PGCD, Solides. Exercice 1 Le parc "d'ani-math-ion" vous accueille dans une entréebilleterie

Dimension: px
Commencer à balayer dès la page:

Download "PGCD, Solides. Exercice 1 Le parc "d'ani-math-ion" vous accueille dans une entréebilleterie"

Transcription

1 PGCD, Solides Exercice 1 Le parc "d'ani-math-ion" vous accueille dans une entréebilleterie : C'est un pavé droit à base carée surmontée d'une coupole semisphèrique, représenté ci-dessous. Ouvert depuis quelques années, abîmé par les intempéries, ce bâtiment doit être repeint. Toutes les surfaces extérieures sont repeintes, c'est-à-dire : les 4 faces latérales du pavé droit ; la partie plane du toit (parties grisées sur la figure) ; la coupole semi-sphèrique. 1. Sachant que les ouvertures (portes et fenêtres, non représentées sur la figure) occupent une surface de 18 m², montrer que l'aire totale des surfaces à peindre est d'environ 168 m². Aire totale des surfaces à peindre = Aire des 4 faces latérales du pavé + Aire de la partie grisée + Aire de la coupole Aire des ouvertures = 4 3, π 3,5² π 3,5² 18 = ,25π + 24,5π 18 = ,25 π 167,48 m² ce qui représente bien une surface à peindre d'environ 168 m². 2. Ci-dessous se trouve la facture correspondant aux travaux de peinture. Compléter cette facture à l'aide des informations fournies ci-dessous : - Un pot de 10 L de peinture permet de couvrir une surface de 40 m² ; - Le coût d'un pot de 10 L de peinture est de 400 ; - Un ouvrier peint une surface de 42 m² à l'heure. Nombre de pots nécessaires pour couvrir une surface d'environ 168 m² : = 4,2. Donc : 5 pots sont nécessaires. Ce qui coûte : = Heures de main d'oeuvre pour peindre environ 168 m² : = 4 heures. Ce qui revient à 4 35 = 140. Le total HT s'élève à : = La TVA représente 19,6 % du total HT, soit : 0, = 909,44. Le TOTAL TTC s'élève donc à : ,44 = 5 549,44.

2 Exercice 2 Un sculpteur fabrique un "umete" en bois (récipient) ayant la forme d'une demi-sphère de rayon 15 cm (l'épaisseur du umete est supposée négligeable). 1. Vérifier que la valeur exacte du volume du umete est égale à π cm³. Volume du umete = π π 15³ = = 2 250π cm³ Pourra-t-on verser dans ce umete 7 litres de lait de coco sans déborder? Justifier. 7 litres = 7 dm³ = cm³ Or le volume du umete représente environ cm³, il peut donc contenir 7 litres de lait de coco sans que cela ne déborde. Exercice 3 Un moule à muffins est constitué de 9 cavités. Toutes les cavités sont identiques. Chaque cavité a la forme d'un tronc de cône (cône coupé par un plan parallèle à la base) représenté ci-contre. Les dimensions sont indiquées sur la figure. 1. Montrer que le volume d'une cavité est d'environ 125 cm³. Volume d'une cavité = Volume Grand cône Volume Petit cône 5 cm = 1 3 π 3,75² 12 1 π 2,5² (12 4) 3 = 56,25π 50 3 π 124,35 cm³ ce qui représente bien environ 125 cm³. 2. Léa a préparé 1 litre de pâte. Elle veut remplir chaque cavité du moule aux 3/4 de son volume. A-t-elle suffisamment de pâte pour les 9 cavités du moule? Justifier la réponse. 1 litre représente 1 dm³ soit cm³. Or 9 cavités ont un volume d'environ cm³ soit environ cm³. Comme ils sont remplis aux ¾, la quantité de pâte nécessaire est d'environ 3/ cm³ soit environ 844 cm³. Comme > 844, Léa aura assez de pâte pour remplir ces 9 moules. Exercice 4 Heiata et Hiro ont choisi comme gâteau de mariage une pièce montée composée de 3 gâteaux cylindriques superposés, tous centrés sur l'axe (d) comme l'indique la figure ci-dessous. Les trois gâteaux cylindriques sont de même hauteur : 10 cm. Le plus grand gâteau cylindrique, le n 1, a pour rayon 30 cm. Le rayon du gâteau n 2 est égal aux 2/3 de celui du gâteau n 1. Le rayon du gâteau n 3 est égal aux 3/4 de celui du gâteau n Montrer que le rayon du gâteau n 2 est de 20 cm.

3 Il est écrit que le rayon du gâteau n 2 est égal aux 2/3 de celui du gâteau n 1 donc son rayon est : 2 30 = Le rayon du gâteau n 2 est donc bien de 20 cm. 2. Calculer le rayon du gâteau n 3. Il est écrit que le rayon du gâteau n 3 est égal aux ¾ de celui du gâteau n 2 donc son rayon est : 3 4 Le rayon du gâteau n 3 est donc de 15 cm. 20 = Montrer que le volume total exact de la pièce montée est égal à π cm³. Volume de la pièce montée = Volume du gâteau n 1 + Volume du gâteau n 2 + Volume du gâteau n 3 = π 30² 10 + π 20² 10 + π 15² 10 = π π π = π cm³ 4. Quelle fraction du volume total représente le volume du gâteau n 2? Donner le résultat sous forme de fraction irréductible. Volume du gâteau n 2 Fraction du volume total représenté par le volume du gâteau n 2 = Volume total du gâteau = 4000 π 15250π = Le volume du gâteau n 2 représente les 16/61è du volume total du gâteau. Exercice 5 La pyramide du Louvre est une œuvre de l'architecte Leoh Ming Pei. Il s'agit d'une pyramide régulière dont la base est un carré de côté 35,50 mètres et dont les quatre arêtes qui partent du sommet mesurent toutes 33,14 mètres. 1. La pyramide du Louvre est schématisée comme ci-contre. Calculer la hauteur réelle de la pyramide du Louvre. On arrondira le résultat au centimètre. On souhaite appliquer le théorème de Pythagore dans le triangle SHB rectangle en H mais on ne connaît par HB. On va donc d'abord appliquer ce théorème dans HAB rectangle en H (en effet, ABCD étant carré, ses diagonales sont de même longueur et sont perpendiculaires). On obtient : AB² = AH² + BH² = 2HB² (puisque AH = BH) Ainsi 35,5² = 2 HB² c'est-à-dire HB² = 1 35,5² = 630, On peut maintenant appliquer le théorème de Pythagore dans SHB rectangle en H : SB² = HB² + SH² 33,14² = 630,125 + SH² D'où SH² = 33,14² 630,125 = 468,1346 SH = 468, ,64 m au centimètre près. 2. On veut tracer le patron de cette pyramide à l'échelle 1/800. a. Calculer les dimensions nécessaires de ce patron en les arrondissant au millimètre. L'échelle étant de 1/800, les dimensions du patron sont celles de la réalité divisées par 800. Ainsi le côté de la base carrée du patron mesure : 35, ,044 m soit 4,4 cm. et les arêtes du patron mesurent 33, ,041 m soit 4,1 cm.

4 b. Construire le patron en faisant apparaître les traits de construction. On attend une précision de tracé au mm. Exercice 6 Un aquarium a la forme d'une sphère de 10 cm de rayon, coupée en sa partie haute : c'est une "calotte sphérique". La hauteur totale de l'aquarium est 18 cm. 1. Le volume d'une calotte sphérique est donné par la formule : V = π h² (3r h) 3 où r est le rayon de la sphère et h est la hauteur de la calotte sphérique. a. Prouver que la valeur exacte du volume en cm³ de l'aquarium est π. V = π 3 h² (3r h) = π 3 18² ( ) = π (30 18) = π = 3888 π 3 = π Le volume de la calotte sphérique est bien de π cm³. b. Donner la valeur approchée du volume de l'aquarium au litre près. V = π cm³ = 1,296 π L 4 L au litre près. 2. On remplit cet aquarium à ras bord, puis on verse la totalité de son contenu dans un autre aquarium parallélépipédique. La base du nouvel aquarium est un rectangle de 15 cm par 20 cm. Déterminer la hauteur atteinte par l'eau (on arrondira au cm). Les dimensions du "parallélépipède d'eau" de hauteur inconnue h sont h cm, 15 cm et 20 cm. Son volume est donc h cm³ et représente environ 4 Litres d'eau, c'est-à-dire cm³. 300 h = D'où h = cm. Dans ce nouvel aquarium, l'eau atteindra environ 13 cm de haut.

5 Exercice 6 1. Calculer le PGCD de 405 et 315. Préciser la méthode utilisée et indiquer les calculs. On calcule le PGCD de 405 et 315 par l'algorithme d'euclide. 405 = = = Le dernier reste non nul donne le PGCD de 405 et 315. Donc PGCD(405 ; 315) = Dans les bassins d'eau de mer filtrée d'une ferme aquacole de bénitiers (coquillage) destinés à l'aquariophilie, on compte 9 bacs contenant chacun 35 bénitiers de 12,5 cm et 15 bacs contenant chacun 27 bénitiers de 17,5 cm. L'exploitant souhaite répartir la totalité des bénitiers en des lots de même composition : Par lot, même nombre de bénitiers de 12,5 cm et même nombre de bénitiers de 17,5 cm. a) Quel est le plus grand nombre de lots qu'il pourra réaliser? Justifier la réponse. On veut répartir les 315 (9 35) bénitiers de 12,5 cm et les 405 (15 27) bénitiers de 17,5 cm dans des lots de même composition et on veut en réaliser le plus grand nombre possible. Cela revient donc à chercher le PGCD de 315 et 405 qui, d'après la question 1. est égal à 45. On peut donc réaliser au maximum 45 lots identiques. b) Quelle sera la composition de chaque lot? = = 7 Chaque lot contient donc 9 bénitiers de 17,5 cm et 7 bénitiers de 12,5 cm. Exercice 8 1. Justifier sans calcul que 850 et 714 ne sont pas premiers entre eux. 850 et 714 sont tous les deux pairs et on donc un diviseur commun autre que 1 (en l'occurence 2). Par conséquent, PGCD (850 ; 714) n'est pas égal à 1 et 850 et 714 ne sont donc pas premiers entre eux. 2. a. Déterminer par la méthode de votre choix, en détaillant les différentes étapes, le PGCD de 850 et 714. On va utiliser l'algorithme d'euclide pour rechercher PGCD (850 ; 714). Reste de la Plus grand Plus petit division nombre nombre euclidienne Conclusion PGCD (850 ; 714) = 34 b. En déduire la fraction irréductible égale à Pour rendre irréductible la fraction 850, il suffit de diviser son numérateur et son dénominateur par le plus 714 grand diviseur commun à 850 et 714, à savoir 34 d'après la question 2a = et est donc la fraction irréductible recherchée Exercice 9 Un ouvrier dispose de plaques de métal de 110 cm de longueur et de 88 cm de largeur. Il a reçu la consigne suivante : "Découpe dans ces plaques des carrés tous identiques, dont les longueurs des côtés sont un nombre entier de cm, et de façon à ne pas avoir de perte". 1. Peut-il choisir de découper des plaques de 10 cm de côté? Justifier votre réponse. S'il découpe des plaques de 10 cm de côté, cela ne conviendra pas car = 8,8 cm et 8,8 n'est pas un

6 nombre entier de centimètres. 2. Peut-il choisir de découper des plaques de 11 cm de côté? Justifier votre réponse. Par contre, en découpant des plaques de 11 cm de côté, les carrés auront un nombre entier de centimètres : = 10 carrés en longueur et = 8 carrés en largeur. 3. On lui impose désormais de découper des carrés les plus grands possibles. a) Quelle sera la longueur du côté d'un carré? S'il veut maintenant découper des carrés (commun) les plus grands possibles (Plus grand) de façon à ne pas avoir de perte (Diviseur), il va devoir chercher le PGCD de 110 et 88. On utilise l'algorithme d'euclide : Plus grand nombre Plus petit nombre Reste de la division euclidienne Conclusion : PGCD (110 ; 88) = 22. Les carrés les plus grands possibles à découper dans ces plaques ont un côté de 22 cm. b) Combien y aura-t-il de carrés par plaque? Avec un carré de 22 cm de côté, il y aura = 5 carrés sur la longueur et = 4 carrés sur la largeur. Ce qui représente 5 4 = 20 carrés par plaque.

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Thème 17: Optimisation

Thème 17: Optimisation OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro. Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.

Plus en détail

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux

Plus en détail

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales.

Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales. Révision mars 2015 1. Mario part de sa maison. Pour se rendre au restaurant, sa famille doit conduire 11,5 km vers le nord et ensuite ils doivent tourner vers l ouest pendant 5,4km. Calcule la distance

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.

Plus en détail

Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4

Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4 Valérie CLISSON Arnaud DUVAL Tests de logique Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4 CHAPITRE 1 Mise en bouche Les exemples qui suivent constituent un panorama de l ensemble des tests de logique habituellement

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Photoshop Séquence 4 - Créer une image de taille personnalisée taille

Photoshop Séquence 4 - Créer une image de taille personnalisée taille cterrier.com 1/5 20/09/2006 Photoshop Séquence 4 - Créer une image de taille personnalisée taille Auteur : C. Terrier ; mailto:[email protected] ; http://www.cterrier.com Utilisation : Reproduction

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005 UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question

Plus en détail

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013 Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane

Plus en détail

Mathématiques et petites voitures

Mathématiques et petites voitures Mathématiques et petites voitures Thomas Lefebvre 10 avril 2015 Résumé Ce document présente diérentes applications des mathématiques dans le domaine du slot-racing. Table des matières 1 Périmètre et circuit

Plus en détail

PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE PROPORTIONNALITÉ LES ÉCHELLES 0 000 000 Dossier n 2 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C.D.R. AGRIMEDIA

Plus en détail

Les pourcentages. Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t.

Les pourcentages. Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t. Les pourcentages I Définition : Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t. Exemple : Ecrire sous forme décimale les taux de

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

Plan académique de formation. Le socle commun : formation, évaluation, validation

Plan académique de formation. Le socle commun : formation, évaluation, validation ACADÉMIE DE BORDEAUX Plan académique de formation Le socle commun : formation, évaluation, validation Nous devons valider les sept compétences du palier 3 du Livret personnel de compétences (LPC). Nous

Plus en détail

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE

Plus en détail

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement. «Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

AUTOUR DU CHEVAL. Alain Gaymard

AUTOUR DU CHEVAL. Alain Gaymard AUTOUR DU CHEVAL Alain Gaymard PRESENTATION DU TRAVAIL Avec nos produits de Déco Photo à accrocher au mur ou à poser sur un meuble, découvrez une autre façon de personnaliser votre intérieur. Tirés sur

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

Exercice n o 54 : Tracer le graphique d une fonction

Exercice n o 54 : Tracer le graphique d une fonction Eercice n o 54 : Tracer le graphique d une fonction G- Pour chaque fonction donnée dans les problèmes à 6 : a) Dessine le graphique correspondant. b) Indique le domaine et l'image. c) Évalue f(0). d) Trouve

Plus en détail

Trois personnes mangent dans un restaurant. Le serveur

Trois personnes mangent dans un restaurant. Le serveur 29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte

Plus en détail

Définition : On appelle : rapport de deux nombres, "a" et "b" le quotient exact (résultat de la division) de ces deux nombres :

Définition : On appelle : rapport de deux nombres, a et b le quotient exact (résultat de la division) de ces deux nombres : A) LES RAPPORTS Définition : On appelle : rapport de deux nombres, "a" et "b" le quotient exact (résultat de la division) de ces deux nombres : a b = q ; 36 / 15 = 2,4 ; 8 10 = 0,8 ; 10 = 50 / 5 ; 12,5

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Brevet 2007 L intégrale d avril 2007 à mars 2008

Brevet 2007 L intégrale d avril 2007 à mars 2008 Brevet 2007 L intégrale d avril 2007 à mars 2008 Pondichéry avril 2007................................................. 3 Amérique du Nord juin 2007......................................... 7 Antilles

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une

Plus en détail

LE PROJOPHONE de Fresnel

LE PROJOPHONE de Fresnel LE PROJOPHONE de Fresnel Le principe général est assez simple : l'image de l écran est agrandie et projetée à l'aide de la lentille optique. Nous allons commencer par créer un élément dans lequel le téléphone

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES ACADÉMIE DE RENNES SESSION 2006 CLASSE DE PREMIERE DURÉE : 4 heures Ce sujet s adresse à tous les élèves de première quelle que soit leur série. Il comporte cinq

Plus en détail

108y= 1 où x et y sont des entiers

108y= 1 où x et y sont des entiers Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ] Les moments de force Les submersibles Mir peuvent plonger à 6 000 mètres, rester en immersion une vingtaine d heures et abriter 3 personnes (le pilote et deux observateurs), dans une sphère pressurisée

Plus en détail

DPGF MARCHE LOT 120 - PEINTURE

DPGF MARCHE LOT 120 - PEINTURE GENERALITES Tous les ouvrages devront être principalement conformes aux exigences en vigueur : des textes législatifs et règlementaires, DTU, normes, règles techniques, traitant de la construction et tout

Plus en détail

COMMENT CONSTRUIRE UN CRIB A MAÏS?

COMMENT CONSTRUIRE UN CRIB A MAÏS? COMMENT CONSTRUIRE UN CRIB A MAÏS? Par Philippe et Marie-Noëlle LENOIR Un couple du Volontaires du Progrès qui travaille à GALIM Département des Bamboutos, Province de l Ouest, nous adresse cette fiche

Plus en détail

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) : Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?

Plus en détail

ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME. 3 x + 5 = 11. x + 4 = 0-5 + 3 x = 4 Mais qui sont ces inconnues?

ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME. 3 x + 5 = 11. x + 4 = 0-5 + 3 x = 4 Mais qui sont ces inconnues? ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME Utilisation des équations du er degré à une inconnue x + 5 = - z = x + = 0-5 + x = Mais qui sont ces inconnues? Dossier n Juin 005 Tous droits réservés

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

Préparation à l épreuve de Mathématiques du concours d entrée en première année d IUFM. Responsable : Nathalie Villa villa@univ-tlse2

Préparation à l épreuve de Mathématiques du concours d entrée en première année d IUFM. Responsable : Nathalie Villa villa@univ-tlse2 Préparation à l épreuve de Mathématiques du concours d entrée en première année d IUFM Responsable : Nathalie Villa villa@univ-tlse2 Arithmétique et numération : Exercices Nombres entiers naturels et

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Cours de tracés de Charpente, Le TRAIT

Cours de tracés de Charpente, Le TRAIT Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Les problèmes de la finale du 21éme RMT

Les problèmes de la finale du 21éme RMT 21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x

Plus en détail

Ecrire Savoir rédiger une réponse claire à une question

Ecrire Savoir rédiger une réponse claire à une question Champ Compétence Ecrire Savoir rédiger une réponse claire à une question Séance 1 : prise de conscience de la notion de réponse claire Etape 1 Proposer un document comportant des réponses "brutes", sans

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES) EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

_x UÉÅuçå. _x ÜtÄÄçx Åtà{ Åtà Öâx wx ZtÇzxá xà wx ÄËtvtw Å x wx `ÉÇàÑxÄÄ xü. Annales du 21 e Bombyx LIVRE 1. Quarts de finale 8 décembre 2009 LIVRE 2

_x UÉÅuçå. _x ÜtÄÄçx Åtà{ Åtà Öâx wx ZtÇzxá xà wx ÄËtvtw Å x wx `ÉÇàÑxÄÄ xü. Annales du 21 e Bombyx LIVRE 1. Quarts de finale 8 décembre 2009 LIVRE 2 _x UÉÅuçå Association Rallye Bombyx - Place Jules Ferry - 34190 GANGES - 04 67 73 81 01 - [email protected] - site http://rallye-bombyx.asso-web.com LIVRE 1 _x ÜtÄÄçx Åtà{ Åtà Öâx wx ZtÇzxá xà wx

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Situations d apprentissage. Mat-2101-3

Situations d apprentissage. Mat-2101-3 Situations d apprentissage Mat-2101-3 Un vendredi au chalet (Activités 1, 2 et 3) Le taxi (Activités 1 et 2) Un entrepôt «sans dessus dessous» (Activités 1, 2, 3 et 4) France Dugal Diane Garneau Commission

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

INTRO. Comment appliquer une peinture en façade? Caisse à outils. Matériaux nécessaires

INTRO. Comment appliquer une peinture en façade? Caisse à outils. Matériaux nécessaires Comment appliquer une peinture en façade? NIVEAU DE DIFFICULTÉ DÉBUTANT Confirmé EXPERT Caisse à outils Une combinaison ou tenue de travail adaptée Une bâche Des gants et lunettes de protection Une bande

Plus en détail

Réseau d Éducation Prioritaire de Harnes. Défis-math 2001-2009. Énoncés

Réseau d Éducation Prioritaire de Harnes. Défis-math 2001-2009. Énoncés Réseau d Éducation Prioritaire de Harnes Défis-math 2001-2009 Énoncés Défi-math 2001 Défi-math 2001 Défi n 1 On ne peut se déplacer dans ce labyrinthe qu en montant vers une case contenant un nombre plus

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

La fabrique de roulottes. lafabriquederoulottes.com FABRICATION FRANÇAISE. Tél : 04 67 67 28 48 [email protected]. rêve.

La fabrique de roulottes. lafabriquederoulottes.com FABRICATION FRANÇAISE. Tél : 04 67 67 28 48 info@lafabriquederoulottes.com. rêve. lafabriquederoulottes.com lafabriquederoulottes.com FABRICATION FRANÇAISE en Offrez du rêve Tél : 04 67 67 28 48 [email protected] Vu sur FABRICATION FRANÇAISE en Nos roulottes respectent

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

- Tente de réception louée complète (structure, bâches de toit et cotés, piquets)

- Tente de réception louée complète (structure, bâches de toit et cotés, piquets) Location tente de réception 5x10 état neuf gris clair et blanc La tente de réception est conçue pour une utilisation lors des fêtes et autres événements est, en tant que tels, uniquement destiné à un montage

Plus en détail

Introduction à la théorie des graphes. Solutions des exercices

Introduction à la théorie des graphes. Solutions des exercices CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail