Chap. 5-6] Éléments structuraux Sans références Les dias
Chapitre 4: Dérivée d'une fonction et règles de calcul
DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Utilisation des intégrales premières en mécanique. Exemples et applications.
Sébastien Bourdreux Agrégation de Physique Université Blaise Pascal - Clermont-Ferrand Utilisation des intégrales premières en mécanique. Exemples et applications. septembre 2003 Correcteur : Pascal DELLOUVE
CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES
CHAPITRE Le mouvement en deux dimensions CORRIGÉ DES EXERCICES Exercices. Les vecteurs du mouvement SECTION. 5. Une montgolfière, initialement au repos, se déplace à vitesse constante. En 5 min, elle
Caractéristiques des ondes
Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace
1 Problème 1 : L avion solaire autonome (durée 1h)
Problèmes IPhO 2012 1 NOM : PRENOM : LYCEE : 1 Problème 1 : L avion solaire autonome (durée 1h) Nous souhaitons dans ce problème aborder quelques aspects de la conception d un avion solaire autonome. Les
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
CHAPITRE 10. Jacobien, changement de coordonnées.
CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,
COMMENT FAIRE DES ESCALIERS?
COMMENT FAIRE DES ESCALIERS? Conception et mise en œuvre GUIDE TECHNIQUE 2012 Union des Métalliers C O L L E CT I O N R E C H E R C H E D É V E LO P P E M E N T M É T I E R 4 INTRODUCTION 13 PARTIE I GÉNÉR
"Modélisation interactive d'un genou humain"
Stage M2 PRO IICAO, du 1er avril au 31 septembre 2008 "Modélisation interactive d'un genou humain" Vincent Vansuyt Sous la tutelle de François Faure et François Boux de Casson Dans l'équipe Evasion, laboratoire
CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES
CHAPITRE Le mouvement en une dimension CORRIGÉ DES EXERCICES Exercices. Le mouvement rectiligne uniforme SECTION. 5. Le graphique suivant représente la vitesse d une cycliste en fonction du temps. Quelle
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
La fonction d onde et l équation de Schrödinger
Chapitre 1 La fonction d onde et l équation de Schrödinger 1.1 Introduction En physique classique, une particule est décrite par sa position r(t). L évolution de sa position (la trajectoire de la particule)
Cours IV Mise en orbite
Introduction au vol spatial Cours IV Mise en orbite If you don t know where you re going, you ll probably end up somewhere else. Yogi Berra, NY Yankees catcher v1.2.8 by-sa Olivier Cleynen Introduction
SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :
Titre : SSNL16 - Flambement élastoplastique d'une poutre [...] Date : 15/1/011 Page : 1/6 Responsable : Nicolas GREFFET Clé : V6.0.16 Révision : 8101 SSNL16 - Flambement élastoplastique d'une poutre droite
CONCOURS COMMUN 2010 PHYSIQUE
CONCOUS COMMUN SUJET A DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES Épreuve de Physique-Chimie (toutes filières) Corrigé Barème total points : Physique points - Chimie 68 points PHYSIQUE Partie A :
Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.
TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter
