QUI VEUT JOUER AVEC MOI?
|
|
|
- Joseph Leclerc
- il y a 10 ans
- Total affichages :
Transcription
1 QUI VEUT JOUER AVEC MOI? Michel Rigo (Université de Liège)
2 JOUER SÉRIEUSEMENT, POURQUOI? Jeux coopératifs : marché boursier, économie, émergence de réseaux sociaux,... Mise à disposition de ressources limitées : imprimante réseau, bande passante, routeur Wi-Fi,... Vérification de programmes, intelligence artificielle : interaction entre un programme et son environnement. Biologie : stratégie évolutivement stable, proie/prédateur, comportement agressif/coopératif, territorialité,... Mise au point, analyse et vérification de protocoles cryptographiques : authentification sur un serveur, partage de secrets, vote électronique,... Liens et applications avec d autres branches des mathématiques : logique, arithmétique, graphes,... Analyse mathématique de jeux combinatoires impartiaux
3 CHOMP RÈGLES DU JEU (D. GALE 1974) Deux joueurs A et B jouent alternativement. A débute la partie avec une tablette de chocolat pleine. A chaque tour, il faut manger au moins un carré de la tablette chocolat. Lorsqu on mange un carré, il faut manger tous ceux à sa droite et en-dessous. Le carré du coin supérieur gauche est empoisonné! But du jeu : survivre!
4 CHOMP Chomp ou le jeu de la tablette de chocolat empoisonnée (F. Schuh 1952, D. Gale 1974)
5 CHOMP Chomp ou le jeu de la tablette de chocolat empoisonnée (F. Schuh 1952, D. Gale 1974) A
6 CHOMP Chomp ou le jeu de la tablette de chocolat empoisonnée (F. Schuh 1952, D. Gale 1974) B
7 CHOMP Chomp ou le jeu de la tablette de chocolat empoisonnée (F. Schuh 1952, D. Gale 1974) A
8 CHOMP Chomp ou le jeu de la tablette de chocolat empoisonnée (F. Schuh 1952, D. Gale 1974) B
9 CHOMP Chomp ou le jeu de la tablette de chocolat empoisonnée (F. Schuh 1952, D. Gale 1974) A
10 CHOMP Chomp ou le jeu de la tablette de chocolat empoisonnée (F. Schuh 1952, D. Gale 1974) B
11 CHOMP Chomp ou le jeu de la tablette de chocolat empoisonnée (F. Schuh 1952, D. Gale 1974) A
12 CHOMP Chomp ou le jeu de la tablette de chocolat empoisonnée (F. Schuh 1952, D. Gale 1974) B
13 CHOMP Chomp ou le jeu de la tablette de chocolat empoisonnée (F. Schuh 1952, D. Gale 1974) A
14 CHOMP QUESTIONS Qui peut gagner la partie à partir d une tablette m n? Quel coup doit-on jouer pour gagner? ANALYSE DU CAS 2 3
15
16
17
18
19 P
20 P G
21 P G P
22 P G G P
23 P P G G P
24 G P P G G P
25 G P P G G P
26 G P P G G P
27 P = {positions perdantes}, quoi que le joueur fasse, l autre joueur peut gagner. G = {positions gagnantes}, le joueur peut gagner, quoi que fasse son adversaire. Stratégie gagnante : choisir une bonne option depuis une position gagnante pour assurer in fine le gain. REMARQUE Pour une tablette m n, toute position est gagnante ou perdante. THÉORÈME A partir d une tablette m n, il existe toujours une stratégie gagnante pour le joueur qui débute.
28 PREUVE PAR L ABSURDE Thèse : A dispose d une stratégie gagnante, i.e., la configuration de départ est une position gagnante. Supposons que B dispose d une stratégie gagnante (quel que soit le premier coup joué par A), i.e., la configuration de départ est une position perdante. Si A supprime le coin inférieur droit, par hypothèse, B peut répondre à A avec un coup C lui assurant à la fin la victoire. Dès lors, A aurait pu débuter la partie en jouant ce coup C qui lui assurerait la victoire finale. Ceci contredit notre hypothèse de départ. EN PRATIQUE On peut calculer les coups gagnants pour de petites valeurs de m et n. Peut-on jouer rapidement si m, n sont grands?
29 Esquisse du cas 2 4 (il manque de nombreux coups). CAS 2 n nombre de positions : n2 + 3n 2 et de coups : n3 + 2n 2 n 2 n
30 LE CAS k n (DIAGRAMMES DE YOUNG) n k (x 1,..., x k ) avec x 1 x 2 x k 0 et 1 x 1 n nombre de positions : n x 1 x 1 =1 x 2 =0 x k 1 x k =0 1 n k /k! nombre de coups : n x 1 x 1 =1 x 2 =0 x k 1 (x 1 +x 2 + +x k 1) n k+1 /2 k! x k =0 liens avec le nombre de partitions d un entier.
31 nombre de positions 3 (11n+6n 2 + n 3 )/6 4 (50n+35n n 3 + n 4 )/24 5 (274n+225n n n 4 + n 5 )/120 6 (1764n n n n n 5 + n 6 )/720 nombre de coups 3 ( 4n+21n n 3 + 3n 4 )/12 4 ( 2n+65n n n 4 + 2n 5 )/24 5 (52n + 920n n n n 5 + 5n 6 )/240 6 (396n n n n n n 6 + 3n 7 )/720 k = 6, n = 12 nombre de positions 18563, nombre de coups k = n = 20 nombre de positions nombre de coups
32 Généralisation CHOMP-3D
33 Généralisation CHOMP-3D
34 Généralisation CHOMP-3D
35 Généralisation CHOMP-3D
36 Généralisation CHOMP-3D
37 Généralisation CHOMP-3D
38 CAS PARTICULIER CAS m m Dans ce cas, il y a une stratégie gagnante facile.
39 CAS PARTICULIER CAS m m Dans ce cas, il y a une stratégie gagnante facile. A
40 CAS PARTICULIER CAS m m Dans ce cas, il y a une stratégie gagnante facile. B
41 CAS PARTICULIER CAS m m Dans ce cas, il y a une stratégie gagnante facile. A
42 CAS PARTICULIER CAS m m Dans ce cas, il y a une stratégie gagnante facile. B
43 CAS PARTICULIER CAS m m Dans ce cas, il y a une stratégie gagnante facile. A
44 CAS PARTICULIER EXERCICE, LE CAS 2 n On peut aussi trouver une stratégie gagnante facile...
45 LE JEU DE NIM Nim, condition misère, le joueur qui prend le dernier carré perd.
46 LE JEU DE NIM Nim, condition misère, le joueur qui prend le dernier carré perd.
47 LE JEU DE NIM Nim, condition misère, le joueur qui prend le dernier carré perd.
48 LE JEU DE NIM
49 LE JEU DE NIM Nim, condition normale, celui qui prend le dernier carré gagne.
50 LE JEU DE NIM Nim, condition normale, celui qui prend le dernier carré gagne.
51 LE JEU DE NIM Nim, condition normale, celui qui prend le dernier carré gagne.
52 LE JEU DE NIM Pour le jeu de Nim à deux tas, on connaît déjà la stratégie gagnante! On déplace une tour.
53 LE JEU DE NIM Pour le jeu de Nim à deux tas, on connaît déjà la stratégie gagnante! Les positions perdantes.
54 LE JEU DE NIM REMARQUE Dès le début de la partie, on sait quel joueur va gagner...
55 LE JEU DE NIM Extension à plusieurs tas, à son tour, le joueur retire au moins un carré de l un des tas
56 LE JEU DE NIM Extension à plusieurs tas, à son tour, le joueur retire au moins un carré de l un des tas
57 LE JEU DE NIM Extension à plusieurs tas, à son tour, le joueur retire au moins un carré de l un des tas
58 LE JEU DE NIM Extension à plusieurs tas, à son tour, le joueur retire au moins un carré de l un des tas
59 LE JEU DE NIM Extension à plusieurs tas, à son tour, le joueur retire au moins un carré de l un des tas
60 LE JEU DE NIM Extension à plusieurs tas, à son tour, le joueur retire au moins un carré de l un des tas
61 LE JEU DE NIM THÉORÈME (BOUTON 1902) Les positions perdantes sont à Nim-somme nulle : tout coup joué depuis une position à Nim-somme nulle amène dans une position à Nim-somme non nulle. Pour toute position à Nim-somme non nulle, il existe un coup vers une position de Nim-somme nulle (stratégie). REMARQUE IDENTIQUE Dès le début de la partie, on sait quel joueur va gagner...
62 LE JEU DE WYTHOFF RÈGLES DU JEU On joue avec deux tas, condition normale. A son tour, le joueur retire au moins un carré de l un des tas, retire la même quantité sur chaque tas On déplace une reine.
63 LE JEU DE WYTHOFF
64 LE JEU DE WYTHOFF
65 LE JEU DE WYTHOFF
66 LE JEU DE WYTHOFF
67 LE JEU DE WYTHOFF
68 LE JEU DE WYTHOFF
69 LE JEU DE WYTHOFF
70 LE JEU DE WYTHOFF
71 LE JEU DE WYTHOFF
72 LE JEU DE WYTHOFF QUESTION Peut-on décider rapidement si on se trouve sur une position gagnante ou perdante? ( , ) est une position perdante ( , ) est une position gagnante
73 LE JEU DE WYTHOFF On peut faire la même analyse (graphe du jeu) que pour CHOMP : (3,2) (3,1) (2,2) (3,0) (2,0) (2,1) (1,1) (1,0) (0,0) On a le même problème : praticable uniquement pour de petites valeurs!
74 LE JEU DE WYTHOFF On peut faire la même analyse (graphe du jeu) que pour CHOMP : (3,2) (3,1) (2,2) (3,0) (2,0) (2,1) (1,1) (1,0) (0,0) On a le même problème : praticable uniquement pour de petites valeurs!
75 LE JEU DE WYTHOFF On peut faire la même analyse (graphe du jeu) que pour CHOMP : (3,2) (3,1) (2,2) (3,0) (2,0) (2,1) (1,1) (1,0) (0,0) On a le même problème : praticable uniquement pour de petites valeurs!
76 LE JEU DE WYTHOFF On peut faire la même analyse (graphe du jeu) que pour CHOMP : (3,2) (3,1) (2,2) (3,0) (2,1) (2,0) (1,1) (1,0) (0,0) On a le même problème : praticable uniquement pour de petites valeurs!
77 LE JEU DE WYTHOFF On peut faire la même analyse (graphe du jeu) que pour CHOMP : (3,2) (3,1) (2,2) (3,0) (2,1) (2,0) (1,1) (1,0) (0,0) On a le même problème : praticable uniquement pour de petites valeurs!
78 LE JEU DE WYTHOFF Les premières positions perdantes sont (1, 2), (3, 5), (4, 7), (6, 10), (8, 13), (9, 15),... THÉORÈME (WYTHOFF 1907) Pour tout entier n 1, (A n, B n ) = ( nϕ, nϕ 2 ) = ( nϕ, nϕ +n) où ϕ = (1+ 5)/2 est le nombre d or. THÉORÈME (S. BEATTY 1927) Si α,β > 1 sont irrationnels et vérifient 1/α+1/β = 1, alors { nα n 1} et { nβ n 1} partitionnent N 1.
79 LE JEU DE WYTHOFF Une formule ne suffit pas toujours... ϕ 1, , IL FAUT S Y PRENDRE AUTREMENT Même avec décimales correctes, posera problème pour 10 10! Utiliser ϕ 2 ϕ 1 = 0.
80 LE JEU DE WYTHOFF suite de Fibonacci F i+2 = F i+1 + F i, F 0 = 1, F 1 = 2...,610, 377, 233, 144, 89, 55, 34, 21, 13, 8, 5, 3, 2,
81 LE JEU DE WYTHOFF (1, 2), (3, 5), (4, 7), (6, 10), (8, 13), (9, 15),......,610, 377, 233, 144, 89, 55, 34, 21, 13, 8, 5, 3, 2, première composante : nombre pair de zéros seconde composante : décalé d un cran vers la gauche
82 LE JEU DE WYTHOFF (1, 2), (3, 5), (4, 7), (6, 10), (8, 13), (9, 15),......,610, 377, 233, 144, 89, 55, 34, 21, 13, 8, 5, 3, 2, première composante : nombre pair de zéros seconde composante : décalé d un cran vers la gauche
83 LE JEU DE WYTHOFF QUESTION Peut-on décider rapidement si on se trouve sur une position gagnante ou perdante? ( , ) est une position perdante ( , ) est une position gagnante = F 49 + F 17 + F = F 50 + F 18 + F = F 30 + F 16 + F 8 + F
84 LE JEU DE WYTHOFF REMARQUE Dès le début, on sait quel joueur va a priori gagner... EXERCICE Il faut encore être en mesure, depuis une position gagnante, d appliquer la bonne stratégie. Suggestion : pour tout t 1, il existe un seul n tel que B n A n = t, à savoir n = t. REMARQUE La façon de représenter les nombres influe sur les méthodes de calcul, i.e., les algorithmes, et leurs perfomances!
85 LE DILEMME DU PRISONNIER Un exemple de jeu coopératif. LA SITUATION, DEUX BANDITS ARRÊTÉS AVEC DES PREUVES INSUFFISANTES Les deux suspects sont mis à l écart et interrogés séparément. Ils ont chacun le choix de ne rien dire ou de dénoncer l autre. Ils ne savent pas ce que fait l autre suspect et on suppose qu ils sont rationnels. B dénonce B ne dit rien A dénonce A et B écopent de A est libre 1 an de prison B prend 5 ans de prison A ne dit rien A prend 5 ans A et B écopent de B est libre 6 mois de prison
86 LE DILEMME DU PRISONNIER DÉFINITION Une stratégie (i.e., les choix réalisés par les différents joueurs) est un équilibre de Nash, si aucun joueur n a intérêt à changer de façon unilatérale sa propre stratégie. John Forbes Nash (1928 ), John von Neumann ( )
87 RÉFÉRENCES C. L. Bouton, Nim, a game with a complete mathematical theory, Ann. Math. 3 (1902), S. Beatty, Problem 3173, American Math. Monthly 33 (1926), 159, 34 (1927), 159. E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning Ways for Your Mathematical Plays, vol. 1 4, A K Peters, Ltd (2001). D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge Univ. Press (2011). T. S. Ferguson, Game Theory, Lecture Notes, UCLA. A. S. Fraenkel, How to beat your Wythoff games opponent on three fronts, American Math. Monthly 89 (1982), D. Gale, A Curious Nim-Type Game, American Math. Monthly 81 (8), 1974, F. Schuh, The game of divisions, Nieuw Tijdschrift voor Wiskunde 39 (1952), O. Serre, Games in a nutshell, An overview of the course "Game-theoretic techniques in computer science", CNRS/LIAFA, Paris (2011). W. A. Wythoff, A modification of the game of nim, Nieuw Archief voor Wiskunde 7 (1907), E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), Sur le web, pas mal d applets JAVA pour jouer à CHOMP ou Nim contre un algorithme. d après E. Charlier, systèmes de numération, d après M. Rigo, jeux combinatoires,
88 Alors, qui veut jouer avec moi?
Théorie des Jeux Et ses Applications
Théorie des Jeux Et ses Applications De la Guerre Froide au Poker Clément Sire Laboratoire de Physique Théorique CNRS & Université Paul Sabatier www.lpt.ups-tlse.fr Quelques Définitions de la Théorie des
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
CHAPITRE 5. Stratégies Mixtes
CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,
Simulation centrée individus
Simulation centrée individus Théorie des jeux Bruno BEAUFILS Université de Lille Année 4/5 Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Partage dans les
Nombres premiers. Comment reconnaître un nombre premier? Mais...
Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
INGENIERIE DES SYSTEMES INFORMATIQUES - PARCOURS : MOBILITE ET CLOUD COMPUTING
INGENIERIE DES SYSTEMES INFORMATIQUES - PARCOURS : MOBILITE ET CLOUD COMPUTING Préparez ce diplôme à l école de d ingénierie de l IGA OBJECTIFS DE LA FORMATION Dans un contexte de mutation économique et
Economie de l Incertain et des Incitations
Economie de l Incertain et des Incitations CHAPITRE 2 Eléments de théorie des jeux en information symétrique et asymétrique Equilibres Bayesiens - Université de Tours - M1 AGE - Arnold Chassagnon - Automne
Jeux sous forme extensive (Jeux dynamiques)
(Jeux dynamiques) Plan du chapitre ( juillet 008) / éfinitions, exemples et équivalences Arbres de jeux, information et mémoire tratégies et réduction en forme normale Équilibre de Nash parfait en sous-jeux
Canevas théoriques du projet sur le poker Partie A
Partie A Dans une partie de poker, particulièrement au Texas Hold em Limit, il est possible d effectuer certains calculs permettant de prendre la meilleure décision. Quelques-uns de ces calculs sont basés
Introduction à la Théorie des Jeux p.1/77
Introduction à la Théorie des Jeux Sébastien Konieczny [email protected] CRIL-CNRS Université d Artois - Lens Introduction à la Théorie des Jeux p.1/77 Théorie des Jeux Définition La théorie
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Cours d arithmétique Première partie
Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant
Les nombres entiers. Durée suggérée: 3 semaines
Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,
Sur certaines séries entières particulières
ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane
Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch
Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels
Poker. A rendre pour le 25 avril
Poker A rendre pour le 25 avril 0 Avant propos 0.1 Notation Les parties sans * sont obligatoires (ne rendez pas un projet qui ne contient pas toutes les fonctions sans *). Celles avec (*) sont moins faciles
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
PRIME D UNE OPTION D ACHAT OU DE VENTE
Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
LE GUIDE COMPLET PRETS A PARIER
LE GUIDE COMPLET PRETS A PARIER Ce guide va vous proposer deux manières de profiter des jeux «Prêts à Parier» disponibles sur le site Promoturf. Ces pronostics sont le résultat d une amélioration majeure
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Théorèmes de Point Fixe et Applications 1
Théorèmes de Point Fixe et Applications 1 Victor Ginsburgh Université Libre de Bruxelles et CORE, Louvain-la-Neuve Janvier 1999 Published in C. Jessua, C. Labrousse et D. Vitry, eds., Dictionnaire des
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes
Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes Pages 4 à 48 barèmes 4 à 48 donnes Condensé en une page: Page 2 barèmes 4 à 32 ( nombre pair de donnes ) Page 3 Tous les autres barèmes ( PV de
MASTER (LMD) MODELISATION, OPTIMISATION, COMBINATOIRE ET ALGORITHME
MASTER (LMD) MODELISATION, OPTIMISATION, COMBINATOIRE ET ALGORITHME RÉSUMÉ DE LA FORMATION Type de diplôme : Master (LMD) Domaine ministériel : Sciences, Technologies, Santé Mention : INFORMATIQUE Spécialité
1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert
1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Fibonacci et les paquerettes
Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au
Feuille 1 : représentation d interactions stratégiques, connaissance commune
Université Paris-Dauphine, Departement MIDO. Théorie des jeux, L3, 2009/2010. Feuille 1 : représentation d interactions stratégiques, connaissance commune Exercice 1 ( Il y a deux joueurs. A la période
FONDEMENTS ÉPISTÉMIQUES DE CONCEPTS D ÉQUILIBRE EN THÉORIE DES JEUX
Lucie MÉNAGER EUREQua, université de Paris I Panthéon-Sorbonne Olivier TERCIEUX Paris-Jourdan Sciences économiques (PSE) et CNRS FONDEMENTS ÉPISTÉMIQUES DE CONCEPTS D ÉQUILIBRE EN THÉORIE DES JEUX Mots-clés
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Chapitre 3 : INFERENCE
Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage
Concilier mobilité et sécurité pour les postes nomades
Concilier mobilité et sécurité pour les postes nomades Gérard Péliks Responsable Marketing Solutions de Sécurité EADS TELECOM 01 34 60 88 82 [email protected] Pouvoir utiliser son poste de
Nathalie Bulle (1998), Compte-rendu de Rainer Hegselmann, Ulrich Mueller, Klaus G. Troitzsch (eds.).- Modelling and simulation in the social sciences
Nathalie Bulle (1998), Compte-rendu de Rainer Hegselmann, Ulrich Mueller, Klaus G. Troitzsch (eds.).- Modelling and simulation in the social sciences from the philosophy of science point of view. - Dordrecht/
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
Glossaire des nombres
Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour
Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck)
Décision Markovienne appliquée à un jeu de stop ou encore : Pickomino (Heckmeck Am Bratwurmeck) Stéphane Cardon Nathalie Chetcuti-Sperandio Fabien Delorme Sylvain agrue CRI - Université d Artois {cardon,chetcuti,delorme,lagrue}@cril.univ-artois.fr
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Informatique et mathématiques
Informatique Discipline qui traite de tous les aspects, tant théoriques que pratiques, reliés à la conception, à la programmation, au fonctionnement et à l utilisation des ordinateurs. Algorithmique Étude
PROBABILITÉS CONDITIONNELLES
PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Voilà en effet le genre de situations classiques et très inconfortables dans lequel le joueur de poker se retrouve bien souvent.
Les 50 meilleurs mains du Texas Hold'em Ce guide vous est offert par Bet-poker.info et Live Poker Magazine Vous avez intégré les règles du Texas Hold em exposés dans notre premier numéro, parfait. Passons
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
FaceBook aime les Maths!
FaceBook aime les Maths! Michel Rigo http://www.discmath.ulg.ac.be/ http://orbi.ulg.ac.be/ Réseaux Visualizing my Twitter Network by number of followers. Michael Atkisson http://woknowing.wordpress.com/
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice
Securitoo Mobile guide d installation
Securitoo Mobile guide d installation v12.11 Toutes les marques commerciales citées dans ce document sont la propriété exclusive de leurs détenteurs respectifs. Copyright 2012 NordNet S.A. objectif Le
COORDINATION NON COOPÉRATIVE: MÉTHODES D ENCHÈRES
COORDINATION NON COOPÉRATIVE: MÉTHODES D ENCHÈRES Cours 6c Principe Protocole centralisé, un commissaire-priseur/vendeur (auctioneer) et plusieurs enchérisseurs/acheteurs (bidders) Le commissaire-priseur
Sécurité de l'information
Sécurité de l'information Sylvain Duquesne Université Rennes 1, laboratoire de Mathématiques 24 novembre 2010 Les Rendez-Vous Mathématiques de l'irem S. Duquesne (Université Rennes 1) Sécurité de l'information
Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot
Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos [email protected]
Le nombre d or et Fibonacci
Août 2004, Bordeaux Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole
La pratique des décisions dans les affaires
Association Française Edwards Deming Une philosophie de l action pour le XXIème siècle Conférence annuelle, Paris, 8 juin 1999 Jean-Marie Gogue, Président de l AFED La pratique des décisions dans les affaires
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples
Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Franck LESIEUR Mathématiques et Applications, Physique Mathématique d Orléans UMR 6628 - BP 6759 45067 ORLEANS CEDEX 2 - FRANCE e-mail
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Initiation à l algorithmique
Informatique S1 Initiation à l algorithmique procédures et fonctions 2. Appel d une fonction Jacques TISSEAU Ecole Nationale d Ingénieurs de Brest Technopôle Brest-Iroise CS 73862-29238 Brest cedex 3 -
MABioVis. Bio-informatique et la
MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID
Cryptographie et fonctions à sens unique
Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech [email protected] Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
Conception et Développement d un moteur d intelligence artificielle pour un jeu d échecs multiplateformes
MEMOIRE DE FIN D ETUDES MASTER D INFORMATIQUE Conception et Développement d un moteur d intelligence artificielle pour un jeu d échecs multiplateformes Étudiant Superviseurs : HOANG Duc Viet : HO Tuong
PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?
PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS? Pierre Baumann, Michel Émery Résumé : Comment une propriété évidente visuellement en dimensions deux et trois s étend-elle aux autres dimensions? Voici une
L utilisation d un réseau de neurones pour optimiser la gestion d un firewall
L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans
Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)
CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène.
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
Une forme générale de la conjecture abc
Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
III- Raisonnement par récurrence
III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,
INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies
INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH
Cryptographie. Cours 3/8 - Chiffrement asymétrique
Cryptographie Cours 3/8 - Chiffrement asymétrique Plan du cours Différents types de cryptographie Cryptographie à clé publique Motivation Applications, caractéristiques Exemples: ElGamal, RSA Faiblesses,
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Deuxième partie es jeux non-coopératifs avec information complète 3. É quilibre de Nash (1951) 4. D ynamique et rétroduction 5.
Deuxième partie Les jeux non-coopératifs avec information complète 3. Équilibre de Nash (1951) 35 4. Dynamique et rétroduction 61 5. Jeux répétés 85 3. Équilibre de Nash (1951) John Nash a généralisé
La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal
La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
La persistance des nombres
regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...
Bureau N301 (Nautile) [email protected]
Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) [email protected] Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS
Le calcul formel dans l enseignement des mathématiques
Le calcul formel dans l enseignement des mathématiques Michel Mizony Lille, Avril 2005 [email protected] 1 Résumé Il existe deux sortes de logiciels de calcul symbolique qui bousculent nos pratiques
CURRICULUM VITAE. Joseph ABDOU
CURRICULUM VITAE Joseph ABDOU Section du CNU 26 Nationalité française Adresse professionnelle: Centre d Economie de la Sorbonne Université de Paris 1, CNRS 106-112 boulevard de l'hôpital 75647 Paris Cedex
Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/
Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes
- un jeu de K cartes représentées par des nombres C 1, C 2 à C K avec K entier strictement
- 0 - - 1 - Domaine technique : Lorsque des personnes jouent aux cartes, ils ont habituellement recours à un tas de cartes mélangées, un joueur tire une carte dans le tas, il ne la voit pas, mais il sait
Temps forts départementaux. Le calcul au cycle 2 Technique opératoire La soustraction
Temps forts départementaux Le calcul au cycle 2 Technique opératoire La soustraction Calcul au cycle 2 La soustraction fait partie du champ opératoire additif D un point de vue strictement mathématique,
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
Algorithmes récursifs
Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément
