AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f
|
|
|
- Jean-Charles Garon
- il y a 10 ans
- Total affichages :
Transcription
1 JFMS Toulouse 24, 25, 26 mars 2010 AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f Benjamin Echard Nicolas Gayton Maurice Lemaire LaMI Laboratoire de Mécanique et Ingénieries
2 Introduction Constat de départ : On a un modèle stochastique avec une fonction de performance G dont on cherche à prédire la probabilité de défaillance P f à partir d un plan d expériences de points évalués sur G : (X,Y) ( ) (1) ( p) ( i) n (1) ( p) ( i) X = x x, x G Y = ( y y ), y G est considéré comme ayant un coût de calcul important et Monte Carlo n est donc pas applicable. Objectifs : On cherche à obtenir P f en limitant le plus possible le nombre d appels à G (et donc la taille du plan d expériences) : introduction des métamodèles On choisit judicieusement le point suivant à évaluer sur G et à ajouter au plan d expériences pour améliorer au maximum la prédiction. 2
3 Principes du krigeage Issu de la géostatistique Krige & Matheron (1960 s) Principes : G(x) est vue comme la réalisation d un processus gaussien g(x) On cherche à identifier g(x) et la trajectoire qui passe par les points du plan d expériences. Prédiction Ĝ(x) du résultat de G(x) à partir d un BLUP (Meilleur estimateur linéaire sans biais) Intérêt du krigeage par rapport aux autres métamodèles : Interpolateur exact : G ˆ ( x) = G( x), x X Mesure de l incertitude de la prédiction Ĝ(x) par la variance de krigeage: σ Ĝ2 (x) Méthode par apprentissage : A l itération k, on cherche le point x* qui, si on l évaluait sur G pour le rajouter au plan d expériences, améliorerait le plus, à l itération k+1, la réponse du métamodèle. 3
4 Théorie du krigeage G(x) est la réalisation à identifier d un processus gaussien g(x) à identifier Bref aperçu de la théorie du krigeage : 1. Définition du Processus Gaussien : Soit g(x) un processus gaussien modélisé par : g( x) = F( x, β) + z( x) T F(x,β) : Modèle de régression : F ( x, β) = f( x) β Ici, le krigeage ordinaire est utilisé : F( x, β) = β, β z(x) : Processus gaussien de moyenne nulle et de covariance : n 2 2 z θ θ θi i i i= 1 cov( z( x), z( w)) = σ R ( x, w) avec R ( x, w) = exp ( x w) θ, β, σ z sont estimés par maximum de vraisemblance 4
5 Théorie du krigeage 2. Prédiction Par le BLUP, Best (minimise l erreur quadratique moyenne ou variance de krigeage σ Ĝ2 (x)) Linear Unbiased Predictor : Gˆ ( x ) r ( x ) R Y σ T 1 = β + ( β1p ) ( ˆ ) σz ( 1p 1p) ( ) x x x x x r r T T 1 T 1 ˆ ( ) = E G( ) G( ) = 1 + u( ) R u( ) R G 1 et u( ) p R ( ) 1 () i ( j) (1) ( p) ( R ) ( R R ) T θ x x r x θ x x θ x x avec les corrélations: R = (, ) ; ( ) = (, ) (, ) ; le vecteur 1 rempli de 1 et de taille p; x p = 1 r x i, j= 1 p 5
6 Méthode AK-MCS Objectifs : On cherche à obtenir P f en limitant le plus possible le nombre d appels à G On choisit judicieusement le point suivant à évaluer sur G pour améliorer au maximum la prédiction. Proposition : AK-MCS, an Active learning reliability method combining Kriging and Monte Carlo Simulation Principes : Réaliser une simulation Monte Carlo sans évaluer tous les points de la population sur G Prédiction de tous les points d une population de Monte Carlo à partir de quelques uns choisis judicieusement pour être évalués sur G (plan d expériences de petite taille) A chaque itération, on recherche le point améliorant le plus le métamodèle et on l ajoute au plan d expériences (en l évaluant sur G). 6
7 Méthode AK-MCS Explication de AK-MCS : = + + { x1 x2} Gx (, x) 0.5x 1.5x , N(0,1) G(x) G(x)=0 7
8 Méthode AK-MCS S 1) Génération d une population S : n MC points N call = 0 2) Plan d expériences initial : N 1 points de S N call = 10 8
9 Méthode AK-MCS Plan d expériences (X,Y) 3) Définition du modèle de krigeage DACE σ z, β, θ Ĝ(x)=0 Ĝ(x)>0 G(x) G(x)=0 4) Prédiction Ĝ et σ Ĝ2 des points de S 5) Estimation de P f avec Ĝ(x), x S Ĝ(x)<0 Pˆ f n = n Gˆ 0 MC 9
10 Méthode AK-MCS 6) Calcul de la fonction d apprentissage U(x), x S Chercher le point de S avec la plus grande chance de changer de signe de prédiction D après le krigeage : ( ˆ ) G ˆ N G ˆ( x ), σ ( ) G x G ˆ ( x ) U ( x ) σ ( ) 0 G ˆ x = Gˆ ( x ) U ( x) = σ x ( ) G ˆ Probabilité que le signe de Ĝ(x) change Le meilleur point x * de S à ajouter au plan d expériences a la plus petite valeur de U 10
11 Méthode AK-MCS 7) Condition d arrêt de l apprentissage Rappel : le meilleur point x * de S à ajouter au sens de U est min( U( x* )), x* S Condition d arrêt : min( U( x)) 2, x S Si la condition n est pas satisfaite, on évalue G(x*) et on l ajoute au plan d expériences. On repart de l étape 3 pour définir le modèle mis à jour de krigeage à partir du nouveau plan d expériences. Ĝ(x)=0 Ĝ(x)>0 min(u(x)) G(x)=0 G(x) Ĝ(x)<0 11
12 Méthode AK-MCS 7) Condition d arrêt de l apprentissage Rappel : le meilleur point x * de S à ajouter au sens de U est min( U( x* )), x* S Condition d arrêt : min( U( x)) 2, x S Si la condition n est pas satisfaite, on évalue G(x*) et on l ajoute au plan d expériences. On repart de l étape 3 pour définir le modèle mis à jour de krigeage à partir du nouveau plan d expériences. N call = 11 12
13 Méthode AK-MCS 7) Condition d arrêt de l apprentissage Rappel : le meilleur point x * de S à ajouter au sens de U est min( U( x* )), x* S Condition d arrêt : min( U( x)) 2, x S Si la condition est satisfaite, on arrête d enrichir le plan d expériences et on vérifie que le COV de P f est suffisamment bas (ici 5%). COV( Pˆ ) = f 1 Pˆ Pˆ n f f MC P f vs N call N call = 18 13
14 Méthode AK-MCS 1) Génération d une population S : n MC points G évaluation 2) Plan d expériences initial : N 1 points de S N i+1 =N i +1 - Evaluation sur G du meilleur point à ajouter vis-à-vis de U -Ajout du point au DoE 3) Définition du modèle de krigeage 4) Prédiction Ĝ(x) et σ Ĝ2 (x) de la population S 5) Estimation de P f avec le signe de Ĝ(x) 6) Calcul de la fonction d apprentissage U(x) Méthode d apprentissage non non min(u(x))>2 oui COV(P f )<5% oui MàJ population Fin 14
15 Applications AK-MCS Minimum de 4 fonctions { x x }, N(0,1) 1 2 G ( x1 x2) /10 ( x1+ x2)/ 2;( x1 x2) + 6/ 2; = min 3 ( 2 + x1 x2 ) /10 + ( x1+ x2 )/ 2;( x2 x1 ) + 6/ 2 Résultats Méthode N call P f (covp f ) β Ĝ(x)<0 Ĝ(x)>0 MCS (1.5%) 2.62 AK-MCS Ĝ(x)=0 Prédiction précise seulement pour les points de S G(x)=0 15
16 Applications AK-MCS Minimum de 4 fonctions { x x }, N(0,1) 1 2 G ( x1 x2) /10 ( x1+ x2)/ 2;( x1 x2) + 6/ 2; = min 3 ( 2 + x1 x2 ) /10 + ( x1+ x2 )/ 2;( x2 x1 ) + 6/ 2 Résultats G(x)=0 Normalised P f Number of calls to G 4 Ĝ(x)=0 P. Exp initial Points ajoutés 16
17 Applications AK-MCS Fonction de Rastrigin modifiée { x x }, N(0,1) ( i π i ) Gx ( ) = 10 x 5cos(2 x) i= 1 Résultats G(x)=0 Ĝ(x)>0 Méthode N call P f (COV(P f )) β MCS (1.5%) 1.45 AK-MCS Krigeage très souple et capable de travailler en non-connexité Ĝ(x)<0 Ĝ(x)=0 17
18 Applications AK-MCS Fonction de Rastrigin modifiée { x x }, N(0,1) ( i π i ) Gx ( ) = 10 x 5cos(2 x) i= 1 Résultats P f normée N call P. Exp initial Points ajoutés 18
19 Applications AK-MCS MEF Cornière et critère de Dang Van G = 1 Γ( Feq, L, e1, e2, R) Variable P.D.F. Moy. COV F eq (N) Normal L (mm) Normal e 1 (mm) Normal e 2 (mm) Normal R (mm) Normal Résultats Méthode N call P f β n MC COV(P f ) AK-MCS % P f Fonction de performance implicite N call 19
20 Conclusion Méthode performante : Mais : Utilisation du krigeage pour classifier une population de points générée par Monte Carlo (on se concentre seulement sur les points avec une densité suffisante pour avoir un effet sur P f ) Modèles fortement non linéaires, non convexes, non connexes Krigeage est très souple Trèsfaibles probabilités (trop de prédictions par itération) Améliorations possibles : Diminution du nombre de points estimés à chaque itération (les points dont les signes sont sûrs, sont retirés, par ex : U(x)>5 durant 5 itérations consécutives) AK-IS, AK-SUBSET, 20
21 Merci pour votre attention Questions? JFMS Toulouse 24, 25, 26 mars 2010
K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau
Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des
$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU
$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES [email protected] 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d
Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste
Intérêt du découpage en sous-bandes pour l analyse spectrale
Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,
Température corporelle d un castor (une petite introduction aux séries temporelles)
Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature
Modélisation et simulation
Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Application de la méthode de surface de réponse stochastique à l analyse de stabilité d un tunnel pressurisé
Application de la méthode de surface de réponse stochastique à l analyse de stabilité d un tunnel pressurisé Guilhem Mollon 1, Daniel Dias 2, Abdul-Hamid Soubra 3 1 Doctorant, Laboratoire de Génie Civil
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction
Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone...
Liste des notes techniques.................... xxi Liste des encadrés....................... xxiii Préface à l édition internationale.................. xxv Préface à l édition francophone..................
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Une comparaison de méthodes de discrimination des masses de véhicules automobiles
p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
de calibration Master 2: Calibration de modèles: présentation et simulation d
Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe
Etude des propriétés empiriques du lasso par simulations
Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est
4.2 Unités d enseignement du M1
88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter
Introduction au pricing d option en finance
Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos.
Master Mathématiques et Applications Spécialité : Ingénierie mathématique et modélisation Parcours : Mathématique et Informatique : Statistique, Signal, Santé (MI3S) 2015-2016 RÉSUMÉ DES COURS : (dernière
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Coup de Projecteur sur les Réseaux de Neurones
Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Why Software Projects Escalate: The Importance of Project Management Constructs
Why Software Projects Escalate: The Importance of Project Management Constructs Why Software Projects Escalate: The Importance of Project Management Constructs 1. Introduction 2. Concepts de la gestion
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH Boris Hejblum 1,2,3 & Rodolphe Thiébaut 1,2,3 1 Inserm, U897
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Marc Bocquet CEREA, École des Ponts ParisTech Université Paris-Est et INRIA
Construction optimale de réseaux de mesure: application à la surveillance des polluants aériens Notes de cours de l École Nationale Supérieure des Techniques Avancées ParisTech Révision 1.13 Marc Bocquet
Emploi du temps prévisionnel
1 Emploi du temps prévisionnel 1. Séances de cours et d exercices Nous aurons cours ensemble : tous les mercredis matins du 28 septembre au 7 décembre inclus, à l exception du mercredi 2 novembre, libéré
I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.
I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Optimisation des ressources des produits automobile première
EURIA EURo Optimisation produits automobile première Pauline PERROT promotion 2011 EURIA EURo 1 ère partie : contexte MMA (FFSA) MAAF (GEMA) SGAM : COVEA (AFA) GMF (GEMA) MMA : Plus 3 millions clients
Résumé des communications des Intervenants
Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit
Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation
Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Laurent Denis STATXPERT Journée technologique "Solutions de maintenance prévisionnelle adaptées à la production" FIGEAC,
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Utilisation du module «Geostatistical Analyst» d ARCVIEW dans le cadre de la qualité de l air
Etude n 10 Assistance en modélisation (Rapport 3/3) Utilisation du module «Geostatistical Analyst» d ARCVIEW dans le cadre de la qualité de l air Novembre 2004 Convention : 04000087 Giovanni CARDENAS Utilisation
MCMC et approximations en champ moyen pour les modèles de Markov
MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:
Processus aléatoires avec application en finance
Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678
Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées
PROJET MODELE DE TAUX
MASTER 272 INGENIERIE ECONOMIQUE ET FINANCIERE PROJET MODELE DE TAUX Pricing du taux d intérêt des caplets avec le modèle de taux G2++ Professeur : Christophe LUNVEN 29 Fevrier 2012 Taylan KUNAL - Dinh
CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle
CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers
Rupture et plasticité
Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements
Catalogue de formation
Enregistré sous le numéro : 11 91 012 9991 auprès du Commissaire de la République de la Région Ile de France et du Département de Paris, CADLM propose un ensemble de formation dont les programmes sont
Économétrie, causalité et analyse des politiques
Économétrie, causalité et analyse des politiques Jean-Marie Dufour Université de Montréal October 2006 This work was supported by the Canada Research Chair Program (Chair in Econometrics, Université de
Modélisation aléatoire en fiabilité des logiciels
collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans
Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans [email protected] Plan 1. Un peu de
Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected]
Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected] Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/
Théorie de l estimation et de la décision statistique
Théorie de l estimation et de la décision statistique Paul Honeine en collaboration avec Régis Lengellé Université de technologie de Troyes 2013-2014 Quelques références Decision and estimation theory
Le modèle de régression linéaire
Chapitre 2 Le modèle de régression linéaire 2.1 Introduction L économétrie traite de la construction de modèles. Le premier point de l analyse consiste à se poser la question : «Quel est le modèle?». Le
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes
Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire
CAPTEURS - CHAINES DE MESURES
CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,
Chp. 4. Minimisation d une fonction d une variable
Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie
Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061
Value at Risk 27 février & 13 mars 20061 CNAM Gréory Taillard CNAM Master Finance de marché et estion de capitaux 2 Value at Risk Biblioraphie Jorion, Philippe, «Value at Risk: The New Benchmark for Manain
Maîtriser les mutations
Maîtriser les mutations Avec UNE Supply chain AGILE La réflexion porte ses fruits www.cereza.fr TALAN Group Notre savoir-faire : maîtriser les mutations et en faire une force pour l entreprise Cereza,
Interception des signaux issus de communications MIMO
Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus
MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .
MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision
Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux
Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en
Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données
Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion [email protected],
Données longitudinales et modèles de survie
ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
Algèbre 40 Analyse 26 14 Stat. 1 - IES : Probabilités discrètes et calcul intégral 29,5 6 Stat. 2 - IES : Probabilités générales 54 8 UE1-02 M-E-IS
1er semestre UE1-01 E Algèbre 40 Analyse 26 14 Stat. 1 - IES : Probabilités discrètes et calcul intégral 29,5 6 Stat. 2 - IES : Probabilités générales 54 8 UE1-02 M-E-IS Introduction au système SAS 25,5
INF6304 Interfaces Intelligentes
INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie
Une plate-forme pour la quantification des incertitudes sous Matlab
UQLab Une plate-forme pour la quantification des incertitudes sous Matlab Bruno Sudret Stefano Marelli ETH Zürich, Institute of Structural Engineering Chair of Risk, Safety & Uncertainty Quantification
2 TABLE DES MATIÈRES. I.8.2 Exemple... 38
Table des matières I Séries chronologiques 3 I.1 Introduction................................... 3 I.1.1 Motivations et objectifs......................... 3 I.1.2 Exemples de séries temporelles.....................
Théorie des Jeux Et ses Applications
Théorie des Jeux Et ses Applications De la Guerre Froide au Poker Clément Sire Laboratoire de Physique Théorique CNRS & Université Paul Sabatier www.lpt.ups-tlse.fr Quelques Définitions de la Théorie des
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
Session 2 : Modèles de représentation de la connaissance Animateurs : C. Bacconnet, L. Pierrat
Programme prévisionnel des journées lundi 4 juin 9h30 10h 10h Accueil Ouverture de la conférence J. Baroth, D. Boissier Session 1 : Modèles de dégradation, inspection, maintenance Animateurs : L. Peyras,
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
Extraction d informations stratégiques par Analyse en Composantes Principales
Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 [email protected] 1 Introduction
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
RO04/TI07 - Optimisation non-linéaire
RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 I Motivations et notions fondamentales 4 I1 Motivations 5 I2 Formes quadratiques 13 I3 Rappels
Commande Prédictive des. Convertisseurs Statiques
Commande Prédictive des Convertisseurs Statiques 1 Classification des méthodes de commande pour les convertisseurs statiques Commande des convertisseurs Hystérésis MLI Cde Linéaire Fuzzy Logic Sliding
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION
TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun
Trafic aérien de passagers au Canada : une analyse exploratoire du modèle origine-destination de Transports Canada pour le marché intérieur
Trafic aérien de passagers au Canada : une analyse exploratoire du modèle origine-destination de Transports Canada pour le marché intérieur Ismaëlh Cissé Directeur : Carlos Ordás Criado Problématique Transports
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Mémoire d actuariat - promotion 2010. complexité et limites du modèle actuariel, le rôle majeur des comportements humains.
Mémoire d actuariat - promotion 2010 La modélisation des avantages au personnel: complexité et limites du modèle actuariel, le rôle majeur des comportements humains. 14 décembre 2010 Stéphane MARQUETTY
GENIE STATISTIQUE GESTION DES RISQUES ET INGENIERIE FINANCIERE MARKETING QUANTITATIF ET REVENUE MANAGEMENT
Remarque : Tous les cours sont en français, sauf contre-indication. Pour des traductions anglaises des titres, des descriptifs, et plus de renseignements, consultez l intégralité du Programme des enseignements
Rapport de projet Risque de Crédit, Risque de Défaut : Étude de l influence du taux de recouvrement sur le prix de CDOs.
Rapport de projet Risque de Crédit, Risque de Défaut : Étude de l influence du taux de recouvrement sur le prix de CDOs. Auteurs : Hecht Frédéric, Porzier Rémi, Font Guillaume Cours «Risque de Crédit,
Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier
Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration
ENSPS 3A ISAV Master ISTI AR. J. Gangloff
Commande prédictive ENSPS 3A ISAV Master ISTI AR J. Gangloff Plan 1.Introduction / Historique 2.Modélisation du système 3.Fonction de coût 4.Équations de prédiction 5.Commande optimale 6.Exemples 7.Réglage
Modélisation géostatistique des débits le long des cours d eau.
Modélisation géostatistique des débits le long des cours d eau. C. Bernard-Michel (actuellement à ) & C. de Fouquet MISTIS, INRIA Rhône-Alpes. 655 avenue de l Europe, 38334 SAINT ISMIER Cedex. Ecole des
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
