Note de cours de MAT009 Mise à niveau pour Mathématiques 536. Éric Brunelle

Dimension: px
Commencer à balayer dès la page:

Download "Note de cours de MAT009 Mise à niveau pour Mathématiques 536. Éric Brunelle"

Transcription

1 Note de cours de MAT009 Mise à niveau pour Mathématiques 536 Éric Brunelle

2

3 Table des matières Introduction 1 Chapitre 1. Quelques rappels 3 1. Les ensembles 3 2. Arithmétique sur les nombres réels 9 3. Les polynômes 15 Chapitre 2. Équations et inéquations Les équations Les fractions algébriques Intervalles et inéquations 34 Chapitre 3. Étude graphique de fonctions 39 Introduction Éléments de l étude des fonctions Opérations sur les fonctions Rôle des paramètres a, b, h et k 52 Chapitre 4. La droite La fonction constante La fonction linéaire Relations entre deux droites Modélisation Les distances 69 Chapitre 5. La parabole La parabole de base La fonction transformée Recherche de la règle Résolution d équations ayant une fonction du second degré Modélisation Résolution d inéquations ayant une parabole Exercices sur la section 6 88 Chapitre 6. Fonctions particulières Fonction rationnelle 89 3

4 4 TABLE DES MATIÈRES 2. Fonction racine carrée Fonctions définies par parties Fonction valeur absolue 103 Chapitre 7. Les fonctions exponentielles et logarithmiques Les exponentielles Les logarithmes 122 Chapitre 8. Les fonctions trigonométriques Le cercle trigonométrique La fonction sinus La fonction cosinus La fonction tangente Les fonctions sécante, cosécante et cotangente Identités trigonométriques 155

5 Introduction 1

6

7 CHAPITRE 1 Quelques rappels 1. Les ensembles 1.1. Introduction. Les ensembles sont des éléments importants des mathématiques. La compréhension de ceux-ci est essentielle pour faire l étude des différentes notions de ce cours. Regardons tout d abord ce qu est un ensemble. Définition 1.1. Un ensemble est une collection d objets appelés éléments ayant ou non une relation entre eux. NOTATION Habituellement, on identifie les ensembles par une lettre majuscule et les éléments d un ensemble par une minuscule. Par exemple, un élément a est dans l ensemble A. Cette phrase peut être écrit en mathématique comme suit : a A, où le symbole signifie élément de. Exemple 1.1. Les ensembles A = {1, 2, 3, 4}, B = {1, 2,maison} et C = {3, 4}. Ici, 1 A, maison B, mais 1 / C, c est-à-dire que l élément 1 n appartient pas à l ensemble C. On remarque que pour rassembler les éléments d un ensemble, on les met entre accolades {}. Cependant si le nombre d éléments d un ensemble est trop grand, cette notation est très peu utile. La façon de faire est présentée dans le prochain exemple. Exemple 1.2. Soit l ensemble G, l ensemble des garçons d une classe et F l ensemble des filles de cette classe. On les écrit comme suit : G = {x x est un garçon de la classe} et F = {x x est une fille de la classe}. NOTATION La barre verticale,, signifie tel que. Ainsi, l ensemble G se lit comme suit : "G est l ensemble des x tel que x est un garçon de la classe." 3

8 4 1. QUELQUES RAPPELS Définition 1.2. On dit que deux ensembles sont égaux si tous les éléments du premier sont dans le deuxième et vice-versa. Définition 1.3. Soit un ensemble E. On dit qu un ensemble S est un sous-ensemble de E si tous les éléments de S sont dans l ensemble E. NOTATION À ce moment, on écrit S E. Exemple 1.3. Soit les ensembles A = {1, 2, 3, 4}, B = {1, 2,maison} et C = {3, 4}. On a que C A, mais B A car maison / A Diagramme de Venn. Le diagramme de Venn est une manière visuelle de représenter les ensembles. Afin d illustrer cette méthode, revenons à l exemple précédent. Exemple 1.4. Soit les ensembles A = {1, 2, 3, 4}, B = {1, 2,maison} et C = {3, 4}. Le diagramme de Venn de ces ensembles est Sur cette B maison C A Fig. 1. Diagramme de Venn. figure, on voit bien que l ensemble C est inclu dans l ensemble A. Ce diagramme sera très utile pour étudier les opérations sur les ensembles que l on abordera dans la prochaine section. Définition 1.4. L ensemble vide, noté ou {}, est l ensemble qui ne contient aucun élément. Il est à noter que l ensemble vide est un sous-ensemble de tous les ensembles. NOTATION A, ensembles A. Le symbole est un quantificateur universel et signifie "pour tout".

9 1. LES ENSEMBLES Opérations sur les ensembles. Tout comme pour les nombres, il existe des opérations entre les ensembles. Le résultat de ces opérations est un ensemble. Définition 1.5. Soit A et B, deux ensembles. L union ou réunion de A et B est l ensemble formé de tous les éléments qui se retrouvent dans A et/ou B. On note cette opération A B. En mathématique, on écrit A B := {x x A et/ou x B}. Exemple 1.5. Si A = {1, 2, 3} et B = {3, 4, 5}, alors C = A B = {1, 2, 3, 4, 5}. L union de deux ensembles se visualise avec le diagramme de Venn. La partie ombragée de la figure 2 montre la réunion des ensembles A et B. Une autre opération importante est l intersection de deux ensembles A B Fig. 2. Diagramme de Venn pour l union de A et B. Définition 1.6. Soit A et B, deux ensembles. L intersection de A et B est l ensemble formé de tous les éléments qui se retrouvent à la fois dans A et dans B. On note cette opération A B. En mathématique, on écrit A B := {x x A et x B}. Exemple 1.6. Si A = {1, 2, 3} et B = {3, 4, 5}, alors C = A B = {3}. La partie ombragée de la figure 3 montre l intersection entre l ensemble A et l ensemble B. La dernière opération de cette section est la différence entre deux ensembles. Définition 1.7. Soit A et B, deux ensembles. La différence, notée A B ou A \B, est l ensemble des éléments qui sont dans A, mais qui ne sont pas d en B. En mathématique, on écrit A B := {x x A et x / B}.

10 6 1. QUELQUES RAPPELS A B Fig. 3. Diagramme de Venn pour l intersection de A et B. Exemple 1.7. Si A = {1, 2, 3} et B = {3, 4, 5}, alors A B = {1, 2} et B A = {4, 5}. Il est à noter que A B B A. On dit alors que cette opération n est pas commutative. Par contre, l intersection et la réunion le sont, c est-à-dire 4. A B = B A et A B = B A. L ensemble résultant de la différence A B est illustré à la figure A Fig. 4. Diagramme de Venn pour A B. B 1.4. L ensemble universel ou référenciel. L étude des ensembles est souvent reliée à certaines situations de la vie. À ce moment, les valeurs possibles pour les éléments d un ensemble sont soumises à des contraintes qui forment ce que l on nomme l ensemble universel ou référentiel. On note cet ensemble U. Pour bien comprendre ceci, regardons un exemple. Exemple 1.8. Un jeu de dés à six faces consiste à lancer simultanément deux dés. On gagne si on obtient deux chiffres identiques. Trouvez l ensemble référentiel et l ensemble des possibilités gagnantes. Ici, l ensemble U est constitué de tous les couples (x, y) où x et y sont des nombres de 1 à 6 obtenus respectivement par le premier et deuxième dé. Ainsi, on peut écrire U = {(x, y) x {1, 2, 3, 4, 5, 6} et y {1, 2, 3, 4, 5, 6}}.

11 1. LES ENSEMBLES 7 Pour ce qui est de l ensemble des possibilités gagnantes G, on a G = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6,6)}. Il est à noter que G U. Définition 1.8. Soit un ensemble A dans un ensemble universel U. On appelle complément de A, l ensemble de tous les éléments de U qui ne sont pas dans A. On note cet ensemble A ou A c. En mathématique, cet ensemble est décrit par A := {x x U et x / A}. Exemple 1.9. Soit U = {1, 2, 3, 4,..., 9, 10} et A = {2, 4, 6, 8}. Alors, A = {1, 3, 5, 7, 9, 10}. A est représenté à la figure 5. U A A Fig. 5. Diagramme de Venn pour A Les ensembles de nombres réels. Dans cette section, regardons cinq ensembles très importants en mathématiques et dans la vie quotidienne. Ces ensembles ont tous la particularité d être infinis, c est-à-dire qu ils contiennent un nombre infini d éléments. Ceci n était pas le cas des ensembles qu on a vu jusqu ici. Le premier ensemble est celui des nombres dits naturels. Définition 1.9. L ensemble des nombres naturels, notéæ, est l ensemble suivant : Æ:= {0, 1, 2, 3, 4,...}. NOTATION Lorsque l on A := B, le := signifie que l ensemble B est la définition de l ensemble A. Ainsi,Æest par définition l ensemble {0, 1, 2, 3, 4,...}. Il ne faut pas confondre := avec = qui signifie seulement égalité entre les deux ensembles.

12 8 1. QUELQUES RAPPELS Il est à noter que dans certains livres 0 n est pas dans l ensembleæ. Le deuxième ensemble est celui des nombres entiers. Définition L ensemble des nombres entiers est l ensemble := {..., 4, 3, 2, 1, 0, 1, 2, 3, 4,...}. On peut facilement remarquer que l ensemble des nombres naturels est un sous-ensemble des nombres entiers,æ. Le prochain ensemble est l ensemble de toutes les fractions. C est l ensemble des nombres rationnels. Définition L ensemble des nombres rationnels,éest l ensemble de tous les nombres de la forme p où p est un nombre entier et q q, un nombre naturel sauf 0. En mathématique, on écrit É:= p q p, q Æ/{0}µ. Malgré ces trois ensembles, on ne peut pas décrire la vie réelle. Par exemple, le nombre π, qui est nécessaire dans l étude des cercles, n est dans aucun des ensembles. Pourtant, il s agit bel et bien d un nombre de la vie puisqu il est le rapport entre la circonférence et le diamètre d un cercle. Il faut donc ajouter un ensemble qui est l ensemble des nombres irrationnels, c est-à-dire les nombres qui ne s écrivent pas comme une fraction. On note cet ensembleé. Définition L ensemble des nombres réels,êest l ensemble Ê de tous les nombres de la vie. En réalité,êest l union deéet deé, Ê:=É É. La relation entre ces ensembles est donnée grâce au diagramme de Venn à la figure 6. On remarque queæ É Ê Æ É Fig. 6. Diagramme de Venn des ensembles de nombres réels.

13 2. ARITHMÉTIQUE SUR LES NOMBRES RÉELS 9 Exemple Regardons dans quels ensembles sont les nombres suivants : 1.3 : ce nombre est un nombre rationnel, car 1.3 = 13/10. Ainsi, 1.3 É. 2 : ce nombre est irrationnel. Dans un cours plus avancé, on peut le montrer. Il est très rare qu une racine soit rationnelle est un nombre avec un développement décimal infini, mais il est tout de même rationnel, car 1. 2 = 11/ Exercices sur la section 1. (1) Soit A = {1, 2, 3, 4, 5, 6}, B = {2, 3, 7} et C = {2, 4, 5}. a) Trouvez A B, A C, (C B) A et (A B)/C. b) Supposons que ces ensembles sont dans l ensemble univers U, l ensemble des dix premiers nombres naturels non nuls. Trouvez A, B et C A. c) Dessinez le diagramme de Venn de cette situation. (2) Écrire tous les éléments des ensembles suivants : a) {x x Æet x < 4} b) {x x est une couleur de l arc en ciel} c) {x x est une journée de la semaine contenant un a}. (3) Dites si les nombres sont rationnels ou irrationnels. a) 1 b) π c) 5 d) 4 e) (4) Écrire avec l aide des opérations sur les ensembles (,, /,..) les ensembles suivants : a) {x x A et x / B} b) {x x A ou x / B} c) {x x A ou x B et x C} (5) Écrire en extension, c est-à-dire sous la forme {x x...}, les ensembles suivants : a) (A B) (B A) b) (A C) (A B) c) A A d) A A e) A B. (6) ***Montrez que A (B C) = (A B) (A C). 2. Arithmétique sur les nombres réels La base de l arithmétique sur les nombres réels est connue depuis le primaire. Il s agit d une opération faite entre deux ou plusieurs nombres réels. Il y a quatre opérations de base :

14 10 1. QUELQUES RAPPELS l addition ou somme de deux nombres réels : x + y, la soustraction ou différence : x y, la multiplication ou produit : x y et la division ou le quotient : x y. Ici, il faut bien prendre en note que pour la division, y 0. NOTATION La multiplication entre x et y est écrite à l aide du symbole. Ce symbole peut être confondu avec la lettre x qui est souvent utilisée. C est pourquoi, on notera le produit entre x et y comme x y ou simplement xy lorsqu il n y a pas d ambiguïtés. ßÞ Ð n fois 2.1. Les exposants entiers. Définition Soit un nombre a Ê\{0} et n Æ\{0}. On note alors que a n = a a... a. Ici, n est l exposant de a ou puissance de a. On définit a 0 = 1. Par contre, 0 0 n est pas défini. Cela signifie que 0 0 est indéterminé. Proposition 1.1. Soit un nombre a Ê\{0} et n Æ. On a que si n est pair, alors a n > 0, a Ê\{0}, si n est impair, alors a n a le même signe que a. Exemple Trouvons les valeurs de ( 5) 2 et ( 5) 3. ( 5) 2 = 5 5 = 25 et ( 5) 3 = = 125. Il faut bien noter que 5 2 signifie que c est 5 qui est au carré et non 5, d où l importance des parenthèses. Proposition 1.2 (Lois des exposants). Soit n, m Æ. Alors, on a les égalités suivantes : (1) a m a n = a m+n, (2) a n = 1 si a 0, an (3) am a n = am a n = a m n, (4) (a m ) n = a nm, (5) (ab) m = a m b m, a (6) a = b n n, avec b 0. bn

15 2. ARITHMÉTIQUE ßÞ Ð SUR LES NOMBRES RÉELS 11 a a... a m fois (n+m) fois Démonstration. Regardons la preuve de quelques-uns de ces résultats. Pour la première loi : a m a n = a a... a = a a... a ßÞ Ð n fois = a n+m (par la définition de l exposant) Pour la troisième loi : a m = a m 1 a n a n = a m a n (par la deuxième loi) = a m n (par la loi 1) Le principe pour démontrer les autres lois est le même. Nous reviendrons plus loin à ces lois lors de l étude des exposants qui ne sont pas nécessairement naturels Les priorités d opérations. Lorsque nous avons une grande expression, il faut savoir comment la simplifier. C est pourquoi, il existe ce que l on appelle la priorité d opération. Voici les étapes : Étape 1: On résoud l intérieur des parenthèses en suivant la priorité d opérations. Étape 2: On simplifie les exposants. Étape 3: On effectue les multiplications et divisions. Étape 4: On fait les additions et les soustractions. Exemple (5 + 2) 2 36 (3 2 3) = (7) 2 36 (9 3) les parenthèses = (7) 2 36 (6) = le exposants = les et = 193 les + et 2.3. Les fractions. Rappellons qu une fraction est un nombre réel de la forme a b, où a et b Æ\{0}. Définition On dit que deux fractions a b et c sont équivalentes si ad = d bc. Exemple Regardons quelques exemples :

16 12 1. QUELQUES RAPPELS est équivalente à est équivalente à, car = Par contre 2 7 est équivalente à 3, car Addition et soustraction de fractions. important important important important important Pour additionner ou soustraire deux fractions, il faut qu elles aient le même dénominateur. À ce moment, on additionne les numérateurs et le dénominateur reste le même. En mathématique, a b + c b = a + c b a b c b = a c. b Par contre, si les deux fractions n ont pas le même dénominateur, il faut effectuer une opération supplémentaire. On doit mettre les deux fractions sur le même dénominateur. La façon la plus simple est la suivante : a b + c d = ad bd + cb bd a b c d = ad bd cb bd Par la suite, on simplifie le résultat. = ad + cb bd ad cb =. bd Exemple = = 5 6 Ici, 5 est irréductible, c est-à-dire qu on ne peu plus simplifier cette 6 fraction Multiplication et division de fractions. La multiplication de deux fractions est définie comme suit : a b c d = ac bd. En d autres mots, la multiplication de deux fractions cnsiste à multiplier es numérateurs ensembles et les dénominateurs ensembles. Par

17 2. ARITHMÉTIQUE SUR LES NOMBRES RÉELS 13 contre, la division demande c un peu plus de travail. a b c = a b c loi des exposants d 1 d = a b c 1 1 lois des exposants d 1 = a b d lois des exposants = ad multiplication de fractions. bc Ce revient à dire que la division de deux fractions est le produit du numérateur par l inverse du dénominateur. 1 Exemple = = 6 3 = Les racines ou exposants fractionnaires. Nous avons vu plus tôt les lois des exposants dans le cas où ces derniers sont des nombres naturels. Regardons maintenant le cas où les exposants sont des nombres fractionnaires. Définition Soit n un nombre naturel impair et a un nombre réel. On écrit alors que a 1 n = n a. n a est la n e racine de a. Une forme équivalente à cette formulation est : b = n a b n = a Il est très important de noter qu ici n est impair. Le cas où n est pair est vu dans quelques instants. Exemple Trouvons la valeur de b si b = Une forme équivalente est de chercher b tel que b 3 = 125. On sait que 5 3 = 125. Donc, = 5. Définition Si n est pair, alors la racine n e de a est définie seulement si a 0. Cette contrainte provient du faire que b n 0 pour tout nombre n pair. Ainsi, si a = b n, alors b = n a existe seulement si a 0. De plus, si a = b n avec a > 0 et n pair, alors il existe deux valeurs de b qui satisfont cette égalité : b = n a ou b = n a.

18 14 1. QUELQUES RAPPELS Exemple Si x 2 = 4. On a que x = 2 satisfait l équation et que x = 2 la satisfait aussi. Puisque la racine d un nombre est en réalité un exposant, elle est sousmise aux mêmes lois que les exposants. Proposition 1.3. Voici les règles pour manipiler les racines : (1) a 1 n = 1 a 1 n = 1 n a, (2) a m n = ( n a) m = n a m, (3) n ab = n a n b et (4) nöa b = n a n b. important important important important important n a + b n a + n b 2.5. Exercices sur la section 2. (1) Simplifier les expressions suivantes : a) ( ) b) 3 c) d) d) e) y y 2y 1 3 f) (( 3)2 ) 4 (x 2 ) 3 (9 2 ) 4 (x 4 ) 2 g) 3 64x 6 y x 3 y 15 (2) Évaluer avec une calculatrice les nombres suivants : y 9 4 a) 2 b) c) (3) Trouver deux fractions équivalentes à chacune des fractions suivantes : a) 7 6 b) 3 16 c) 15 32

19 3. LES POLYNÔMES Les polynômes Définition Une variable est une quantité qui peut prendre n importe quelle valeur dans un ensemble donné. Une constante est une quantité fixe. Un monôme est une expression formée d un produit d une constante et de variables ayant des exposants naturels. Exemple Voici quelques exemples : (1) 3x 2 est un monôme ayant pour constante 3 et la variable x. (2) 14x 4 y 3 z est un monôme ayant comme variables x, y et z. (3) 4x 3 y 7 z 3 n est pas un monôme, car l exposant de z n est pas un nombre naturel. (4) 3 est un monôme dit monôme constant. Définition Un polynôme est une somme ou différence de monômes. Si le polynôme est la somme de deux monômes, on l appelle binôme. Si le polynôme est la somme de trois monômes, on l appelle trinôme. Exemple Voici quelques exemples : (1) 3x 2 + y est un binôme. On dit que 3 est le coefficient de x 2 et 1 le coefficient de y. (2) 3xy 9 z+8ab+4 est un trinôme. On appelle 4 le terme constant. (3) 2x + 4y 6z est un polynôme. (4) 2x 4xy 10 n est pas un polynôme, car 4xy 10 n est pas un monôme. Définition Le degré d un monôme est la somme des exposants de ses variables. Le degré d un monôme constant est 0. Le degré d un polynôme est le plus grand degré de ses monômes. Exemple (1) 3x 2 + y est de degré 2. (2) 3xy 9 z + 8ab + 4 est de degré = 11. (3) 2x + 4y 6z est de degré 1. (4) 8 est de degré 0.

20 16 1. QUELQUES RAPPELS 3.1. Somme et différence de polynômes. Pour additionner deux polynômes, P 1 et P 2, il faut additionner les coefficients des termes identiques, c est-à-dire ceux qui ont les mêmes variables et mêmes exposants. Exemple Soit P 1 = 3x + 4xy et P 2 = 6xy 2 4x. Alors, P 1 + P 2 = 3x + 4xy + 6xy 2 4x = (3x 4x) + 4xy + 6xy 2 = x + 4xy + 6xy 2 Exemple Soit P 1 = 3x 2 y 4xy 2 + 6xy 7x + 15 et P 2 = x 3 5xy 2 + xy + 3y + 4x 2. Alors, P 1 + P 2 = x 3 + 3x 2 y 9xy 2 + 7xy 3x + 3y Pour ce qui est de la soustraction de deux polynômes, P 1 P 2, revient à multiplier tous les coefficients de P 2 par 1 et à additionner ce résultat à P 1. Exemple Soit P 1 = 3x + 4yz 2 et P 2 = 3yz 2 + x. Alors P 1 P 2 = (3x + 4yz 2 ) (3yz 2 + x) = (3x + 4yz 2 ) + ( 3yz 2 x) = 2x + yz La multiplication de polynômes Multiplication monôme-monôme. Avant de passer à la multiplication de polynômes, regardons la multiplication de deux monômes à l aide d un exemple. Exemple Soit P 1 = 3x 2 y et P 2 = 5x 8 y 3 z. Alors, P 1 P 2 = (3x 2 y) (5x 8 y 3 z) = (3 5)(x 2 x 8 )(y y 3 )z = 15x 10 y 4 z Multiplication monôme-polynôme. La multiplication d un monôme et d un polynôme consiste à multiplier chaque terme du polynôme par le monôme et faire la somme du résultat. Exemple x (x + 3y 3xy) = x y + x 3y x 3xy = xy + 3xy 3x 2 y = 4xy 3x 2 y. Le principe de distribuer la multiplication du monôme sur chaque terme du polynôme se nomme la distributivité.

21 3. LES POLYNÔMES Multiplication polynôme-polynôme. La multiplication de deux polynômes, P 1 P 2, est très similaires. Elle consiste à multiplier P 2 par chacun des monômes de P 1 et à additionner ces produits. Ceci revient à effectuer une double distributivité. Exemple Soit P 1 = x + y et P 2 = 3xz + 4y 3 4. Alors, P 1 P 2 = (x + y) (3xz + 4y 3 4) = x(3xz + 4y 3 4) + y(3xz + 4y 3 4) (1 ère disbritubivitée) = (x 3xz + x 4y 3 4x) + (y 3xz + y 4y 3 4y) (2 e distributivité) = 3x 2 z + 4xy 3 4x + 3xyz + 4y 4 4y 3.3. Le quotient de polynômes Quotient monôme-monôme. Le quotient de deux monômes est très simple si l on se souvient de l égalité suivante : a n a m = an a m = a n m. Ainsi, pour trouver le quotient, il suffit de diviser les coefficients ensemble et de soustraire les exposants des mêmes variables du dénominateur de ceux du numérateur. Exemple x 8 y 2 z 3 w = 12 8x 5 yz 5 8 x8 x y2 z 3 5 y z 5w étape intermédiaire = 3 2 x8 5 y 2 1 z 3 5 w par la loi des exposants = 3 2 x3 yz 2 w. important important important important important Le quotient de deux monômes, ou plus généralement de deux polynômes, n est pas toujours un monôme ou un polynôme, comme le montre l exemple précédent. On peut effectuer la division directement en faisant les étapes dans notre tête. Exemple x 8 y 2 z 3 2x 5 yz 3 = 6x 3 y. Dans ce cas, on obtient un monôme.

22 18 1. QUELQUES RAPPELS Quotient polynôme par un monôme. On sait que la fraction a + c b = a b + c b. La même règle s applique si le numérateur est un polynôme et le dénominateur un monôme. On peut diviser chaque terme du polynôme par le monôme. Exemple x 4 3x 3 + 2x 2 2x 2 = 6x4 2x 2 3x3 2x 2 + 2x2 2x 2 = 3x x Quotient polynôme-polynôme. La méthode pour diviser un polynôme par un polynôme est un peu plus complexe. On va expliciter la façon de faire à l aide d un exemple. Celle-ci est la même que celle utilisée pour la division des grands nombres réels. Exemple On veut diviser 2x 2 + 8x 8 par x + 3. Étape 1: Écrire les termes des polynômes en ordre décroissant de degré. Ici, c est déjà le cas. Étape 2: Écrire la division à l aide du crochet,. 2x 2 + 8x 8 x + 3 Étape 3: On regarde combien de fois le premier terme du polynôme de droite entre dans le premier terme du polynôme de gauche. Ici, x entre 2x fois dans 2x 2. On écrit ce résultat sous le crochet. Par la suite, on multiplie x + 3 par 2x et on écrit se produit sous 2x 2 + 8x 8. 2x 2 + 8x 8 x + 3 2x 2 + 6x 2x Étape 4: On effectue la soustraction entre le polynôme de gauche et celui en dessous de lui. 2x 2 + 8x 8 x + 3 (2x 2 + 6x) 2x 2x 8

23 3. LES POLYNÔMES 19 Étape 5: On répète les deux dernières étapes jusqu à ce que le degré du polynôme gauche soit plus petit que le degré du polynôme diviseur. 2x 2 + 8x 8 x + 3 (2x 2 + 6x) 2x + 2 2x 8 (2x + 6) 14 Étape 6: Puisque 14 est de degré 0 et x + 3 de degré 1, on ne peut plus diviser. Alors, la réponse est 2x 2 + 8x 8 x + 3 = 2x x + 3. On appelle 14 le reste de la division Les priorités d opérations. Les priorités des opérations sont les mêmes que pour les expressions contenant seulement des nombres réels. Exemple Simplifions 3(x+2) 2 (2x 5)(3x+1)+(x 3 x) x. 3(x + 2) 2 (2x 5)(3x + 1) + (x 3 x) x = 3(x + 2)(x + 2) (2x 5)(3x + 1) + (x 3 x) x On fait les exposants. = 3(x 2 + 2x + 2x + 4) (6x 2 + 2x 15x 5) + (x 2 1) On multiplie les () ensembles. = 3x x x x x 2 1 On simplifie les parenthèses. = 2x x + 16 On effectue les + et Mise en évidence simple. La mise en évidence simple est l opération inverse de la distributivité. Pour ce faire, on trouve le monôme qui est en commun à chacun des termes du polynôme. Par la suite, on place ce monôme en avant de la parenthèse qui contient le quotient de chaque terme du polynôme par le monôme. Exemple Faire la mise en évidence simple de 3x 2 y+6xy 2 z 9x 4 y 3 z 2. On remarque que chaque coefficient est un multiple de 3 et que chaque terme possède au moins un x et un y. Ainsi, on mettra 3xy en évidence. 3x 2 y + 6xy 2 z 9x 4 y 3 z 2 = 3xy(x + 2yz 3x 3 y 2 z 2 ) Exemple On peut faire une mise en évidence simple pour ax + ay. Ainsi, ax + ay = a(x + y).

24 20 1. QUELQUES RAPPELS 3.6. Mise en évidence double. La mise en évidence double est un peu l inverse de la multiplication de deux polynômes. Exemple Soit l expression ax + bx + ay + by. On remarque qu il n y a rien en commun dans chacun des termes. Par contre, il y a x qui est dans les deux premiers et y dans le deuxième. Mettons ces termes en évidence. ax + bx + ay + by = x(a + b) + y(a + b) À ce moment, il y a a+b en commun dans les deux termes. Effectuons une autre mise en évidence. ax + bx + ay + by = x(a + b) + y(a + b) = (a + b)(x + y) Nous venons donc de faire une double mise en évidence. Exemple Effectuons une double mise en évidence de l expression 2x 2 + 4x 5ax 10a. 2x 2 + 4x 5ax 10a = 2x(x + 2) 5a(x + 2) = (x + 2)(2x 5a) Les expressions spéciales Trinôme carré parfait. Un trinôme carré parfait est le résultat du développement de (x + y) 2. Ainsi, le membre de droite de (x + y) 2 = x 2 + 2xy + y 2 est un trinôme carré parfait. Le but est donc de repérer les expressions qui proviennent d un carré parfait. Pour y arriver, on vérifie si deux des termes sont des carrés et si c est le cas, on regarde si le dernier terme vaut le double du produit des racines des deux autres termes. À ce moment, le trinôme est un carré parfait et on peut l écrire comme le carré de la somme des racines des deux carrés Exemple Soit l expression 4x xy + 25y 2. On a que 4x 2 est le carré de 2x et 25y 2 est celui de 5y. On vérifie maintenant que le double du produit entre 2x et 5y vaut le troisième terme qui est 20xy. 2(2x)(5y) = 20xy Ainsi, 4x xy + 25y 2 = (2x + 5y) 2. Il est à noter que si le terme du centre est négatif, x 2 2xy + y 2, alors on place un signe négatif entre x et y, x 2 2xy + y 2 = (x y) 2.

25 3. LES POLYNÔMES Trinôme de la forme x 2 + bx + c. Ici, on aimerait écrire x 2 +bx+c, où b, c Ê, comme un produit (x+u)(x+v) toujours avec u, v Ê. Mais comment trouver u et v? On sait que x 2 + bx + c = (x + u)(x + v) = x 2 + (u + v)x + uv. On a donc deux conditions sur u et sur v. Il faut que u + v = b et uv = c. Ainsi, si l on trouve u et v qui satisfont ces conditions, on peut facilement factoriser le trinôme. Exemple Soit le trinôme x x On cherche u et v tels que u + v = 40 et uv = 300. Si u = 10 et v = 30, on respecte les conditions. Alors, on a que x x = (x + 10)(x + 30) Trinôme de la forme ax 2 + bx + c. Encore une fois, on veut factoriser, c est-à-dire de mettre sous la forme d un produit, le trinôme ax 2 + bx + c, où a, b, c sont des constantes réelles. La différence avec le cas précédent est la présence du coefficient a. Pour y parvenir, on veut séparer le terme central, bx, en une somme de deux termes pour pouvoir faire une mise en évidence double. Mais comment séparer ce terme? Voici comment. Faire une mise en évidence double revient à écrire ax 2 + bx + c sous la forme (ux + v)(kx + l). En développant ce terme, on obtient ax 2 + bx + c = ukx 2 + (ul + vk)x + vl. En posant λ = ul et γ = vk, on obtient que λ + γ = b et λγ = ac. Ainsi, en trouvant deux nombre dont la somme est b et dont le produit est ac, on peut séparer le terme central en somme de λx + γx) et faire une mise en évidence double. Exemple Factorisons 6x 2 +7x 3. On cherche deux nombres λ et γ tels que λ + γ = b = 7 et λγ = ac = 18. Si λ = 9 et γ = 2, on respecte les conditions. Ainsi, 6x 2 + 7x 3 = 6x 2 + 9x 2x 3 (séparation du terme central) = 3x(2x + 3) 1(2x + 3) (première mise en évidence) = (3x 1)(2x + 3) (deuxième mise en évidence) Différence de carré. Si une expression est une différence de carrés, c est-à-dire de la forme x 2 a 2, on peut factoriser facilement. Cette factorisation est x 2 a 2 = (x + a)(x a).

26 22 1. QUELQUES RAPPELS Exemple Soit l expression 25x 2 144y 2. Ici, 25x 2 est le carré de 5x et 144y 2 est celui de 12y. Puisqu il y a un signe négatif entre les deux, on obtient que 25x 2 144y 2 = (5x + 12y)(5x 12y). important important important important important La somme de deux carrés n a pas de factorisation, c està-dire que l on ne peut pas factoriser les expressions de la forme x 2 + a Exercices sur la section 3. (1) Dites si les expressions suivantes sont de polynômes. Si oui, trouvez son degré et son terme constant s il existe. a) xyz 2 + 4x x 10, b) 2x 1 + 4, c) x 2 + bx + c où b, c Ê. (2) Soit P 1 = x et P 2 = x 4 + 3x 3 + 7x 2 + 9x Trouvez a)p 1 + P 2, b)p 2 P 1, c)p 1 P 2, d)p 2 P 1. (3) Effectuez les multiplications suivantes : a) (x + y)(xy 2 + 2x 4x 4 y) b) (x 2 + 3x + 5)(x + 1) c) (3x 1)(x + 5) d) (x 1)(x + 1) e) (x + y) 2 f) (x + y) 3 (4) Effectuez les divisions suivantes : a) (x 2 + 2x + 4) (x + 3) b) (x 3 + a 3 ) (x + a) c) (x 4 + x 3 + x 2 + x + 1) (x + 1) d) (x 3 + 4x + 2) (x + 1) e) 27x6 yz 2 + 3xz 6x 4 z 15 3x 2 z (5) Factorisez au maximum les expressions suivantes : a) ax 2 + ay 2 b) 7x + 14y x 2y c) x 2 5x + 6 d) 9x 2 81y 2 e) 9x 4 81y 4 f) x 2 x + 6 g) 3x x + 12 h) 8x 4 y 6 + 4xy 4 12x 3 y 5 i) 14x 2x 2 20

27 CHAPITRE 2 Équations et inéquations Dans ce chapitre, nous ferons l étude de la manipulation des équations et des inéquations. On abordera également la résolution de cellesci ainsi que la notion de domaine d une équation et d une inéquation. Nous nous restreindrons au cas d une seule variable. Finalement, on verra comment résoudre certaines situations. 1. Les équations 1.1. Introduction aux équations. Définition 2.1. Voici quelques définitions : Une équation est une égalité entre deux expressions contenant une ou plusieurs variables. Le domaine d une équation est l ensembe des valeurs qu on peut attribuer à sa ou ses variables. La ou les solutions d une équations sont la ou les valeurs des variables qui rendent l égalité vraie. L ensemble solution d une équation, noté ES, est l ensemble constitué de toutes les solutions de cette équation. Exemple 2.1. Regardons quelques exemples que nous expliquerons par la suites. (1) x + 5 = 7. Le domaine estêet la solution est x = 2. (2) x 1 = 4. Le domaine est x 1 et la solution est x = 17. (3) x + 7 x 4 = 0. Le domaine estê\{4} et la solution est x = 7. Comment avons-nous trouvé le domaine et la solution des équations de l exemple? Nous reviendrons au domaine plus loin. Pour l instant concentrons-nous sur la manipulation des équations Propriétés des équations. Pour résoudre une équation, il faut isoler la variable d un côté et avoir une constante de l autre. Pour ce faire, on peut faire les quatre opérations que voici : On débute avec une équation A = B et soit C une expression. Alors, 23

28 24 2. ÉQUATIONS ET INÉQUATIONS (1) A+C = B +C, la somme de l expression C des deux côtés ne change pas l égalité, (2) A C = B C, la soustraction de l expression C des deux côtés ne change pas l égalité, (3) AC = BC, le produit par l expression C des deux côtés ne change pas l égalité, (4) A n = B n, la même puissance des deux côtés ne change pas l égalité et (5) A C = B, la division par l expression C des deux côtés ne change C pas l égalité à la condition que C ne soit jamais nul. Ces propriétés nous permettent de résoudre les équations de ce chapitre. Exemple 2.2. Trouvons l ensemble solution des équations de l exemple précédent. (1) x + 5 = 7 x = 7 5 = 2 en soustrayant 5 des deux côtés (2) Ainsi, ES = {2}. x 1 = 4 x 1 2 = 4 2 on élève au carré les deux côtés. x 1 = 16 x = 17 en additionnant 1 de chaque côté. (3) L ensemble solution est donc ES = {17}. x + 7 x 4 = 0 x + 7 = 0 en multipliant les deux côtés par x 4. x = 7 en soustrayant 7 de chaque côté. D où, ES = { 7}. Le prochain exemple montre que l on peut arriver à des résultats ridicules si on ne fait pas attention par quoi l on divise.

29 1. LES ÉQUATIONS 25 Exemple 2.3. a = b hypothèse de départ a 2 = ab en multipliant les deux côtés par a. a 2 b 2 = ab b 2 en soustrayant b 2 de chaque côté. (a + b)(a b) = b(a b) différence de carrés à gauche et mise en évidence à droite a + b = b en divisant les deux côtés par a b. Maintenant, si l on pose a = 1, on a aussi b = 1 par l hypothèse de départ. En reportant ces valeurs de a et b dans la dernière équation, on obtient 2 = 1. Ceci est vraiment une absurdité. Elle provient du fait que l on a divisé par 0 au moment de la division par a b, car a = b. Il faut donc être très vigilant avec la division Le domaine d une équation. Jusqu ici, nous avons trouver l ensemble solution de diverses équations sans tenir compte du domaine de définition de ces équations. Le domaine sera spécifié lors de l étude des différentes fonctions. La seule chose que nous dirons pour l instant sur le domaine est que l ensemble solution ES doit être un sousensemble du domaine. Ainsi, si certaines valeurs de la variable rendent l équation vraie, il se peut qu elles soient rejettées si elles ne sont pas dans le domaine Les équations linéaires d une seule variable. Définition 2.2. Une équation linéaire d une seule variable est une équation entre deux polynômes de degré 1. Exemple 2.4. Voici deux exemples : (1) 3x + 4 = 2x 4 est une équation linéaire. (2) 3x 2 = 4 n est pas linéaire, car il y a la présence d une racine. Proposition 2.1. Le domaine d une équation linéaire estê. Cette proposition signifie donc qu il n y a jamais de problèmes de domaine avec les équations linéaires sauf dans le cas où l équation décrit une situation. Nous y reviendrons plus tard. Pour résoudre une équation linéaire, il faut manipuler l équation pour la mettre sous la forme x = c où c est une constante. Exemple x + 4 =2x 4 3x 2x = 4 4 x = 8

30 26 2. ÉQUATIONS ET INÉQUATIONS Donc, ES = { 8}. Il arrive parfois qu une équation ne possède aucune solution comme le montre l exemple suivant : Exemple x + 1 =3x 5 3x 3x = = 6 Ceci ne se peut pas et donc il n y a pas de valeurs de x qui rendent l équation vraie. On écrit alors ES = Mises en situation ou modélisation. La modélisation mathématique consiste à mettre en équations des phénomènes de la vie courrante. Regardons deux situations qui peuvent être décrites par des équations linéaires. Exemple 2.7. Un vendeur téléphonique reçoit un salaire de base de 20$ par jour plus 4$ par vente effectuée. Combien de ventes doit-il faire par jour s il veut obtenir un salaire quotidient de 100$? La première étape est d identifier la variable de cette situation. Ici, posons que la variable x est le nombre de vente par jour. La deuxième étape est de déterminer le domaine de cette variable. Ici, on est dans une situation où x est le nombre de vente. Donc, x doit être un nombre naturel. On écrit dom =Æ. La troisième étape consiste à écrire l équation à résoudre. Ici, on cherche x tel que x = 100. Le membre de gauche correspond au salaire quotidien du vendeur selon le nombre de vente et le membre de droite est le salaire désiré. La quatrième étape est de résoudre l équation x = 100 4x = 80 x = 20. La cinquième et dernière étape est de vérifier si la solution est dans le domaine. Ici, 20 Æ. Donc, la réponse est 20 ventes par jour. Exemple 2.8. Un père a 24 ans de plus que son fils. Dans 13 ans, il aura le double de l âge de son fils. Quel est l âge du père et du fils présentement?

31 1. LES ÉQUATIONS 27 Étape 1: Posons x : l âge du fils présentement. Étape 2: Le domaine est dom =Æ, car un âge est toujours un nombre naturel. Étape 3: L âge du père est de x Dans 13 ans il aura le double de l âge de son fils. En mathématique, on a x + 37 =2(x + 13). Le membre de gauche correspond à l âge du père dans 13 ans et le membre de droite est le double de l âge du fils dans 13 ans. Étape 4: La résolution de l équation : x + 37 =2(x + 13) x + 37 =2x =x Étape 5: On a que 11 est effectivement un nombre naturel. Ainsi, la réponse est que l âge du fils est de 11 ans et celui du père est de 35 ans La règle du produit nul. Proposition 2.2. Soit A et B deux expressions. Si AB = 0, alors soit A = 0 ou B = 0. Cette proposition se généralise pour le produit de plusieurs facteurs. À ce moment, l un ou l autre de ces facteurs est nul. Exemple 2.9. Ainsi, ES = { π, 6}. (x 6)(x + π) = 0 x 6 = 0 OU x + π = 0 x = 6 OU x = π Cependant, il est très rare d avoir une équation déjà sous cette forme. Il faut travailler un peu.

32 28 2. ÉQUATIONS ET INÉQUATIONS Exemple Trouvez l ensemble solution de a 3 + 3a 2 = 4a a 3 + 3a 2 = 4a + 12 a 3 + 3a 2 4a 12 = 0 a 2 (a + 3) 4(a + 3) = 0 (a + 3)(a 2 4) = 0 (a + 3)(a + 2)(a 2) = 0 On a trois possibilités. a + 3 = 0 a + 2 = 0 a 2 = 0 a = 3 a = 2 a = 2 Donc, ES = { 3, 2, 2} 1.5. Exercices sur la section 1. (1) Résoudre les équations linéaires suivantes : a) 3x 4 = 2x + 6 b) 9x 6 = 0 c) x 7 = 9 + 5x d) πx 4 = πx + 6 e) 10x = 3x f) x = 4x 6 (2) Trouver l ensemble solution des équations suivantes : a) (3x 6)(4x + 8) = 0 b) x 2 81 = 0 c) x 2 x 6 = 0 d) (x + 1)(x 1)(x 2 4) = 0 e) 6x 4 = x f) x 4 16 = 0 (3) Deux restaurants possèdent un bar à salade où l on paie au poid. Au premier restaurant, il en coûte 3$ de base et 0.50$ par kilogramme de salade. Au deuxième, le prix de base est de 2$ et c est 0.75$ le kilogramme. a) Combien coûte 1kg de salade dans les deux restorants? b) Combien a-t-on de salade dans les deux restaurants s il en coûte 5$? c) Quel quantité de salade revient au même prix dans les deux restaurants? (4) Gaston achète des actions à la bourse. Le coût initial est de 30$. La valeur de cette action augmente de 0.05$ par jour. Après combien de jour l action vaudra 40.10$? (5) Roger roule 100km/h vers Québec à partir de Montréal. Il doit faire 332km. Dans combien de temps arrivera-t-il à destination s il a déjà parcouru 112km? (6) Deux F18 de l armé sont en plein vol. Il reste le tier de caburant pour le premier F18 et 120L pour le second. Un avion ravitailleur vient remplir leur réservoir. Il prend 5 minutes pour remplir le premier et 6 minutes pour le second. Si le débit de transfert d essence est le même pour les deux F18,

33 2. LES FRACTIONS ALGÉBRIQUES 29 a) écriver une équation qui permet de trouver ce débit (identifier bien la variable), b) trouver le débit du transfert d essence (en L/min), c) quelle quantitée d essence peut contenir le réservoir d un F18? (7) À quelle heure précise, entre 3h et 4h, les aiguilles d une horloge sont-elles superposées? 2.1. Introduction. 2. Les fractions algébriques Définition 2.3. Une fraction algébrique est une expression de la forme P Q où P et Q sont des polynômes avec Q 0. Exemple Voici deux exemples : x + 4 (1) est une fraction algébrique. 2x x + 4 (2) n est pas une fraction algébrique, car le numérateur 2x n est pas un polynôme. Proposition 2.3. Le domaine d une fraction algébrique est l ensemble de toutes les valeurs deêsauf les valeurs qui rendent le dénominateur nul. Exemple x + 8 x 3 + 3x 2 4x 12 On sait par l exemple 2.10 que le dénominateur s annule pour x = 3, x = 2 et x = 2. Ainsi, le domaine estê\{ 3, 2, 2}. Jusqu ici, pour trouver le domaine d une équation, on a deux étapes à faire. Étape 1: Vérifier le contexte de l équation. Étape 2: Enlever les valeurs de la variable pour lesquelles le dénominateur s annule. On ajoutera des étapes lorsqu on étudiera d autres notions. sont équiva- Définition 2.4. Deux fractions algébriques P Q et R S lentes si PS = RQ.

34 30 2. ÉQUATIONS ET INÉQUATIONS Par contre, deux fractions équivalentes ne le sont pas nécessairement pour toutes les valeurs de la variable. Il faut donc trouver le domaine d équivalence de deux fractions. Définition 2.5. Le domaine d équivalence, dome, de deux fractions algébriques, P Q et R, est l intersection du domaine de chacune S des fractions. En mathématique, dome = dom P Q domr S. 1 Exemple Soit x + 2 et x 1. Ces deux fractions (x + 2)(x 1) sont équivalentes, car 1(x + 2)(x 1) = (x + 2)(x 1). Trouvons le 1 domaine d équivalence. Le domaine de x + 2 estê\{ 2} et le domaine x 1 de (x + 2)(x 1) estê\{ 2, 1}. Ainsi, l ntersection des deux nous donne dome =Ê\{ 2, 1} Simplification de fractions algébriques. Montrons la façon de procéder afin de simplifier une fraction algébrique avec un exemple. Exemple On veut simplifier la fraction algébrique 6x 3 10x 2 4x 18x x x 2. Étape 1: Factorisation du dénominateur. 6x 3 10x 2 4x 18x x x = 2x(3x2 5x 2) 2 6x 2 (3x x + 4) 2x(x 2)(3x + 1) = 6x 2 (x + 4)(3x + 1). Étape 2: Trouver le domaine. Ici, on veut que le dénominateur soit différent de 0. Donc, dom =Ê\{ 4, 1 3, 0}. Étape 3: Déterminer les facteurs du numérateur et du dénominateur qui sont en commun. Ici, les facteurs en commun sont 2, x, 3x + 1. Étape 4: Simplifier les facteurs en commun. 2x(x 2)(3x + 1) 6x 2 (x + 4)(3x + 1) = x 2 3x(x + 4).

35 2. LES FRACTIONS ALGÉBRIQUES 31 important important important important important Il est à noter que le domaine de cette fraction reste le domaine de départ, car pour les autres valeurs de la variable, la fraction n est pas définie Addition de fraction. L addition de fractions algébriques se fait de la même façon que la somme de fractions de nombre. On additionne les numérateurs lorsque nous avons le même dénominateur. Si le dénominateur est différent, il faut trouver le dénominateur commun. Exemple On veut simplifier x + 4 2x 2 + 5x x 2 + x 14. Étape 1: On factorise les dénominateurs afin de trouver le domaine x + 4 (2x + 1)(x + 2) + 3 (4x 7)(x + 2). Ainsi, le domaine estê\{ 2, 1 2, 7 4 }. Étape 2: On cherche le dénominateur commun. Il manque 4x 7 à la première fraction et 2x + 1 à la deuxième. On multiplie donc chaque fraction par ce qui manque comme suit : x + 4 (2x + 1)(x + 2) 4x 7 4x (4x 7)(x + 2) 2x + 1 2x + 1. Étape 3: On peut maintenant additionner les fractions et simplifier. (x + 4)(4x 7) + 3(2x + 1) (2x + 1)(x + 2)(4x 7) = 4x x 25 (2x + 1)(x + 2)(4x 7) Multiplication et division de fractions algébriques. La multiplication et la division se fait exactement comme pour les fractions de nombres. Soit P, Q, R et S des polynômes. Alors, P Q R S = PR QS P Q R S = PS QR

36 32 2. ÉQUATIONS ET INÉQUATIONS 2.5. Les fractions algébriques complexes. Une fraction algébrique complexe est une expression qui contient plusieurs étages. Il n existe pas de recette pour les simplifier. Il faut seulement respecter l ordre des opérations et les étages. Exemple Exemple a + 1 b 1 a 1 b = b + a ab b a ab = a + b ab = a + b b a ab b a 1 m + 1 p 1 m 2 1 p 2 = p + m mp p 2 m 2 m 2 p 2 = p + m mp m 2 p 2 p 2 m 2 (p + m)mp = p 2 m 2 (p + m)mp = (p m)(p + m) = mp p + m Équations contenant des fractions algébriques. La résolution des équations contenant des fractions algébirques nécessite les mêmes étapes que pour résoudre une équation linéaire. Exemple Trouvons l ensemble solution de x x x + 6 = 1. Étape 1: On trouve le domaine de l équation. Ici, on ne veut pas de division par 0. Donc, dom =Ê\{ 6, 2}.

37 2. LES FRACTIONS ALGÉBRIQUES 33 Étape 2: On résoud en manipulant l équation. x x x + 6 = 1 x(x + 6) + 4(x + 2) = 1 addition de fractions (x + 2)(x + 6) x(x + 6) + 4(x + 2) = (x + 2)(x + 6) multiplication par (x + 2)(x + 6) x x + 8 = x 2 + 8x + 12 développement 2x 4 = 0 x = 2 Étape 3: On vérifie si les solutions sont dans le domaine. Ici, c est le cas, c est-à-dire que 2 dom. Ainsi ES = {2} Exercices sur la section 2. (1) Trouver le domaine des fractions algébriques suivantes : a) x + 3 (x 2 1 b) x + 4 x 2 x 6 c) x + 4 x 4 16 (2) Simplifier les expressions suivantes en n oubliant pas de spécifier le domaine de validité : a) x + 3 x x2 x + 1 c) 4x2 24x + 36 x 3 x 2 6x e) (x2 18x + 80)(x 2 6x 7) (x 2 5x 50)(x 2 15x + 56) g) x3 6x + 36x x + 7 x 2 49 x 2 x 42 b) x + 1 x 3 x2 9 x 2 1 d) x2 x x 2 + 2x f) 2 x 2 2x + 1 x 2 x + x + 3 x 3 x 2 (3) Simplifier les fractions complexes suivantes : a) c) 1 x x 1 3x 2 1 3x x 2 b) x d) 1 + x 1 x x 1 + x + 2x2 1 x

38 34 2. ÉQUATIONS ET INÉQUATIONS (4) Résoudre les équations suivantes : 1 a) x x 2 9 = 3 b) x2 x 6 = x c) 1 a 1 x = 1 x 1 2 x où a et b des constantes d) b 3x = 4 3. Intervalles et inéquations 3.1. Les intervalles. Les nombres réels peuvent être mis sur une droite, dite la droite réelle. Cette dernière est représentée à la figure Fig. 1. La droite réelle. Définition 2.6. Un intervalle est un sous ensemble de la droite réelle, c est-à-dire une partie de la droite. NOTATION La façon d écrire un intervalle allant du nombre a au nombre b dépend si ces nombres sont compris ou non dans l intervalle. Trois cas sont possibles : Cas 1: Si a et b sont inclus dans l intervalle, on écrit cet intervalle [a, b]. On représente graphiquement cet intervalle comme illustré à la figure 2. On note que les points aux extrémités sont pleins ce qui signifie qu ils sont inclus. C est un intervalle fermé. Cas 2: Si a et b sont exclus de l intervalle, on écrit cet intervalle ]a, b[. La figure 3 montre comment le dessiner. Ici, les extrémités sont des cercles vides, ce qui signifie qu ils ne sont pas dans l intervalle. On dit alors que ces un intervalle ouvert. Cas 3: Si a est inclus et b exclus ou l inverse, on note les respectivement [a, b[ et ]a, b]. Les figures 4 et 5 montrent ces intervalles. Si a ou b valent ±, le crochet est ouvert par définition. Par exemple, [a, [ où le crochet de droite est ouvert. Pour s en rappeler, on peut se dire que l infini ne fait pas partie des nombres réels.

39 3. INTERVALLES ET INÉQUATIONS 35 a b Fig. 2. Un intervalle fermé à gauche et à droite. a b Fig. 3. Un intervalle ouvert à gauche et à droite. a b Fig. 4. Un intervalle fermé à gauche et ouvert à droite. a b Fig. 5. Un intervalle ouvert à gauche et fermé à droite Les inéquations. Définition 2.7. Une inéquation est une inégalité, indentifiée par un des symboles,, < ou >, entre deux expressions. Exemple Voici quelques exemples d inéquations : (1) x > 3, (2) 3x 3 < 2x 2, (3) x + 8 x 4 1. Résoudre une inéquation consiste à déterminer les valeurs de la variable pour lesquelles l inégalité reste vérifiée. Pour ce faire, on isole la variable d un côté de l inégalité, tout comme pour une équation. Par contre, la manipulation se fait avec un peu plus de difficulté. Soit une inégalité de départ entre deux expressions A et B. Prenons par exemple A < B. Ce sont les mêmes propriétés qui s appliquent pour les autres inégalités. Soit C une autre expression. Alors, (1) A ± C < B ± C, c est-à-dire que l addition ou la soustraction d une expression des deux côtés ne change pas l inégalité.

40 36 2. ÉQUATIONS ET INÉQUATIONS (2) AC < BC si C est positif et AC > BC si C est négatif. Ainsi, si on multiplie les deux côtés par une expression qui est négative, on change l inégalité de côté. Si C est positif, rien ne change. (3) A/C < B/C si C est positive et on change le signe de l inéquation si C est négatif. Exemple Voici quelques exemples pour illustrer ces propriétés. (1) On veut résoudre 3x 1 < 4. 3x 1 < 4 3x < 5 addition de 1 de chaque côté. x < 3 division par 5 qui ne change pas l inégalité. 5 Ainsi, l ensemble solution est noté ES =], 3[. Ici, 3 n est 5 5 pas inclus dans l intervalle, x est strictement plus petit que 3. 5 On représente cet ensemble solution comme suit : Fig. 6. Représentation graphique de x < Trouvons l ensemble solution de 3x 4 5x x 4 5x + 6 2x 10 x 5 Ainsi, ES =], 5]. addition de 4 et de 5x de chaque côté. division par 2 qui change l inégalité de côté. important important important important important Il est à noter que si A < B alors A 2 B 2. Par exemple, si 2 < 1, on a alors 4 1. Par contre, parfois l inégalité persiste comme dans le cas 1 < 2 alors 1 < 4. Il faut donc faire attention et étudier ceci cas par cas Étape pour la résolution d inéquations. Tout comme pour la résolution des équations, la première étape à effectuer lors de la résolution d inéquations est de trouver le domaine. Rappelons que pour le trouver, on vérifie les points suivants : Étape 1: Vérifier le contexte de l équation.

41 3. INTERVALLES ET INÉQUATIONS 37 Étape 2: Enlever les valeurs de la variable pour lesquelles les dénominateurs s annulent. Par la suite, on isole la variable à l aide des propriétés. Finalement, l ensemble solution est l intersection du domaine et de l intervalle trouvé pour la variable. Exemple Trouvons l ensemble solution de l inéquation (x 2)(2x + 5) < 3x x + 5 Tout d abord, il faut déterminer le domaine. On ne doit pas diviser par zéro, donc x 5. D où dom =Ê\{ 5}. 2 2 (x 2)(2x + 5) < 3x + 8 2x + 5 x 2 < 3x < 2x 5 < x en simplifiant le terme de gauche Ainsi, ES =] 5, [\{ 5 }. Ici, on enlève le point qui n est pas dans le 2 domaine. On peut représenter cet ensemble solution sur la droite réelle comme suit : Fig. 7. Représentation graphique de l ensemble solution ES =] 5, [\{ 5 2 }.

42

43 CHAPITRE 3 Étude graphique de fonctions Introduction Ce chapitre se veut une introduction aux différents points de l étude des fonctions. Nous aborderons aussi la notion de paramètres influençant l allure d un graphique. Ceux-ci seront très utiles pour tracer les fonctions des autres chapitres. L étude d une fonction comporte huit éléments : (1) Le domaine (2) L image (3) L ordonnée à l origine (4) Le(s) zéro(s) (5) Le signe des images (6) Les extremums (7) Les intervalles de croissance et décroissance (8) L axe de symétrie Chacun de ces points sera vu séparément, mais avant de commencer il serait bien de savoir ce qu est une fonction. 1. Éléments de l étude des fonctions Définition 3.1. Une fonction d une seule variable est une relation qui associe à chaque élément d un ensemble A UN SEUL élément d un ensemble B. On note cette fonction f : A B x y = f(x). Cette notation se lie comme suit : Pour chaque valeur de x A, on associe une valeur y B à l aide de la règle y = f(x). On dit que x est la variable indépendante et y est la variable dépendante. On peut visualiser une fonction grâce au graphique sagittal. 39

44 40 3. ÉTUDE GRAPHIQUE DE FONCTIONS f(x) A B Fig. 1. Graphique sagittal représentant une fonction. Deux points importants sont illustrés sur cette figure. Le premier est que deux éléments de A peuvent être envoyés sur le même y. Le deuxième point est que ce ne sont pas tous les éléments de B qui sont le résultat de la fonction, i.e. que certains points de B ne sont pas reliés par une flèche. Puisque nous travaillons avec des fonctions qui partent d un sousensemble deê, il est difficile de les représenter à l aide du graphique sagittal. C est la raison pour laquelle on utilise une représentation cartésienne. Lorsqu une fonction est donnée par une règle f(x), cela signifie 01 f(x) (a, f(a)) a Fig. 2. Graphique cartésien. que F est une fonction de la variable x. Lorsque l on veut évaluer cette fonction en un point précis x = a, on note f(a). x

45 1. ÉLÉMENTS DE L ÉTUDE DES FONCTIONS 41 Exemple 3.1. Soit f(x) = x Alors f(2) = = Le domaine d une fonction. Définition 3.2. Le domaine d une fonction f, noté dom(f), est l ensemble de départ de la fonction, c est-à-dire l ensemble A dans notre notation. La grande question ici est de savoir quel est cet ensemble A. Puisque le cours consiste à étudier les fonctions réelles, on part de l idée que A =Ê. Par contre, f est une règle qui utilise des valeurs de x. Il faut donc que les valeurs de x fassent que la règle soit bien définie. Cela signifie, par exemple, que x ne doit pas rendre un dénominateur égale à 0. La prochaine définition du domaine est plus applicable pour la suite de ce cours. Définition 3.3. Le domaine d une fonction f(x) est l ensemble des valeurs possibles de x dansê. Pour l instant, on a trois points à vérifier afin de trouver le domaine. D autres points s ajouteront par la suite. (1) Le contexte (2) Les racines paires (3) Les dénominateurs Exemple 3.2. Soit la fonction A(x) = πx 2 qui calcule l aire d un cercle de rayon x. Ici, dom(a) = [0, [, car le rayon d un cercle est toujours positif. Exemple 3.3. Trouvons le domaine de la fonction 9 x f(x) = (x + 3)(x + π). Le contexte: Ici, il n y a pas de contexte, donc aucune restriction. Les racines: On a la présence d une racine carrée. Son intérieur doit être positif. D où 9 x 0 9 x. Cette condition donne que x ], 9]. Le dénominateur: Le dénominateur doit être différent de 0. Cherchons les valeurs de x pour lesquelles le dénominateur

46 42 3. ÉTUDE GRAPHIQUE DE FONCTIONS s annule. Ces valeurs seront rejetées du domaine. (x + 3)(x + π) = 0 x + 3 = 0 x + π = 0 x = 3 x = π D où les valeurs à rejeter sont π et 3. Pour trouver le domaine de f, on prend l intersection de toutes ces conditions et on obtient dom(f) =], 9] \ { π, 3}. Pour trouver le domaine d une fonction sur un graphique cartésien, il faut regarder pour quelles valeurs de x, il existe une valeur de y. Le graphique à la figure 3 nous servira d exemple tout au long de ce chapitre. 10 y en fonction de x y x Fig. 3. Exemple de représentation graphique d une fonction f(x). Les caractéristiques importantes à regarder sont les endroits où apparaissent un cercle noir ou un cercle blanc. Dans cette figure, on a un cercle noir en x = 5 et en x = 0. Le point en x = 5 indique la début de la fonction. Si la fonction débutait à l infini, on ne met pas de point. Ainsi, le domaine débute en x = 5. On remarque que la fonction continue à l infini, car il n y a pas de cercle qui arrête le fonction à droite. Le seul point pourrait être en x = 0, mais il y a des valeurs de y pour des x à droite de 0. Pour ce qui est de ce point, on

47 1. ÉLÉMENTS DE L ÉTUDE DES FONCTIONS 43 peut penser qu il n est pas dans le domaine, car il y a un cercle vide. Cependant, f(0) = 8, car en x = 0, il y a un cercle plein en y = 8. D où le dom(f) = [ 5, [ L image d une fonction. Définition 3.4. Le codomaine d une fonction f, noté codom(f) est l ensemble d arrivée de celle-ci. Ainsi, si f : A B, alors B est le codomaine de f. Définition 3.5. L image d une fonction f, notée ima(f) est l ensemble de toutes les valeurs prises par y. Il est à noter que ima(f) codom(f). La distinction entre l image et le codomaine est bien établie dans la figure 1. Le codomaine est l ensemble B tandis que l image est l ensemble de tous les éléments de B qui sont reliés à un ou plusieurs éléments de A par la fonction (ici la flèche). Exemple 3.4. L exemple simple est la fonction f :Ê Ê x y = x 2. Ici, codom(f) =Ê, mais les valeurs possibles de y sont les nombres réels positifs, d où ima(f) = [0, [. Pour la suite de ce cours, on supposera toujours que le codom(f) = Ê. Ainsi, on représentera les fonctions seulement avec l aide de leur règle. Exemple 3.5. Trouvons l image de la fonction représentée à la figure 3. Pour ce faire, il faut identifier toutes les valeurs possibles de y. En balayant l axe des y de bas en haut, on cherche les valeurs de y qui sont sur la fonction. La première valeur rencontrée est 12 et ça monte jusqu à 4. Par contre, 4 n est pas une valeur prise par la fonction à cause du cercle vide. En continuant le balayage, on voit que 8 est une valeur possible. Ainsi, ima(f) = [ 12, 4[ {8}. Le calcul algébrique de l ensemble image sera abordé à chaque fonction que nous étudierons.

48 44 3. ÉTUDE GRAPHIQUE DE FONCTIONS 1.3. L ordonnée à l origine. Voici sa définition : Définition 3.6. L ordonnée à l origine est la valeur de la fonction lorsque x vaut 0. En d autres termes, l ordonnée à l origine est f(0). Graphiquement, elle correspond à la valeur de y lorsque la fonction croise l axe y. y f(0) x Trouver l ordonnée à l origine algébriquement est assez simple. Il suffit de remplacer x par 0 dans la règle de la fonction. Exemple 3.6. Soit f(x) = 3x +1. Alors, l ordonnée à l origine est f(0) = = 1. Exemple 3.7. L ordonnée à l origine de la fonction sur la figure 3 est 8, car c est la valeur de y lorsque x = 0. Il faut faire attention le cercle vide en y = 4 signifie que ce point n est pas sur la fonction. important important important important important Il existe seulement une seule valeur de l ordonnée à l origine d une fonction. Sinon, ce n est pas une fonction! 1.4. Les zéros. Voici la définition des zéros d une fonction : Trouver Définition 3.7. Les zéros d une fonction (aussi appellés racines ou abscisses à l origine) sont les valeurs de x dans le domaine de f qui rendent la fonction nulle. Graphiquement, ce sont les endroits où la fonction croise l axe des x. y zéros x algébriquement les zéros d une fonction f(x) consiste à résoudre l équation f(x) = 0. Cependant, il n est pas toujours facile et même possible de résoudre cette équation selon la fonction. Nous regarderons comment faire pour chaque fonction que l on étudiera. Exemple 3.8. Trouvons les zéros de f(x) = x 2 + x 6. On doit résoudre x 2 + x 6 = 0 (x + 3)(x 2) = 0 x + 3 = 0 ou x 2 = 0 x = 3 x = 2 Puisque le domaine estê, alors les zéros sont 3 et 2.

49 1. ÉLÉMENTS DE L ÉTUDE DES FONCTIONS 45 Exemple 3.9. La fonction de la figure 3 possède deux zéros en x = 0.5 et x = Le signe des images. Ici, on recherche les valeurs de x pour lesquelles f(x) 0 ou f(x) 0 en d autres mots, on cherche quand f(x) est positive et quand elle est négative. Il ya deux manières de procéder : graphiquement ou algébriquement. Dans les deux cas cependant, il faut trouver les zéros de la fonction. Graphiquement: La première étape, on trouve les zéros de la fonction. Sur le graphique ci-contre, on a trois zéros : en x 1, x 2 et x 3. Par la suite, on recherche à quels endroits la fonction est positive, c est-à-dire pour quelles valeurs de x on a y au dessus de l axe des x. Dans ce cas, c est lorsque x est entre x 1 et x 2 et lorsqu il est plus grand que x 3. On écrit alors y x 1 x 2 x 3 x f(x) 0, x [x 1, x 2 ] [x 3, [. D une manière similaire, on trouve que f(x) 0, x ], x 1 ] [x 2, x 3 [. Exemple Trouvons le signe des images de la fonction sur la figure 3. On sait que les zéros sont 0.5 et 4. On remarque que la fonction est négative si x < 0.5 et si x > 4 et est positive le reste du temps. D où, f(x) 0, x [ 5, 0.5] [4, [, f(x) 0, x [ 0.5, 4]. Il est à noter que la fonction n est pas définie pour des x plus petits que 5, d où la raison pur laquelle l intervalle pour f(x) négatif débute à 5 et non à. Algébriquement: Plusieurs façons sont possibles afin de trouver algébriquement le signe des images. Nous utiliserons ici un tableau de signes. Cette méthode fonctionne dans tous les cas. Voici la marche à suivre pour faire ce tableau.

50 46 3. ÉTUDE GRAPHIQUE DE FONCTIONS (1) Trouvez le domaine de la fonction. (2) Trouvez les zéros et les valeurs qui annulent le dénominateur. (3) Mettre les zéros et les valeurs qui annulent le dénominateur dans le tableau (voir exemple). (4) Évaluer la fonction dans chaque intervalle. Cela vous donne le signe de la fonction dans chaque intervalle. Exemple Trouvons le signe des images de (x + 3)(x 2) f(x) =. (x + 1) Le domaine: ici dom(f) =Ê\{ 1}. Les zéros: Les zéros sont 3 et 2. De plus 1 annule le dénominateur. Construction du tableau: La ligne où se trouve la fonction correspond aux signes de la fonction dans l intervalle des x. Pour les trouver, on évalue la fonction en un point de cet intervalle. x f(x) On a donc que f(x) 0, x [ 3, 1[ [2, [ f(x) 0, x ], 3] ] 1, 2] Les extremums d une fonction. Définition 3.8. Le maximum absolu (ou global) d une fonction f(x), noté max(f), est la plus grande valeur qu atteint f(x) et ce, pout tout x dom(f). D une manière similaire, le minimum absolu (ou global) de f(x) est la plus petite valeur atteinte. On note le minimum min(f). Dans ce chapitre, nous n étudierons que les cas graphiques. Exemple Le graphique de la figure 3 montre que la plus grande valeur de f(x) ou de y est de 8. Ainsi, max(f) = 8. Pour le minimum, min(f) = 12.

51 1. ÉLÉMENTS DE L ÉTUDE DES FONCTIONS 47 Exemple Trouvons les extremums de cette fonction. y x 1 x 2 x 3 x Cette fonction ne possède ni maximum ni minimum, car elle monte tout le temps à droite, et diminue lorsque x décroît. Définition 3.9. (x 0, f(x 0 )) est un point de maximum relatif (ou local) s il est un maximum de la fonction restreinte à un petit intervalle autour de x 0. De même, (x 0, f(x 0 )) est un point de minimum relatif s il est un minimum de la fonction restreinte à un petit intervalle autour de x 0. La figure 4 montre une fonction ayant un maximum relatif et un minimum relatif, mais qui ne possède pas de maximum et de minimum. max. relatif y x 1 x 2 x 3 x min. relatif Fig. 4. Fonction possèdant un maximun et un minimum relatif, mais n ayant aucun maximun et minimum absolus. Exemple Revenons à l exemple de la figure 3. Cette fonction possède un minimum relatif en x = 4. Ce minimum vaut 12 et il correspond également à un minimum absolu. La fonction a aussi un maximum relatif au point (0, 8). Lui aussi est un maximum absolu Les intervalles de croissance et de décroissance. Définition On dit qu une fonction f(x) est strictement croissante sur un intervalle [a, b] si x 1 < x 2 [a, b], alors f(x 1 ) < f(x 2 ). D une

52 48 3. ÉTUDE GRAPHIQUE DE FONCTIONS manière similaire, on dit que f(x) est strictement décroissante sur l intervalle [a, b] si x 1 < x 2 [a, b], alors f(x 1 ) > f(x 2 ). Ce que ces définitions signifient, c est que la fonction est croissante si la valeur de y augmente lorsque la valeur de x augmente et que la fonction est décroissante si sa valeur diminue lorsque la valeur de x augmente. Exemple Voici les intervalles de croissance et de décroissance pour la fonction présentée sur la figure 3. Cet exemple montre également la notation. f(x) x [ 4, 0], f(x) x [ 5, 4] [0, 6]. La première ligne se lit : f(x) est croissante pour tout x dans l intervalle [ 4, 0]. La deuxième ligne se lit de la même façon. Il est à noter que pour x > 6, la fonction n est pas croissante ni décroissante. On dit alors qu elle est constante. Tout comme pour les extremums, nous n,entrerons pas dans les détails de la façon de les trouver algébriquement. Il faut savoir les retrouver graphiquement L axe de symétrie. Définition L équation de l axe de symétrie est une droite de la forme x = a où a est une constante. Cette droite correspond à un axe de réflexion qui réfléchit la fonction sur elle-même. Pour bien comprendre, regardons quelques exemples. y x = a Exemple Ici, la fonction est symétrique par rapport à l axe x = a. Cela signifie que si l on effectue une réflexion par rapport à cet axe, on obtient exactement le même graphique. a x

53 2. OPÉRATIONS SUR LES FONCTIONS 49 y x = a Exemple La fonction n est pas symétrique, c est-à-dire qu il n existe pas d axe de symétrie. La droite pointillée montre le résultat de la réflexion par rapport à l axe x = a. x 2. Opérations sur les fonctions 2.1. La composition de fonction. Définition Soient deux fonctions f(x) et g(x). La composition de f(x) et g(x) est notée f g(x) et vaut f(g(x)). Exemple Soient f(x) = 3x 2 4 et g(x) = x + 1. Alors, f g(x) = f(g(x)) 3(g(x)) 2 4 3( x + 1) (x + 1) 4 3x 1. Il est à noter que que f g(x) g f(x). 10 y en fonction de x Exemple Soit la fonction f(x) représentée à la figure ci-contre. Trouvons f f(8). On a f f(8) = f(f(8)) = f( 2) = 8. y x Il est important maintenant de savoir quel est le domaine d une fonction composée, c est-à-dire une fonction h(x) = f g(x). Pour ce faire, étudions un exemple.

54 50 3. ÉTUDE GRAPHIQUE DE FONCTIONS Exemple Soient f(x) = 3x 2 4 et g(x) = x + 1. Posons h(x) = f g(x) et cherchons le domaine de cette fonction. Condition 1: Puisque la première étape est de calculer g(x), il faut que cette fonction soit bien définie. Ainsi, x dom(g). Dans notre cas ici, dom(g) = [ 1, [. Condition 2: Il faut que les valeurs de g(x) soient dans le domaine de f(x). Ce qui revient à dire que l on veut les x dom(g) tels que g(x) dom(f). Dans l exemple, puisque dom(f) = Êalors ça fonction pour tous les x dans le domaine de g(x). En conclusion, dom(h) = {x x dom(g) et g(x) dom(f)}. Exemple Trouvons le domaine de h(x) = f g(x) et de k(x) = g f(x), où f(x) = x + 1 et g(x) = x 2. Pour h(x), on a que dom(h) = {x x dom(g) et g(x) dom(f)}. Puisque dom(f) =] 1, [, dom(g) =Êet ima(g) = [0, [, on a que dom(h) =Ê. Cependant, dom(k) = [ 1, [, car la fonction f est définie seulement pour ces valeurs et g(x) est toujours bien définie La réciproque. Définition Soit f : dom(f) ima(f). On appelle réciproque de f, notée f 1 (x) la relation f 1 : ima(f) dom(f). f dom(f) codom(f) f 1 Pour trouver f 1 (x) à partir de f(x), on isole y dans l expression x = f(y). On a alors y = f 1 (x).

55 2. OPÉRATIONS SUR LES FONCTIONS 51 Exemple Trouvons la réciproque de f(x) = 3x + 4. Pour ce faire, isolons y dans l équation x = f(y). x =f(y) x = 3y + 4 y = x 4 = f 1 (x). 3 Graphiquement, la réciproque est obtenue par la réflextiondu graphique de f(x) par rapport à l axe y = x. Exemple La figure montre la fonction réciproque de la fonction y = x 2. La droite en pointillés est y = x. On voit bien que f 1 (x) y=x 5 4 y x n est pas une fonction, car deux valeurs de y sont possibles pour une seule valeur de x. On obtient le même résultat algébriquement. x = f(y) x = y 2 y = ± x Exemple Soit f(x) = x 2 x. Trouvez f 1 (6). Ici, on pourrait trouver f 1 (x), mais ce serait une perte de temps, car si x = f 1 (6), alors f(x) = 6. On n a qu à résoudre cette équation. x 2 x = 6 x 2 x 6 = 0 (x 3)(x + 2) = 0 x = 3 ou x = 2

56 52 3. ÉTUDE GRAPHIQUE DE FONCTIONS 3. Rôle des paramètres a, b, h et k Dans cette section, nous étudierons le rôle de certains paramètres qui permettent de transformer une fonction déjà connue, nommée fonction de base. Il y a quatre paramètres : a, b, h et k. Chacun joue un rôle distinct dans la transformation d une fonction. Supposons que nous ayons une fonction de base f(x). Alors, sa transformation par les paramètres a, b, h et k est une nouvelle fonction g(x) où (1) g(x) = af(b(x h)) + k. Regardons ce que fait chacun de ces paramètres Rôle de a. Comme on peut le voir dans l équation de la fonction transformée, a multiplie la fonction de base, c est-à-dire y. Cela a pour effet d étirer verticalement la fonction de base lorsque a > 1 et de la compresser si 0 < a < 1. Dans le cas où a est négatif, il y aura une réflexion de la fonction de base par rapport à l axe des x suivi d une contraction ou d un étirement selon la grandeur de a. Exemple Cet exemple illustre bien l effet de a sur la fonction de base montrée au premier graphique. f(x) f(x) fonction de base x a= x f(x) f(x) a= x a= x Fig. 5. Illustration du rôle de a. Ici, a = 2, a = 0.5 et a = 1.

57 3. RÔLE DES PARAMÈTRES a, b, h ET k 53 Le deuxième graphique montre la fonction transformée avec a = 2. La fonction de base est en pointillés. L effet de a est apparent en regardant le point (2, 4) sur la fonction de base représenté par le cercle. Le résultat de la transformation est le point (2, 8) (le carré), car on a multiplié y par 2. Dans le cas où a = 0.5, on contracte verticalement le graphique. Le point (2, 4) devient alors (2, 2). Finalement lorsque a est négatif, ici 1, il y a une réflexion de la fonction de base par rapport à l axe des x. Ainsi, le point (2, 4) devient (2, 4) Rôle de b. Puisque le paramètre b est à l intérieur de la fonction, il agit sur la variable x. Un peu comme a, il sert à étirer, contracter et réfléchir la fonction de base, mais à quelques différences près. Si b > 1, il y a contraction horizontale de la fonction de base. Si 0 < b < 1, il y a un étirement horizontal. Si b est négatif, il y a une réflexion par rapport à l axe des y suivi d une contraction ou d un étirement selon la grandeur de b. f(x) f(x) fonction de base x b= x f(x) f(x) b= x b= x Fig. 6. Illustration du rôle de b. Ici, b = 2, b = 0.5 et b = 1.

58 54 3. ÉTUDE GRAPHIQUE DE FONCTIONS Exemple Encore une fois, la fonction de base est dessinée en pointillés. On voit bien l effet des différentes valeurs de b, mais le plus important est de porter notre attention sur les points en cercle et en carré. Puisque le paramètre b influence x, on remarque que la valeur de y ne change pas après la transformation par le parmètre b. Ainsi, le point (1, 1) devient le point (0.5, 1) lorsque b = 2, ce même point devient (2, 1) si b = 0.5. Lorsque b = 1, on voit que le point (1, 1) se transforme en ( 1, 1). Il est à noter que l on peut parfois confondre le rôle de b et de a. On verra plus loin que dans certains cas, on peut fusionner a et b. Ainsi, le changement d échelle horizontale sera compris dans le changement d échelle verticale Rôle de h. Tout comme le paramètre b, h agit sur la variable x. Il correspond à une translation horizontale de la fonction de base. S il est positif, la translation se fait vers la droite et s il est négatif, c est vers la gauche. important important important important important Il est important de voir que la forme de la fonction transformée c est x h qui apparaît et non pas x + h. Ainsi, si h est positif, on soustrait quelque chose à x et on lui additionne une quantité si h est négatif. La figure 7 montre la translation de la fonction de base causée par le paramètre h Rôle de k. Le paramètre k cause une translation verticale de la fonction de base. S il est positif, c est vers le haut et vers le bas s il est négatif. Le tout est montré à la figure 8.

59 3. RÔLE DES PARAMÈTRES a, b, h ET k 55 f(x) fonction de base x h= 1 25 f(x) h= x f(x) x Fig. 7. Illustration du rôle de h. Ici, h = 1et h = 1. f(x) f(x) fonction de base x h= x f(x) k= x Fig. 8. Illustration du rôle de k. Ici, k = 1et k = 1.

60 56 3. ÉTUDE GRAPHIQUE DE FONCTIONS 3.5. Résumé. Ce que nous devons retenir au sujet des paramètres a, b, h et k : a est un changement d échelle verticale : étirement si a > 1, contraction si 0 < a < 1 et réflexion par rapport à l axe des x suivi d une contraction ou d un étirement si a < 0. b est un changement d échelle horizontale : étirement si 0 < b < 1, contraction si b > 1 et réflexion par rapport à l axe des y suivi d une contraction ou d un étirement si b < 0. h est une translation horizontale de la fonction de base : vers la droite si h > 0 et vers la gauche si h < 0. k est une translation verticale de la fonction de base : vers le haut si k > 0 et vers le bas si k < 0. Pour tracer une fonction transformée à partir du graphique de la fonction de base, il suffit d appliquer ce qui suit. Un pint (x, y) de la fonction de base devient le point ( x + h, ay + k). On écrit b (x, y) x + h, ay + k. b Exemple Tracer la fonction obtenue par la transformation de la fonction f(x) représentée à la figure 9 avec a = 3, b = 1, h = 2 et k = y x Fig. 9. Graphique de f(x).

61 3. RÔLE DES PARAMÈTRES a, b, h ET k 57 Pour répondre à cette question, regardons ce qui arrive avec certains points remarquables du graphique. Prenons les points ( 5, 2), ( 3, 0), ( 0.5, 6.25), (2, 0) et (5, 1). Ces points ont été choisis, car il sont les points de changements brusques de la fonction. Effectuons la transformation sur chacun des points. Commençons par le point ( 5, 2). Puisque h > 0, il y aura une translation vers la droite de 2 de la fonction. Ainsi, la coordonnée x devient 3. Pour la composante y, on doit la multiplier par 3 et lui ajouter 4, d où le point transformé est ( 3, 10). On répète le processus pour les autres points. Par la suite, on les relie en gardant la même allure de courbe entre chaque point. Cela signifie que si entre deux points on avait une droite, la courbe reste une droite, car la transformation ne change pas la nature de la courbe. Nous avons donc la solution y x Fig. 10. Graphique de 3f(x 2) + 4.

62

63 CHAPITRE 4 La droite Dans ce chapitre, nous étudierons tous les dessous de la droite. Celle-ci est très utile dans tous les domaines et elle permet de faire de belles choses. De plus, elle est très simple à manipuler, ce qui en fait un outil idéal dans plusieurs aspects des mathématiques. 1. La fonction constante Définition 4.1. Une fonction constante est de la forme où c Ê. f(x) = c, Le graphique de cette fonction est y =Ê c x Étudions cette fonction à l aide des huits éléments d étude : Le domaine: dom(f) L image: ima(f) = {c} L ordonnée à l origine: f(0) = c Les zéros: Deux cas : Si c 0, il n y a aucun zéro. Si c = 0, il y a une infinité de zéros et ce, x dom(f). Le signe des images: Deux cas : Si c > 0, f(x) > 0 x dom(f). Si c < 0, f(x) < 0 x dom(f). Extremums: max(f) = min(f) = c. Croissance et décroissance: Aucune. Équation de l axe de symétrie: x = a et ce a Ê. 59

64 60 4. LA DROITE 2. La fonction linéaire Définition 4.2. Une fonction linéaire est une fonction de la forme où a, b Êet a 0. f(x) = ax + b, Pour tracer une fonction linéaire, il suffit de trouver deux points de la fonction, ici (x 1, y 1 ) et (x 2, y 2 ), et de dessiner la droite qui passe par ces deux points. Ainsi, l allure générale d un fonction linéaire est y (x 2, y 2 ) (x 1, y 1 ) y (0, b) x x 1 x 2 x =Ê =Ê Étudions cette fonction : Le domaine: dom(f) L image: ima(f) L ordonnée à l origine: f(0) = a 0 + b = b. C est pourquoi on appelle b l ordonnée à l origine. Les zéros: Deux cas : Cette fonction possède un seul zéro qui est obtenu comme suit : ax + b = 0 ax = b x = b a Le signe des images: Deux cas, selon la valeur de a : Si a > 0, f(x) > 0, x[ b/a, + [ et f(x) < 0, x], b/a].

65 Si a < 0, 2. LA FONCTION LINÉAIRE 61 f(x) < 0, x[ b/a, + [ et f(x) > 0, x], b/a]. Extremums: La fonction ne possède pas de minimum ni de maximum. Croissance et décroissance: Deux cas selon la valeur de a. Si a > 0, la fonction est croissante partout. Si a < 0, la fonction est décroissante partout. Équation de l axe de symétrie: La fonction ne possède pas d axe de symétrie Recherche de la règle d une droite. La constante a dans la règle de la fonction linéaire est ce que l on nomme la pente ou le taux de variation de la droite. On peut facilement retrouver ce taux de variation à l aide de la formule suivante : a = y x = y 2 y 1, x 2 x 1 où (x 1, y 1 ) et (x 2, y 2 ) sont deux points de la droite. Le symbole signifie variation de. Ainsi, y = y 2 y 1 signifie variation de y et dans le cas d une droite, le taux de variation est toujours le même. La recherche de la règle d une fonction linéaire est assez simple. Il y a deux cas qui s offrent à nous selon les informations connues Cas où l on connaît la pente et un point de la droite. Supposns que l on connaît la pente a et un point (x 1, y 1 ) de la droite. Pour écrire sa règle, il faut trouver la constante b en se servant les informations que l on détient. Ici, on sait que la droite passe par le point (x 1, y 1 ), d où l équation à résoudre : y 1 = ax 1 + b. Ainsi, on peut trouver la valeur de b en l isolant, ce qui nous donne b = y 1 ax 1. Exemple 4.1. Trouvons l équation de la droite qui a une pente de 4 et qui passe par le point (1, 2). Puisque la pente est de 4, alors on a que y = 4x + b. Ainsi, D où la réponse, y = 4x 2. 2 =4 1 + b b = 2.

66 62 4. LA DROITE Cas où l on connaît deux points de la droite. Dans le cas où l on connaît deux points de la droite, (x 1, y 1 ) et (x 2, y 2 ), il suffit de trouver la pente à l aide de la formule a = y x = y 2 y 1 x 2 x 1 et de faire les étapes du cas précédent en choisssant un des deux points. Exemple 4.2. Trouvez l équation de la droite qui passe par les points (1, 8) et (2, 6). Premièrement, calculons la pente a = y x = y 2 y 1 x 2 x 1 = = 2 Maintenant que nous avons la pente de la droite, il faut choisir un des points afin de trouver b. Si l on prend le point (1, 8), on obtient 8 = b b =10. D où l équation de la droite : y = 2x Taux de variation moyen. Regardons ici la notion de taux de variation moyen. Celle-ci est à la base du calcul différentiel qui sera abordé dans les cours de mathématiques plus avancés. Définition 4.3. Soit une fonction f(x). Le taux de variation moyen de f(x) sur l intervalle [a, b] est donné par TV M [a,b] f(x) = f(b) f(a). b a Exemple 4.3. Trouvons le TV M de f(x) = x 2 sur l intervalle [1, 2]. TV M [1,2] f(x) = f(2) f(1) 2 1 = = 3 Géométriquement, le TV M [a,b] f(x) correspond à la pentre de la droite sécante à f(x) qui passe par les points (a, f(a)) et (b, f(b)).

67 3. RELATIONS ENTRE DEUX DROITES 63 y f(b) f(a) droite sécante a b x Exemple 4.4. Trouvez l équation de la droite sécante à la fonction f(x) = x 2 qui passe par (1, f(1)) et par (2, f(2)). On sait que la pente de la droite sécante est donnée par le TV M [1,2] f(x). Ce dernier vaut 3, on l a calculé dans le dernier exemple. Ainsi, on a la pente de la droite et on sait que celle-ci passe par (1, 1). D où, 1 =3 1 + b b = 2. Ainsi, l équation de la droite sécante est y = 3x Relations entre deux droites Avant de décrire les relations entre deux droites dans le plan, regardons quelques définitions. Définition 4.4. Voici quelques termes utilisés pour parler d une droite : y = ax + b est la forme canonique d une droite oblique. y = b est la forme canonique d une droite horizontale. x = c est la forme canonique d une droite verticale. Ax + By + c = 0 est la forme générale d une droite. On peut maintenant aborder le sujet de la relation entre deux droites du plan. Considérons les droites D 1 et d 2 écrites sous leurs formes canoniques : D 1 : y = a 1 x + b 1, D 2 : y = a 2 x + b 2. Il y a quatre relations possibles pour ces deux droites selon les valeurs de leurs pentes et de leurs ordonnées à l origine. On verra des exemples de ces droites dans les sections à venir.

68 64 4. LA DROITE D 1 et D 2 D 1 D 2 D 1 et D 2 sont parallèles si a 1 = a 2 et b 1 b 2. D 1 et D 2 sont parallèles confondues si a 1 = a 2 et b 1 = b 2. D 1 D 1 D2 D 1 et D 2 sont sécantes ou concourantes si a 1 a 2. D 2 D 1 et D 2 sont perpendiculaires si a 1 a 2 = Systèmes de deux équations linéaires à deux variables. Un système de deux équations linéaires à deux variables consiste à étudier la relation entre deux droites. La forme générale de ce système S est S = Ax + By + C = 0 Dx + Ey + F = 0, avec A, B, C, D, E et F des constantes. Le but avec ce système est de le résoudre. Cela consiste à trouver les valeurs de x et de y qui font que les équations sont vraies en même temps. Géométriquement, cela revient à trouver les points du plan où se croisent les deux droites. L ensemble des points d intersection des

69 3. RELATIONS ENTRE DEUX DROITES 65 droites est l ensemble solution du système d équations et il est noté ES. Il y a trois possibilités pour l ensemble solution : Cas 1, aucune solution: C est le cas où les deux droites sont parallèles, c est-à-dire qu elles ne se croisent jamais. Alors, on écrit ES =. Exemple 4.5. Soit le système Ici, on peut le réécrire S = 2x + y 8 = 0 2x + y + 4 = 0 S = y = 2x + 8 y = 2x 4 et on remarque que les deux droites sont parallèles, car elles ont la même pente. Ainsi, ES =. Cas 2, une seule solution: Ici, ES possède un seul élément qui est un points (x 0, y 0 ). Ce cas survient lorsque les deux droites sont sécantes ou perpendiculaires. Nous verrons comment trouver ce points un peu plus loin. Cas 3, une infinité de solutions: Ce cas arrive lorsque les deux droites sont des droites parallèles confondues. À ce moment, ES est l ensemble de tous les points sur la droite. On n entrera pas dans les détails de ce cas. Ceux-ci seront vus dans un cours d algèbre linéaire plus avancé. Exemple 4.6. Soit le système S = 2x + y + 4 = 0 4x + 2y + 8 = 0. On peut réécrire le système comme suit : S = y = 2x 4 y = 2x 4. On a donc deux fois la même droite. Ainsi, ES est l ensemble des points sur la droite y = 2x 4. Dans deux des trois cas, il suffit de manipuler légèrement le système afin d arriver à l ensemble solution. Cependant, dans le cas où non possédons une seule solution, il faut travailler un peu plus. Il existe trois méthodes pour y parvenir.

70 66 4. LA DROITE Méthode de réduction ou d addition. Explicitons cette méthode par un exemple. Exemple 4.7. Trouvons l ES du système 2y + 3x = 10 y + 5 = x. La première étape consiste à placer toutes les variables à gauche de l égalité et les termes constants à droite. 3x + 2y = 10 x + y = 5. Il est à noter que l on met les variables l une vis-à-vis l autre. Pour la deuxième étape, on multiplie la deuxième équation afin que le coefficient devant le x soit le même que celui de la première équation, mais de signe opposé. Dans cet exemple, on multiplie la deuxième équation par 3 afin d obtenir 3 devant le x. Ainsi, 3x + 2y = 10 3x + 3y = 15. Il est à noter que cette opération ne change pas l ensemble solution. Finalement, on additionne les deux lignes. 3x + 2y = x + 3y = 15 5y = 5 Ainsi, on trouve que y = 1. Il faut maintenant trouver la valeur de x. On prend la première équation, on remplace y par sa valeur et on isole x. D où, ES = {(4, 1)}. 3x + 2y = 10 3x = 10 x = Méthode de substitution. La méthode de substitution consiste à isoler une variable de l une des équations et à la remplacer dans l autre équation afin de trouver la valeur de l autre variable. L exemple suivant montre bien la méthode. Exemple 4.8. Trouvons la solution du même système qu à l exemple précédent : 2y + 3x = 10 y + 5 = x.

71 3. RELATIONS ENTRE DEUX DROITES 67 Ici, x est déjà isolé dans la deuxième équation. On va donc remplacer x par y + 5 dans la première équation et isoler y : 2y + 3(y + 5) = 10 5y + 15 = 10 5y = 5 y = 1 On reprend la deuxième équation pour trouver x, x = y + 5 = = 4. L ensemble solution est donc {(4, 1)} Méthode de comparaison. L idée de cette méthode est d isoler la même variable dans chacune des équations. Ensuite, on égalise les deux équations et on isole la deuxième variable. Exemple 4.9. Trouvons l ensemble solution du système 2y + 3x = 10 y + 5 = x. Isolons x dans les deux équations. 2y + 3x = 10 x = y y x = 3 Maintenant, on égalise les deux équations 10 2y = y y = 3y = 5y y = 1 On peut retrouver la valeur de x avec l une des équations, Ainsi, ES = {(4, 1)}. x = y + 5 = = Exercices sur la section 3. (1) Trouvez l ensemble solution des sytèmes suivants : a) x = y y = x + 1. b) x + y = 10 x y = 4. c) x 3 = 4y 3x 12y = 9.

72 68 4. LA DROITE 4. Modélisation Les systèmes d équations linéaires nous permettent de résoudre des problèmes de la vie de tous les jours. Dans le chapitre 2, nous avons vu les étapes pour résoudre une situation lorsque celle-ci pouvait être décrite par une équation linéaire. Ici, nous verrons comment résoudre ces problèmes avec un système d équations. Cela simplifiera énormément la procédure. Exemple Deux F18 de l armé sont en plein vol. Il reste le tiers de carburant pour le premier F18 et 120L pour le second. Un avion ravitailleur vient remplir leur réservoir. Il prend 5 minutes pour remplir le premier et 6 minutes pour le second. Si le débit de transfert d essence est le même pour les deux F18, a) écrivez une équation qui permet de trouver ce débit (identifier bien la variable), b) trouvez le débit du transfert d essence (en L/min), c) quelle quantité d essence peut contenir le réservoir d un F18? Pour répondre à cette question, on doit tout d abord identifier les variables : x : quantité d essence d un F18 (en litre) y : taux d arrivée du carburant (en litre par minute). On trouve maintenant le système d équations. Pour le premier F18 : x = 1 x + 5y. Ceci provient du fait que ce F18 avait le tiers de sa capacité d essence et on lui ajoute de l essence à un débit y pendant 5 3 minutes. Pour le deuxième F18 : x = y, car il lui restait 120 litres d essence et on lui en ajoute pendant 6 minutes. On a maintenant deux équations et deux variables. Pour résoudre ce système, isolons x dans les deux équations. x = 1 3 x + 5y et x = y x = 15 2 y

73 Maintenant, on peut résoudre 15 y = y 2 15y = y 5. LES DISTANCES 69 3y =240 y = 80 x = = 600. Ainsi, les réponses sont : a) déjà répondu b) le débit est y et il vaut 80L/min. c) c est la valeur de x et elle vaut 600L. Exemple Pour construire un garage, on a utilisé 2500 planches de bois de deux essences différentes. Les planches de la première essence valent 2$ l unité et celles de la deuxième 3$ l unité. Si la facture s élève à 6500 $, combien de planches de chaque essence a-t-on achetées? Posons x le nombre de planches de la première essence et y le nombre de planches de la deuxième. Nous obtenons alors le système 2x + 3y = 6500 x + y = 2500 La solution de ce système est x = 1000 et y = Ainsi, il faut 1000 planches de la première essence et 1500 de la deuxième. 5. Les distances Dans cette section, nous étudierons la distance entre différents objets mathématiques. Avant d entrer dans les détails, rappelons un théorème bien connu, celui de Pythagore. Théorème 4.1 (Pythagore). Soit un triangle rectangle ayant une hypothénuse de longueur c et des cathètes de longueur a et b. Alors, c 2 = a 2 + b 2. Démonstration. Pour démontrer ce théorème, nous devons construire la figure suivante :

74 70 4. LA DROITE c c c b a c La procédure à suivre est de calculer l aire du grand carré, notée A, de deux manières différentes. Méthode 1: A = c 2, car le grand carré a des côtés de longueur c. Méthode 2: Le grand carré est constitué de quatre triangles rectangles et d un carré de côtés b a. Ainsi, A = 4 ab 2 + (b a)2 = 2ab + b 2 2ab + a 2 = a 2 + b 2 Ainsi, nous avons calculé la même aire de deux manières, d où c 2 = a 2 + b Distance entre deux points. Définition 4.5. Soient P 1 : (x 1, y 1 ) et P 2 : (x 2, y 2 ), deux points dans le plan. La distance entre ces deux points, notée d (P 1, P 2 ), est la longueur du segment de droite qui relie ces points. Grâce au théorème de Pythagore, on a que d (P 1, P 2 ) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. P 2 y 2 P 1 y 2 y 1 y 1 x 2 x 1 x 1 x 2

75 5. LES DISTANCES 71 Exemple Trouvons la distance entre les points P 1 : (2, 3) et P 2 : ( 5, 4). Pour ce faire, utilisons la formule 5.2. Point milieu. d (P 1, P 2 ) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 = ( 5 2) 2 + ( 4 3) 2 = ( 7) 2 + ( 1) 2 = = 5 2. Définition 4.6. Le point milieu est le point qui est à égale distance entre deux points. Pour trouver les coordonnées du point milieu P M entre P 1 : (x 1, y 1 ) et P 2 : (x 2, y 2 ) sont données par la formule 1 + x 2 P M = x, y 1 + y Il est très simple de démontrer cette formule. Il suffit de construire deux triangles rectangles comme le montre la figure suivante : P 1 P M P 2 On se retrouve avec deux triangles qui sont congrus par ACA. Ainsi, les cathètes des triangles doivent avoir la même longueur, ce qui correspond à la moitié de x 2 x 1 et de y 2 y 1. D où, on obtient la formule. 2 2 Exemple Trouvons le point milieu entre les points A : (5, 2) et B : (5, 11). 1 + x 2 P M = x, y 1 + y = 5, 2 = 5, Distance entre un point et une droite. Définition 4.7. La distance entre une droite d et un point P correspond à la plus courte distance entre les points de la droite et P.

76 72 4. LA DROITE Pour trouver cette distance, on doit suivre les étapes suivantes : Étape 1: On trouve l équation de la droite d qui est perpendiculaire à la droite d et qui passe par P. Étape 2: On trouve le point P qui est le point d intersection de d et d. Étape 3: On calcule la distance entre P et P. Cette distance correspond à la distance entre le point et la droite. La figure suivante illustre la méthode. d P d P Exemple Trouvons la distance entre le point (1, 5) et la droite y = 3/4x 2. Étape 1: On cherche la droite y = ax+b qui est perpendiculaire à y = 3/4x 2 et qui passe par (1, 5). On sait que si deux droites sont perpendiculaires, alors le produit de leurs pentes est 1. Ainsi, a 3 4 = 1 a = 4 3. Maintenant, on a y = 4 3 x + b 5 = b b = D où la droite d est y = 4/3x + 19/3. Étape 2: Il faut maintenant déterminer le point d intersection entre d et d. y = 4 3 x = 3 4 x 2 25x = 100 x = 4 y = 3/4 4 2 = 3 2 = 1. Donc, P : (4, 1).

77 5. LES DISTANCES 73 Étape 3: Calculons d(p, P ). d (P, P ) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 = (4 1) 2 + (1 5) 2 = (3) 2 + ( 4) 2 = 25 = 5. La distance est donc de 25.

78

79 CHAPITRE 5 La parabole La parabole est une fonction très importante en mathématique. Elle est présente dans plusieurs modélisations : la trajectoire d un projectile, miroir de télescope etc... Son étude est primordiale et tous les aspects étudiés ici seront d un grand secours en ingénierie, physique, biologie La parabole de base Définition 5.1. L équation de la parabole de base est f(x) = x 2 et son graphique est y x Analysons cette fonction. Le domaine: dom(f) =Ê. L image: ima(f) = [0, + [. L ordonnée à l origine: f(0) = 0. Les zéros: Un seul zéro en x = 0. Le signe des images: f(x) 0 x dom(f). Extremums: aucun maximum et un minimum au point (0, 0). 75

80 76 5. LA PARABOLE Croissance et décroissance: f(x) x [0, + [ f(x) x ], 0]. Équation de l axe de symétrie: x = La fonction transformée Nous allons ici transformer la fonction de base grâce aux paramètres a, b, h et k. Rappellons le rôle que chacun joue dans la transformation. a est un changement d échelle verticale : étirement si a > 1, contraction si 0 < a < 1 et réflexion par rapport à l axe des x suivi d une contraction ou d un étirement si a < 0. b est un changement d échelle horizontale : étirement si 0 < b < 1, contraction si b > 1 et réflexion par rapport à l axe des y suivi d une contraction ou d un étirement si b < 0. h est une translation horizontale de la fonction de base : vers la droite si h > 0 et vers la gauche si h < 0. k est une translation verticale de la fonction de base : vers le haut si k > 0 et vers le bas si k < 0. L équation de la fonction transformée est donnée par la transformation g(x) = af(b(x h)) + k. Dans notre cas, nous obtenons que On peut simplifier cette équation : y = a(b(x h)) 2 + k. y = a(b(x h)) 2 + k = ab 2 (x h) 2 + k = ã(x h) 2 + k Ici, ã = ab 2. On a donc la forme transformée de la parabole y = a(x h) 2 + k. On remarque que la parabole transformée dépend uniquement de a, h et k. Le paramètre b est fusionné dans le paramètre a. Cette forme est dite la forme canonique de la parabole. Il existe aussi la forme générale de la parabole qui est y = ax 2 + bx + c. important important important important important Ici, le b de la forme générale n est pas le paramètre b, mais seulement une constante.

81 2. LA FONCTION TRANSFORMÉE Comment passer de la forme canonique à la forme générale? Pour passer de la forme canonique à la forme générale, il suffit de développer le carré. y = a(x h) 2 + k = a(x 2 2hx + h 2 ) + k = ax 2 2ahx + (k + ah 2 ) Ainsi, le b de la forme générale vaut 2ah et le c vaut k + ah 2. Pour ce qui est du a, c est le même dans les deux formes. Exemple 5.1. Soit y = 2(x+3) Trouver la forme générale de cette parabole. y = 2(x + 3) = 2(x 2 + 6x + 9) + 1 = 2x x Comment passer de la forme générale à la forme canonique? Il existe deux façons de passer de la forme générale à la forme canonique. La première façon consiste à utiliser le résultat obtenu précédemment. On sait que y = ax 2 + bx + c = a(x h) 2 + k = ax 2 2ahx + (k + ah 2 ). On est à la recherche de a, h et k. Puisque l on connaît la forme générale, on connaît a, b et c. On a donc deux équations b = 2ah c = k + ah 2. Ainsi, en isolant h de la première équation, on a h = b. Pour ce qui 2a est de k, voici comment le trouver : c = k + ah 2 k = c ah 2 k = c a b 2a 2 k = c b2 4a 4ac b2 k =. 4a

82 78 5. LA PARABOLE Maintenant, nous avons des formules pour trouver h et k en fonction de a, b et c. Exemple 5.2. Écrivons, sous sa forme canonique, la parabole y = 2x x h = b 2a = = 3 k = b2 + 4ac 4a = Ainsi, y = a(x h) 2 + k = 2(x + 3) = 1 L autre façon d y parvenir est à l aide de la complétion de carré. Pour utiliser cette méthode, nous devons nous rappeler de la notion de carré parfait. Celle-ci nous dit que si nous sommes en présence d un polynôme de la forme x 2 ±2dx+d 2, on a sa factorisation qui est (x±d) 2. C est ce principe que nous tentons d utiliser. Exemple 5.3. Trouvons la forme canonique de y = 2x 2 +12x + 19 avec la complétion de carré. La première étape est de mettre en évidence le a, c est-à-dire le coefficient devant x 2. On obtient alors y = 2 x 2 + 6x On veut maintenant que le polynôme à l intérieur de la parenthèse soit un carré parfait. Pour cela, il faut que son terme 2 constant soit le carré de la moitié du coefficient de x. Ici, ce terme est (6/2) 2 = 9. On va ajouter et enlever cette quantité au polynôme, ce qui ne change pas le polynôme, car on lui ajoute 0. y = 2 x 2 + 6x + 19 = 2 x 2 + 6x ßÞÐ =0 On peut maintenant réécrire y y = 2 x 2 + 6x (en réécrivant l équation) = 2(x + 3) (car le polynôme est un carré parfait).

83 2. LA FONCTION TRANSFORMÉE Étude de la fonction transformée. Étudions maintenant les caractéristiques de la parabole transformée. Pour ce faire, esquissons son graphique d une manière générale. Puisque nous savons qu un point (x, y) de la fonction de base devient le point (x + h, ay + k). Ainsi, on obtient les graphiques suivants selon le signe du paramètre a. Maintenant, nous sommes en mesure d étudier la fonction. y a > 0 k h x Fig. 1. a > 0 y k a < 0 h x Fig. 2. a < 0

84 80 5. LA PARABOLE Le domaine: dom(f) =Ê. L image: Deux cas : Si a > 0, ima(f) = [k, + [. Si a < 0, ima(f) =], k]. L ordonnée à l origine: f(0) = a( h) 2 + k = ah 2 + k ou f(0) = c, selon la forme de la règle. Les zéros: Pour trouver les zéros, il faut résoudre l équation y = 0. Servons-nous de la forme canonique pour résoudre cette équation. a(x h) 2 + k = 0 (x h) 2 = k a À partir d ici, il y a trois possibilités (1) Si k < 0, c est impossible, car l expression à gauche, a (x h) 2, est toujours positif. Donc, il n y a aucun zéro. (2) Si k = 0, il y a un seul zéro en x = h. Pour trouver a cette réponse, on résout (x h) 2 = 0. (3) Si k a > 0, on a (x h) 2 = k a (x h) = ± k a x = h ± k a. Il y a donc deux zéros qui sont obtenus plus haut. Il est important de noter que si x 2 = a, alors x = ± a. Lorsque l on est en présence de la forme générale, il est un peu plus complexe de déterminer les zéros. En réalité, il faut trouver la forme canonique et utiliser la démarche précédente. Cependant, puisque nous savons que h = b 2a et k = b2 + 4ac, 4a on peut trouver une formule. On a vu que ce qui influençait le nombre de racines est le signe de k. Si l on écrit en terme a

85 de a, b et c, il devient 2. LA FONCTION TRANSFORMÉE 81 k a = b2 + 4ac 4a = b2 4ac 4a 2 Puisque le dénominateur est toujours positif, on a que le nombre de zéros est déterminé par b 2 4ac. Cette expression se nomme discriminant et on le note. Ainsi, les trois cas peuvent se réécrire (1) Si < 0, il n y a aucun zéro. 1 a (2) Si = 0, il y a un seul zéro en x = h = b 2a. (3) Si > 0, il y a deux zéros, notés x 1 et x 2. x = h ± k a = b ± b2 4ac 2a 4a 2 = b ± b 2 4ac 2a = b ±. 2a L allure de chacun de ces cas est montrée dans la figure suivante : aucun zéro, a>0 1 zéro a>0 2 zéros a>0 aucun zéro a<0 1 zéro a<0 2 zéros a<0

86 82 5. LA PARABOLE Le signe des images: Quatre cas : (1) Si a > 0 et 0, alors f(x) 0, x dom(f) (2) Si a > 0 et > 0, alors f(x) 0, x ], x 1 ] [x 2, + [ f(x) 0, x [x 1, x 2 ] (3) Si a < 0 et 0, alors f(x) 0, x dom(f) (4) Si a < 0 et > 0, alors f(x) 0, x ], x 1 ] [x 2, + [ f(x) 0, x [x 1, x 2 ] Extremums: Deux cas : Si a > 0, aucun maximum et un minimum au point (h, k). Si a < 0, un maximum au point (h, k) et aucun maximum. Croissance et décroissance: Deux cas : Si a > 0, Si a < 0, f(x) x [h, + [ f(x) x ], h]. f(x) x ], h] f(x) x [h, + [. Équation de l axe de symétrie: x = h. Exemple 5.4. Analysez la fonction f(x) = x 2 4x 5. Le domaine: dom(f) =Ê. L image: Ici, il faut mettre la parabole sous sa forme canonique. Pour ce faire, effectuons une complétion de carré. f(x) = x 2 4x 5 = x 2 4x = (x 2) 2 9. Ainsi, puisque a > 0, on a ima(f) = [ 9, + [.

87 3. RECHERCHE DE LA RÈGLE 83 L ordonnée à l origine: f(0) = = 5. Les zéros: Pour les trouver, on utilise la formule x 1,2 = b ± b 2 4ac 2a = 4 ± ( 4) = 4 ± 36 = 4 ± x 1 = 1 et x 2 = 5. Le signe des images: Puisque a > 0, on a que f(x) 0, x [ 1, 5] f(x) 0, x ], 1] [5, + [. Extremums: aucun maximum et un minimum au point (2, 9). Croissance et décroissance: f(x) x [2, + [ f(x) x ], 2]. Équation de l axe de symétrie: x = Recherche de la règle Afin de retrouver l équation d une parabole, il faut habituellement trois points. Par contre, il arrive que deux points suffisent. Dans ce cours, nous étudierons deux cas On connaît le sommet et un point de la parabole. Si l on connaît le sommet et un point de la parabole, on peut retrouver sa règle. Pour ce faire, on utilise la forme canonique de la parabole : y = a(x h) 2 + k. Ici, h et k sont connus, car le sommet d une parabole est au point (h, k). Il reste à déterminer la valeur de a en utilisant l autre point. Exemple 5.5. Trouvons l équation de la parabole dont le sommet est au point ( 2, 1) et qui passe par le point (1, 2).

88 84 5. LA PARABOLE On sait que y = a(x h) 2 + k = a(x 2) = a(x + 2) Puisque la parabole passe par le point (1, 2), on a 2 = a(1 + 2) = 9a a = 1 9. Ainsi, y = 1 9 (x + 2) On connaît les deux zéros et un point de la parabole. Dans le cas où l on connaît les deux zéros et un point de la parabole, il faut utiliser le principe du produit nul pour obtenir la règle. Ainsi, si les deux zéros sont x 1 et x 2 et que le point connu est (x 0, y 0 ), on a qu à isoler a dans la formule y 0 = a(x 0 x 1 )(x 0 x 2 ). Exemple 5.6. Trouvons la règle de la parabole qui passe par ( 2, 4) et dont les zéros sont 1 et 3. On a Ainsi, la règle est y 0 = a(x 0 x 1 )(x 0 x 2 ) 4 = a( 2 1)( 2 3) 4 = a( 3)( 5) a = 4 15 y = 4 15 (x 1)(x 3) = 4 15 x 2 4x + 3 = 4 15 x x + 4 5

89 4. RÉSOLUTION D ÉQUATIONS AYANT UNE FONCTION DU SECOND DEGRÉ85 4. Résolution d équations ayant une fonction du second degré Résoudre de telles équations nécessite de connaître la formule des zéros, c est-à-dire x 1,2 = b ± b 2 4ac. 2a Regardons quelques exemples pour expliciter la méthode. Exemple 5.7. Trouvons l ensemble solution de l équation 1 2x x 1 = 1. Les étapes à suivre sont les mêmes que lors de la résolution d équations linéaires. Étape 1: On trouve le domaine de l équation. Ici, on ne veut pas qu il y ait de division par zéro, d où dom =Ê\{ 2, 1}. Étape 2: On résout l équation. Premièrement, on additionne les deux fractions (x 1) + (8x + 16) = 1. (2x + 1)(x 1) On multiplie les deux côtés de l équation par le dénominateur. 9x + 15 = 2x 2 + 2x 4. On met tous les termes du même côté. 2x 2 7x 19 = 0. On utilise la formule des zéros pour obtenir les solutions de l équation précédente. x 1,2 = b ± b 2 4ac 2a = 7 ± x ou x Étape 3: On vérifie si les solutions sont dans le domaine. Ici, c est le cas. Ainsi, ES = { , }. Exemple 5.8. Trouvez l ensemble solution de l équation x 2 4 x 2 = 3x 2.

90 86 5. LA PARABOLE Étape 1: dom =Ê\{2}. Étape 2: x 2 4 x 2 = 3x 2 x 2 4 = (3x 2)(x 2) 0 = 2x 2 8x + 8 = 2(x 2 4x + 2) = 2(x 2) 2 x = 2 Étape 3: Puisque 2 dom, alors ES =. 5. Modélisation Exemple 5.9. Trouvez deux nombres entiers positifs consécutifs dont la somme des carrés est 85. Posons x le premier nomtre et x+1 le deuxième. Ainsi, on a l équation x 2 + (x + 1) 2 = 85 2x 2 + 2x 84 = 0. En utilisant la formule des zéros, on obtient les deux zéros 7 et 6. Puisque l on cherche deux entiers positifs, alors la valeur à retenir est 6. Ainsi, 6 et 7 sont les réponses à la question. Exemple Une salle de cinéma compte 768 sièges. Si chaque rangée compte 8 sièges de plus que le nombre de rangées, trouver le nombre de rangées et le nombre de sièges dans une rangée. Posons x le nombre de rangées. On a donc que le nombre total de siège est donné par x(x + 8). Ainsi, il faut résoudre x(x + 8) =768 x 2 + 8x 768 =0 À la de la formule des zéros, on obtient 32 et 24. Puisqu un nombre de rangées ne peut pas être négatif, on retient que x = 24. Ainsi, il y a 24 rangées de 32 sièges dans ce cinéma.

91 6. RÉSOLUTION D INÉQUATIONS AYANT UNE PARABOLE Résolution d inéquations ayant une parabole Regardons la technique afin de résoudre une inéquation contenant une parabole. Exemple Trouvons l ensemble solution de l inéquation 2x 2 5x < 3. Étape 1: Comme dans toutes résolutions d équations ou d inéquations, on trouve le domaine. Ici, dom =Ê. Étape 2: On met un côté de l inéquation à zéro en envoyant tous les termes du même côté. Ici, on obtient 2x 2 5x 3 < 0. Étape 3: On cherche les zéros de la parabole à l aide de la formule quadratique. x 1,2 = b ± b 2 4ac 2a = 5 ± = 5 ± 7 4 x 1 = 0.5 et x 2 = 3. Étape 4: On esquisse le graphique de la parabole. Ici, il y a deux zéros et l paramètre a est positif. Ainsi, l allure générale de la parabole sera Étape 5: On identifie les valeurs de x où la parabole est positive ou négative selon le signe. Ici, la parabole est positive pour x ], 0.5[ ]3, + [.

92 88 5. LA PARABOLE Étape 6: On trouve l ensemble solution en enlevant les valeurs de x qui ne sont pas dans le domaine. Ici, on a donc que ES =], 0.5[ ]3, + [. Une des utilisés des inéquations est de déerminer le domaine d une fonction. Regardons un exemple. Exemple Trouvons le domaine de la fonction 9 x 2 f(x) = x 2 1. On se souvient que pour déterminer le domaine d une fonction, il faut partir de l idée que le domaine estê. Par la suite, on enlève les valeurs de x qui rendent le dénominateur nul et qui font que la valeur sous les racines paires est négative. Ainsi, ici, on a De plus, il faut que x (x 1)(x + 1) 0 x 1 et x 1. 9 x 2 0. Pour résoudre ceci, il faut trouver les zéros de 9 x 2. Ceux-ci sont 3 et 3. Puisque, le paramètre a est négatif (il vaut 1), on a que la parabole est ouverte vers le bas. Ainsi, 9 x 2 0 si x [ 3, 3]. D où dom(f) = [ 3, 3] \ { 1, 1}. 7. Exercices sur la section 6 (1) Trouver l ensemble solution des inéquations suivantes : a) x > 5 b) 2x 2 + x + 6 < 0 c) x(3x 3) 2x(x 3) d) x 2 2x + 1 > 1 (2) Trouvez le domaine des fonctions suivantes : x x 6 a) f(x) = b) g(x) = x 2 4x + 4 6x2 + 5x + 4 c) h(x) = x 2 8x x 2

93 CHAPITRE 6 Fonctions particulières Dans ce chapitre, on étudiera plusieurs fonctions qui sont très utiles dans la vie de tous les jours. Celles-ci sont les fonctions rationnelles, racines carrées, définies par parties et valeurs absolues Fonction de base. 1. Fonction rationnelle Définition 6.1. La fonction rationnelle ou fonction inverse de base est de la forme f(x) = 1 x. Le graphique de cette fonction est Analysons cette fonction. Le domaine: dom(f) =Ê\{0}, car on ne veut pas de division par 0. L image: ima(f) =Ê\{0}. Ici, la fonction se rapproche de 0 sans jamais lui toucher. L ordonnée à l origine: f(0) n existe pas, car 0 dom(f). 89

94 90 6. FONCTIONS PARTICULIÈRES Les zéros: Aucun zéro. Le signe des images: Ici, f(x) < 0 x ], 0[ f(x) > 0 x ]0, + [ Extremums: aucun maximum et aucun minimum. Croissance et décroissance: f(x) x dom(f). Équation de l axe de symétrie: Aucun axe de symétrie. On ajoutera un autre point d étude de la fonction. Cette caractéristique se nomme les asymptotes d une fonction. Définition 6.2. Une asymptote horizontale est une droite horizontale telle que sa distance avec la fonction diminue toujours sans jamais atteindre 0. Une asymptote verticale est une droite verticale telle que sa distance avec la fonction diminue toujours sans jamais atteindre 0. Ainsi, f(x) possède une asympote horizontale en y = 0 et une asyptote verticale en x = 0. La convention veut que l on trace les asymptotes en pointillés La fonction rationnelle transformée. Lorsque l on applique les paramètres a, b, h et k sur la fonction de base, on obtient f(x) = a b(x h) + k. Encore une fois, on peut fusionner a et b, d où la forme canonique de la fonction rationnelle f(x) = a x h + k. L allure de cette fonction dépend du signe de a.

95 1. FONCTION RATIONNELLE 91 a > 0 a < 0 k h k h Ces graphiques s expliquent facilement en appliquant a, h et k à différents points (x, y). Étudions la fonction transformée. Le domaine: dom(f) =Ê\{h}, car on ne veut pas de division par 0. L image: ima(f) =Ê\{k}. On obtient ce résultat en transformant y = 0 à l aide des paramètres. L ordonnée à l origine: f(0) = a + k si h 0. h Les zéros: Un seul zéro a x h + k = 0 a x h = k a = k(x h) a + h = x si k 0. k Le signe des images: Il y a quatre cas : (1) a > 0 et k > 0 f(x) < 0 x ]h a/k, h[ f(x) > 0 x ], h a/k[ ]h, + [ (2) a > 0 et k < 0 f(x) < 0 x ], h[ ]h a/k, + [ f(x) > 0 x ]h, h a/k[

96 92 6. FONCTIONS PARTICULIÈRES (3) a < 0 et k > 0 f(x) < 0 x ]h, h a/k[ f(x) > 0 x ], h[ ]h a/k, + [ (4) a < 0 et k < 0 f(x) < 0 x ], h a/k[ ]h, + [ f(x) > 0 x ]h a/k, h[ Extremums: aucun maximum et aucun minimum. Croissance et décroissance: Deux cas, Si a > 0, f(x) x dom(f). Si a < 0, f(x) x dom(f). Équation de l axe de symétrie: Aucun axe de symétrie. Asymptotes: En x = h et y = k. Exemple 6.1. Étudions la fonction f(x) = x 5 x 4. La première étape consiste écrire la fonction sous sa forme canonique afin que l on puisse identifier a, h et k. Pour ce faire, on fait une division à l aide du crochet. On obtient alors f(x) = 1 x Ainsi, a = 1, h = 4 et k = 1. Par la suite, on esquisse le graphique de la fonction afin de nous aider à l analyser. On trace d abord les asymptotes en x = h = 4 et en y = k = 1. Par la suite, on examine le signe de a. Il est négatif donc la fonction sera dans le 2e et 4e quadrant. 1 4

97 2. FONCTION RACINE CARRÉE 93 Nous sommes maintenant en mesure de faire l analyse de la fonction. Le domaine: dom(f) =Ê\{4}, car on ne veut pas de division par 0. L image: ima(f) =Ê\{1}. L ordonnée à l origine: f(0) = = 5/4. Les zéros: Un seul zéro Le signe des images: 1 x = 0 1 x 4 = 1 f(x) < 0 x ]4, 5[ 1 = (x 4) x = 5. f(x) > 0 x ], 4[ ]5, + [ Extremums: aucun maximum et aucun minimum. Croissance et décroissance: f(x) x dom(f). Équation de l axe de symétrie: Aucun axe de symétrie. Asymptotes: En x = 4 et y = Fonction racine carrée Étudions la fonction racine carrée La fonction de base. Définition 6.3. La fonction racine carrée de base est de la forme f(x) = x. Son graphique est

98 94 6. FONCTIONS PARTICULIÈRES f(x) x Analysons cette fonction. Le domaine: dom(f) = [0, + [, car on ne veut pas qe ce qui se trouve sous une racine paire soit négatif. L image: ima(f) = [0, + [, car la racine carrée d un nombre est toujours positive. ÉOn peut facilement identifier l image à l aide de son graphique. L ordonnée à l origine: f(0) = 0 = 0. Les zéros: Cette fonction a un seul zéro en x = 0. Le signe des images: Ici, f(x) 0 x dom(f) Extremums: aucun maximum et un minimum au point (0, 0). Croissance et décroissance: f(x) x dom(f). Équation de l axe de symétrie: Aucun axe de symétrie. Asymptotes: Aucune La fonction transformée. Encore une fois, appliquons les paramètres a, b, h et k à la fonction de base, ici f(x) = x. Ainsi, si g(x) = af(b(x h)) + k, on obtient g(x) = a b(x h) + k. Malheureusement, on ne peut pas fusionner les paramètres a et b. Il faudra donc prendre en considération quatre paramètres pour dessiner et analyser la fonction racine carrée. Pour esquisser cette fonction,

99 2. FONCTION RACINE CARRÉE 95 nousdevons connaître son point de départ. Dans la fonction de base, c est le point (0, 0). En appliquant les paramètres sur ce point, il devient le point (h, k). Ainsi, le point de départ de la fonction transformée est le point (h, k). Pour déterminer la direction dans laquelle on trace la fonction, il faut regarder le signe de a et de b. La figure suivante montre l allure de chacun des cas. a > 0 b < 0 y h y h k a > 0 b > 0 k x x k a < 0 b > 0 a < 0 b < 0 k y y h h x x L analyse de la fonction transformée est un peu lourde lorsque l on regarde tous les cas, c est-à-dire selon si les paramètres sont positifs ou négatifs. C est pourquoi nous étudierons seulement le cas où a > 0 et b > 0. Les autres cas demandent les mêmes techniques que l on applique sur un graphique différent. Analysons donc f(x) = a b(x h) + k si a et b sont positifs. Le domaine: On veut que b(x h) 0. Puisque b > 0, il faut que x h 0. Ainsi, x h. D où, dom(f) = [h, + [. L image: À l aide du graphique, on s apperçoit que la fonction débute en y = k et qu elle augmente toujours, car a > 0. Ainsi, ima(f) = [k, + [. L ordonnée à l origine: f(0) = a b(0 h)+k = a bh+k. Ceci est vrai seulement si h 0. Sinon, 0 dom(f), donc l ordonnée à l origine n existe pas.

100 96 6. FONCTIONS PARTICULIÈRES Les zéros: Pour les trouver, on effectue les étapes suivantes : Ici, il y a deux cas : 0 = a (b(x h) + k k a = (b(x h) Si k > 0: Il n y a pas de zéro, car a > 0 et k < 0 ce qui a ne peut être égale à une racine carrée puisque celle-ci est toujours positive. Si k < 0: Il n y a pas de problème, on continu à isoler x. k a = (b(x h) k = b(x h) a h = x b k a 2 Le signe des images: Ici, f(x) 0 x 1 b k a 2 + h, + Extremums: aucun maximum et un minimum au point (h, k). Croissance et décroissance: f(x) x dom(f). Équation de l axe de symétrie: Aucun axe de symétrie. Asymptotes: Aucune. Exemple 6.2. Analysons la fonction f(x) = 2 3x La première étape est de réécrire cette fonction sous sa forme canonique, c est-à-dire sous la forme f(x) = a b(x h) + k. Pour ce faire, nous effectuons une mise en évidence simple sous la racine. Ainsi, on obtient f(x) = 2 3(x 3) + 8. On trouve que a = 2, b = 3, h = 3 et k = 8. Ainsi, le point de départ de cette fonction est le point (3, 8). De plus, le graphique se dirige vers la droite et vers le bas, car b > 0 et a < 0. Ainsi, l esquisse de f est

101 2. FONCTION RACINE CARRÉE 97 y 8 3 x On peut maintenant étudier f. Le domaine: On veut que 3(x 3) 0. Ainsi, D où dom(f) = [3, + [. 3(x 3) 0 L image: ima(f) =], 8] x 3 0 x 3 L ordonnée à l origine: Il n y a pas d ordonnée à l origine, car 0 dom(f). Les zéros: Le signe des images: 0 = 2 (3(x 3) = (3(x 3) 16 = 3(x 3) x = f(x) 0 x 3, , f(x) 0 x , +. Extremums: aucun minimum et un maximum au point (3, 8).

102 98 6. FONCTIONS PARTICULIÈRES Croissance et décroissance: f(x) x dom(f). Équation de l axe de symétrie: Aucun axe de symétrie. Asymptotes: Aucune Domaine de fonction ayant une racine. Comme nous l avons vu depuis le début, lorsqu une fonction possède une racine carrée (plus généralement une racine paire), ce qui apparaît sous celle-ci doit être négatif. Nous avons déjà étudié les techniques qui permettent de résoudre ces problèmes. Exemple 6.3. Trouvons le domaine de f(x) = 11 7x. Il faut que 11 7x 0. Ainsi, Donc, dom(f) =, x x 11 7 x Exemple 6.4. Trouvons le domaine de la fonction f(x) = 3 x x 2 (x 5). Le domaine icic est l ensemble des valeurs de x qui satisfont l inégalité suivante : 3 x x 2 (x 5) 0. Pour résoudre cette inéquation, on doit utiliser un tableau de signes. La première étape consiste à trouver les valeurs critiques de x, c est-à-dire les valeurs de x qui annulent le dénominateur et le numérateur. Ces valeurs sont x = 0, x = 3 et x = 5. Par la suite, on fait le tableau de signes. x x x x x x 2 (x 5) 0 +

103 2. FONCTION RACINE CARRÉE 99 Il faut maintenant prendre les valeurs de x où la dernière ligne du tableau est plus grande ou égale à zéro. Cela correspond au domaine de f(x). D où, dom(f) = [3, 5[. Le dernier exemple en est un déjà vu. Exemple 6.5. Trouvons le domaine de f(x) = x 2 + 5x + 6. On sait que x 2 + 5x Il faut d abord trouver les zéros de cette parabole. On utilise la formule quadratique et on obtient 3 et 2. Puisque que a > 0, la parabole est ouverte vers le haut. Ainsi, cette parabole est positive si x 3 ou x 2. Pour s en convaincre, on a qu à esquisser la parabole. Ainsi, dom(f) =], 3] [ 2, + [ Équation ayant une racine. Afin de résoudre une équation contenant une ou plusieurs racines, il faut toujours revenir au principe de base qui est d isoler une racine et d élever les deux côtés au carré. Il faut également trouver le domaine de l équation avant d effectuer la résolution. Les exemples suivants vont bien montrer la méthode. Exemple 6.6. Trouvons l ensemble solution de l équation 2x = 3. Étape 1: Trouvons le domaine. 2x 4 0 x 2 2x 4 Donc, le domaine de l équation est [2, + [. Étape 2: On résout l équation. 2x = 3 2x 4 = 2 On isole la racine. 2x 4 = 4 On élève au carré des deux côtés. x = 4 On isole x. Étape 3: On vérifie si la solution est acceptable, c est-à-dire si elle est dans le domaine. Puisque 4 [2, + [, l ensemble solution de l équation est ES = {4}.

104 FONCTIONS PARTICULIÈRES Il arrive que l équation possède deux racines. Voici comment la résoudre. Exemple 6.7. Trouvons l ensemble solution de l équation x x 9 = 1. Étape 1: Déterminons le domaine de l équation. Il y a deux conditions à respecter. Ainsi, dom = [9, + [. x 0 et x 9 0 x 9 Étape 2: On résout. x x 9 = 1 x 1 = x 9 On isole une racine. ( x 1) 2 = x 9 On élève au carré les deux côtés. x 2 x + 1 = x 9 On développe. 2 x = 10 On isole une racine. x = 5 x = 25 On élève au carré les deux côtés. Étape 3: On vérifie si la réponse est dans le domaine et, ici, 25 dom. Ainsi, ES = {25} Rationalisation du dénominateur. Rationaliser le dénominateur d une fraction consiste à réécrire la fraction sous une forme équivalente sans qu il y ait une racine au dénominateur. 1 Exemple Pour enlever la racine au dénominateur, il suffit de multiplier cette fraction par = 1. Ainsi, = 1 2 = 1 2 = Cette technique était très utile à l époque où les calculatrices n existaient pas. En effet, les radicaux comme étaient tabulés et pour trouver la valeur de 1/ 2, il était beaucoup plus simple de diviser par 2 que 1 par Maintenant, rationaliser le dénominateur ne sert plus. Par contre, on l enseigne encore puisque son petit frère le conjugué est très utilisé

105 3. FONCTIONS DÉFINIES PAR PARTIES 101 dans des cours plus avancés. Pour décrire cette méthode, regardons un exemple. Exemple 6.9. On veut rationaliser le dénominateur de L astuce est de multiplier cette fraction (en haut et en bas) par le conjugué du dénominateur. Celui-ci est 3 7. Il s agit en fait de la même expression, mais où l on a changé le signe au centre. Ainsi, 2 2 = ßÞ 3 7 Ð 2( 3 7) = ( 3 + 7)( 3 7) différence de carrés = 2( 3 7) 3 7 = 2( 3 7) 4 = ( 3 7) Fonctions définies par parties Les fonctions définies par parties sont importantes lorsque l on décrit un phénomène dont la relation de dépendance varie selon la variable indépendante. Pour comprendre, regardons quelques exemples. Exemple Soit la fonction Le graphique de cette fonction est f(x) = 1 si x < 0, 1 si x

106 FONCTIONS PARTICULIÈRES Ainsi, si x < 0, la fonction vaut 1 et elle vaut 1 sinon. Il est à noter que la valeur de f lorsque x = 0, c est-à-dire f(0), est 1. D où, le cercler plein et le cercle vide en x = 0. Les fonctions définies par parties peuvent être plus complexes. Définition 6.4. Dessinons la fonction f(x) = 0.25x 2 si x < 2, 3 si 2 x < 1, x si x 1. Cette façon de définir la fonction indique que f(x) est une parabole d équation x 2 si x < 2, f(x) = 3 si 2 x < 1 et f(x) = x si x 1. Ainsi, le graphique de cette fonction est Regardons un dernier exemple. Exemple Tracons Le graphique de cette fonction est f(x) = x si x < 0, x si x 0, Nous reviendrons, dans la prochaine section, à cette fonction particulière. Elle porte le nom de fonction valeur absolue et on la note f(x) = x.

107 4. FONCTION VALEUR ABSOLUE Fonction valeur absolue 4.1. La fonction de base. Comme nous venons de le voir, la fonction valeur absolue est une fonction définie par partie. Définition 6.5. La fonction valeur absolue de base, notée x, est donnée par f(x) = x si x < 0, x si x 0, La façon rapide d évaluer la valeur absolue d un nombre est d enlever le signe négatif de ce nombre s il est négatif ou de le laisser comme il est s il est positif. Exemple = 4 4 = 4 π = π Le graphique de f(x) = x est constitué de deux demi-droites respectivement d équation y = x et y = x, selon la valeur de x. Ainsi, son allure est Étudions les caractéristiques de cette fonction de base. Le domaine: dom(f) =Ê. L image: ima(f) = [0, + [. L ordonnée à l origine: f(0) = 0 = 0. Les zéros: Un seul en x = 0. Le signe des images: f(x) 0 x [0, + [ Extremums: aucun maximum et un minimum en (0, 0).

108 FONCTIONS PARTICULIÈRES Croissance et décroissance: f(x) x ], 0], f(x) x [0, + [. Équation de l axe de symétrie: En x = 0. Asymptote: Aucune La fonction transformée. La fonction valeur absolue transformée ressemble beaucoup à la fonction quadratique. En appliquant les paramètres a, b, h et k, on obtient f(x) = a b(x h) + k. Puisque b(x h) = b x h, on peut sortir le b et l incorporer dans le paramètre a. Ainsi, la forme canonique est f(x) = a x h + k. Tout comme la parabole, le sommet de la valeur absolue se retrouve au point (h, k). De même, si a > 0, la valeur absolue est ouverte vers le haut et si a < 0, la fonction est ouverte vers le bas. k k h h a > 0 a < 0 Étudions la fonction transformée. Le domaine: dom(f) =Ê. L image: Deux cas : Si a > 0, ima(f) = [k, + [, Si a < 0, ima(f) =], k]. L ordonnée à l origine: f(0) = a 0 h + k = a h + k.

109 4. FONCTION VALEUR ABSOLUE 105 Les zéros: On résout l équation f(x) = 0. a x h + k = 0 x h = k a Il y a trois cas : Si k < 0: Il n y a aucun zéro, car la valeur absolue d un a nombre est toujours positive. Si k a = 0: Il y a un seul zéro. x h = 0 x = h. Si k a > 0: Il y a deux zéros. x h = k a x h = k a x h = k a x = h k a x = h + k a Le signe des images: Le signe des images dépend du signe de a et du nombre de zéros. Extremums: Deux cas : Si a > 0: aucun maximum et un minimum en (h, k). Si a < 0: un maximum en (h, k) et aucun minimum. Croissance et décroissance: Deux cas : Si a > 0: f(x) x ], h], f(x) x [h, + [. Si a < 0: f(x) x ], h], f(x) x [h, + [. Équation de l axe de symétrie: En x = h. Asymptote: Aucune.

110 FONCTIONS PARTICULIÈRES Exemple Étudions la fonction f(x) = x + 1. Pur ce faire, il faut remettre cette équation sous sa forme canonique. Ainsi, f(x) = x + 1 = 2 0.5(x 8) + 1 = x = x D où a = 1, h = 8 et k = 1. Cela correspond à une valeur absolue ouverte vers le bas. Le domaine: dom(f) =Ê. L image: ima(f) =], 1]. L ordonnée à l origine: f(0) = = = 7. Les zéros: x = 0 x 8 = 1 x 8 = 1 x 8 = 1 x = 9 x = 7 Le signe des images: f(x) 0 x [7, 9] f(x) 0 x ], 7] [9, + [ Extremums: un maximum en (8, 1) et aucun minimum. Croissance et décroissance: f(x) x ], 8], f(x) x [8, + [. Équation de l axe de symétrie: En x = 8. Asymptote: Aucune. Le graphique est

111 4. FONCTION VALEUR ABSOLUE Résolution d équations. Nous avons déjà abordé le sujet de la résolution d équations ayant une valeur absolue lorsque nous étudions les zéros de cette fonction puisqu il s agissait de résoudre f(x) = 0. Cela nous permet donc de conclure qu il y a trois possibilités d ensemble solution pour une équation contenant une valeur absolue. L accent est mis sur le une, car s il y a plus qu une seule valeur absolue, le résultat n est plus valide. Ainsi, l ensemble solution peut contenir aucun, un ou deux éléments. Nous verrons chacun de ces cas, mais, avant, comprenons bien ce qu est une valeur absolue. Exemple On veut résoudre l équation x = 4. Cela revient à trouver les valeurs de x qui rendent l équation vraie. On sait que si x = 4, alors x = 4 par définition de la valeur absolue. De même, si x = 4, alors x = 4 toujours par définition. Ainsi, cette équation possède deux solutions, d oè ES = { 4, 4}. Ce résultat nous amène le théorème suivant : Théorème 6.1. Soit c 0. Si x = c, alors x = c ou x = c. Démonstration. La preuve est laissée en exercices. Exemple Trouvons la solution de 2x = 16. 2x = 16 2x 2 = 8 2x 2 = 8 ou 2x 2 = 8 x = 5 ou x = 3

112 FONCTIONS PARTICULIÈRES Exemple Trouver l ensemble solution de l équation x = 2 x = 2 x 4 = 6. Puisque la valeur absolue d une quantité ne peut être négative, il n existe donc pas de solution à cette équation. Ainsi, ES =. Le problème est un peu plus complexe lorsque la valeur absolue est égale à terme qui dépend de x. L exemple suivant montre comment faire. Exemple Trouvons l ensemble solution de l équation x+4 4 = 3x + 2. La première étape consiste à isoler la valeur absolue : x + 4 = 3x + 6. Pour utiliser le théorème précédent, il faut que 3x + 6 0, c est-à-dire x 2. Si tel est le cas, on a x + 4 = 3x + 6 x + 4 = 3x + 6 ou x + 4 = (3x + 6) 2x = 2 ou 4x = 10 x = 1 ou x = 5 2. Puisque 5 2 < 2, cette solution est rejetée et ES = { 1} Résolution d inéquations. Un peu comme pour la résolution d équations, nous aurons besoin d un théorème pour être en mesure de résoudre une inéquation. Afin de bien comprendre le théorème, regardons deux exemples. Exemple On veut résoudre x < 6. Il est facile de voir que x doit être plus petit que 6. C est notre première condition et elle s écrire x < 6. Par contre, ce n est pas tout, il y a une deuxième condition. Il faut également que x > 6 sinon, le nombre en valeur absolue ne sera pas plus petit que 6. Ainsi, on a deux conditions à respecter pour x : x > 6 et x < 6. Lorsqu il y a un et, on prend l intersection des deux conditions. D où, ES =] 6, 6[.

113 4. FONCTION VALEUR ABSOLUE 109 Exemple Trouvons l ensemble solution de l inéquation x > 6. Ici, soit que x est plus grand que 6, i.e. x ]6, [ ou que x est plus petit que 6, i.e. x ], 6[. Le ou signifie union des deux conditions. Ainsi, ES =], 6[ ]6, [. Voici le théorème qui nous servira dans cette partie. Théorème 6.2. Soit un nombre c. Deux cas : si x < c, alors x > c ET x < c, si x > c, alors x < c OU x > c. On voit ces relations sur les deux graphiques suivants : c c Fig. 1. Solution de x < c c c Fig. 2. Solution de x > c. Le même principe intervient si x c et x c, la seule différence étant que e point est fermé. Regardons quelques exemples. Exemple Trouvez l ensemble solution de l inéquation 2 3x 4 3 < 1. La première étape consiste à isoler la valeur absolue. Ainsi, 3x 4 < 2. Puisque la valeur absolue est plus petite, on a D où, ES =ç2 3, 2ä. 3x 4 < 2 3x 4 < 2 ET 3x 4 > 2 3x < 6 ET 3x > 2 x < 2 ET x >

114 FONCTIONS PARTICULIÈRES Exemple Trouvons l ensemble solution de l inéquation 2 x < 2. On isole la valeur absolue : Maintenant, on a 2 x < 2 2 x + 4 < 2 x + 4 > 1 x + 4 > 1 x + 4 > 1 OU x + 4 < 1 x > 3 OU x < Ainsi, ES =], 5[ ] 3, [ Le prochain exemple est un peu plus complexe. Exemple Trouvons l ensemble solution de l inéquation Le même principe est utilisé. 2x + 1 3x 5. 2x + 1 3x 5 2x + 1 3x 5 OU 2x + 1 (3x 5) 6 x OU 2x + 1 3x x OU 5x 4 6 x OU x 4 5 Puisque x 6 ou x 4 5, alors Voici un dernier exemple. ES =], 6]. Exemple Trouvons l ES de l inéquation x + 2 < 1. Il y a deux façons de résoudre ce problème. La première est simplement de se dire que la valeur absolue est toujours positive et donc jamais plus petite que 1. Ainsi, ES =.

115 4. FONCTION VALEUR ABSOLUE 111 La deuxième façon est d y aller algébriquement avec la méthode des exemples précédents. x + 2 < 1 x + 2 < 1 ET x + 2 > 1 x < 3 ET x > 1 À bien voir, l intersection de ces deux ensembles est l ensemble vide, car x ne peut être à la fois plus petit que 3 et plus grand que 1. Ainsi, ES =.

116

117 CHAPITRE 7 Les fonctions exponentielles et logarithmiques 1. Les exponentielles Avant de débuter notre étude de la fonction exponentielle, revenons sur les lois des exposants, car elles seront au coeur de ce chapitre. Proposition 7.1 (Lois des exposants). Soit n, m Æ. Alors, on a les égalités suivantes : (1) a m a n = a m+n, (2) a n = 1 si a 0, an (3) am a n = am a n = a m n, (4) (a m ) n = a nm, (5) (ab) m = a m b m, a (6) a = b n n, avec b 0, bn (7) a 1 n = n a, (8) n ab = n a n b, (9) a m n = ( n a) m = n a m, (10) a 0 = 1 si a 0. On est maintenant prêt à étudier la fonction exponentielle La fonction de base. Définition 7.1. La fonction exponentielle de base est de la forme f(x) = c x, où c > 0 et c 1. Cette constante se nomme la base de l exponentielle. Il y a donc plusieurs fonctions de base selon la valeur de la constante. L effet de cette constante n est toutefois pas négligeable. Le graphique suivant montre son influence. On expliquera la raison de son influence par la suite. 113

118 LES FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES c = 0.25 c = 5 c = 3 c = 0.5 c = 2 0 =Ê On remarque que plus c est grand, plus la fonction croît rapidement. Lorsque 0 < c < 1, la fonction décroît. Pour bien comprendre ceci, il suffit de faire une table de valeurs. Ainsi, nous venons de voir une famille de fonction de base. Passons maintenant à l analyse de cette fonction. Le domaine: dom(f) L image: ima(f) =]0, + [. Ê L ordonnée à l origine: f(0) = c 0 = 1. Les zéros: Aucun zéro. Le signe des images: f(x) > 0 x Extremums: aucun maximum et aucun minimum. Croissance et décroissance: Deux cas : Si 0 < c < 1, Si c > 1, f(x) x dom(f). f(x) x dom(f). Équation de l axe de symétrie: Aucun axe de symétrie. Asymptote: y = 0

119 1. LES EXPONENTIELLES La fonction transformée. Appliquons maintenant la transformation des paramètres a, b, h et k sur la fonction de base. On obtient que g(x) = af(b(x h)) + k = a c b(x h) + k = a c b(x h) + k = a c b x h + k = a c x h + k = a c h c x + k = ã c x + k. Ainsi, la forme canonique de la fonction exponentielle est f(x) = a c x + k. On remarque que cette fonction dépend seulement de deux paramètres. Par contre, il faut tenir compte de la constante c. Étudions cette fonction transformée. Tout d abord, il faut esquisser son graphique. Puisque l asymptote de la fonction de base est en y = 0, après la transformation elle se retrouvera en y = k. De plus, le point (0, 1) devient le point (0, a + k). Ainsi, selon le signe de a et la valeur de c, on obtient l un des quatre graphiques suivants : Si a > 0 et c > 1 Si a > 0 et 0 < c < 1 k k

120 LES FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES Si a < 0 et c > 1 Si a < 0 et 0 < c < 1 k k L étude de cette fonction est un peu longue à cause de tous les cas différents. Pour cette raison, nous regarderons quelques exemples sans entrer dans la généralité. Celle-ci se fait facilement par la suite. Exemple 7.1. Faisons l étude de la fonction f(x) = 2 3x Tout d abord, il faut mettre cette fonction sous sa forme canonique. f(x) = 2 3x = 2 3(x 3) + 1 = 2 3 x = 8x = 8 x = x + 1. Ainsi, a = 1, c = 8 et k = Le domaine: dom(f) =Ê. L image: Puisque c > 1 et que a > 0, alors la fonction est croissante. Ainsi, ima(f) =]1, Ê + [. Pour s en convaincre, il suffit d esquisser le graphique. L ordonnée à l origine: f(0) = = Les zéros: Aucun zéro, car 0 n est pas dans l image. Le signe des images: f(x) > 0 x Extremums: aucun maximum et aucun minimum. Croissance et décroissance: f(x) x dom(f).

121 1. LES EXPONENTIELLES 117 Équation de l axe de symétrie: Aucun axe de symétrie. Asymptote: y = 1 Exemple 7.2. Étudions la fonction f(x) = x + 4. Plaçons cette fonction sous sa forme canonique. Ainsi, a = 6, c = 1 3 f(x) = x + 4 = 2 3 (x 1) + 4 = x = x = x + 4 et k = 4. Le graphique de cette fonction est y x Nous pouvons maintenant passer à son analyse. Le domaine: dom(f) =Ê. L image: Puisque 0 < c < 1 et que a < 0, alors la fonction est croissante et ne dépasse pas l asymptote. Ainsi, ima(f) = ], 4[. L ordonnée à l origine: f(0) = = 2. Les zéros: Il y a un seul zéro. Sa valeur est obtenue en résolvant l équation x = 0. 3 On verra comment faire un peu plus loin. Pour l instant, on se contente de dire qu il y a un zéro. On le note x.

122 LES FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES Le signe des images: f(x) 0 x [x, + [, f(x) 0 x ], x ]. Extremums: aucun maximum et aucun minimum. Croissance et décroissance: f(x) x dom(f). Équation de l axe de symétrie: Aucun axe de symétrie. Asymptote: y = Le nombre e. Un des nombres des plus important en mathématique est le nombre e, appelé nombre d Euler. Ce nombre est présent dans tous les domaines des mathémamiques et même plus encore. Une des façons d évaluer ce nombre est d étudier une situation concrète. Exemple 7.3. On place un montant C à la banque à un taux d intérêt annuel i. Soit n, le nombre de fois durant l année où l intérêt est cummulé. Alors, le montant V obtenu à la fin de l année est donné par la formule V = C 1 + n n i. On est intéressé par le montant maximal que l on peut obtenir à la fin d une année si l on place 1$ à un taux d intérêt de 100%. Pour ce faire, on étudie l influence de n. échéance de cummulation valeur de n valeur de V annuel n = 1 V = (1 + 1) 1 = 2 biannuel n = 2 V = ( ) 2 = 2.25 trimestriel n = 4 V = ( ) 4 = mensuel n = 12 V = (1 + 1/12) 12 = hebdomadaire n = 52 V = (1 + 1/52) 52 = quotidien n = 365 V = (1 + 1/365) 365 = toutes les heures n = 8760 V = (1 + 1/8760) 8760 = On remarque que la valeur de V augmente, mais de moins en moins rapidement. Même qu à un certain moment la valeur des premières décimales ne change plus. Ainsi, il y a une valeur maximale et celle-ci est le nombre e. Cet exemple nous donne la définition du nombre e.

123 Définition 7.2. Le nombre e est 1. LES EXPONENTIELLES 119 e = lim + 1. n 1 n n La valeur de e est approximativement Il s agit d un nombre irrationnel. Il existe une autre définition pour le nombre e. Elle est un peu plus complexe, mais on peut montrer l équivalence avec la première définition. Définition 7.3. Le nombre e peut être défini par la somme infinie e = k=0 1 k! = 1 0! + 1 1! + 1 2! + 1 3! + 1 4! +... = On retrouvera ce nombre dans le futur. Tout ce que l on doit savoir sur ce nombre est sa valeur Résolution d équations. Regardons maintenant comment résoudre des équations contenant des exponentielles. Pour ce faire, nous devrons utiliser la proposition suivante : Proposition 7.2. Soit b > 0 et b 1. Alors, b u = b v u = v. Regardons comment utiliser cette proposition. Exemple 7.4. Trouvons l ensemble solution de l équation (4 x ) 8 x+1 =16. La première chose à faire est de trouver le domaine de l équation. Ici, dom =Ê. Par la suite, il faut exprimer toutes les expressions à l aide de la même base afin d utiliser la proposition. Ceci n est pas toujours possible, mais pour les problèmes de cette section, on pourra le faire. Puisque 4, 8 et 16 sont des puissances de 2, on utilisera 2 comme base.

124 LES FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES Ainsi, (4 x ) 8 x+1 = x 2 3 x+1 = x 2 3(x+1) = x+3x+3 = x+3 = 2 4 5x + 3 = 4 x = 1 5. Ainsi, ES = 1 5. Exemple 7.5. Trouvons l ensemble solution de l équation 3 x 1 = 27. Premièrement, identifions le domaine. Ici, il y a une racine paire : x 1 0 x 1. dom = [1, + [. Par la suite, trouvons la base commune à 3 et à x 1 = 27 3 x 1 = 3 3 x 1 = 3 x 1 = 9 x = 10. Puisque 10 est dans le domaine, alors ES = {10}. Le prochain exemple demande un peu de créativité. Exemple 7.6. Trouvons l ensemble solution de 49 x 2 7 x = 1. On peut réécrire équation comme suit : 7 2x 2 7 x = 1. Par contre, nous ne pouvons rien simplifier, car aucune loi des exposants indique ce que devient la somme de deux exponentielles. Par contre, on peut réécrire l équation (7 x ) x = 1.

125 1. LES EXPONENTIELLES 121 En posant y = 7 x, on obtient une équation assez connue : y 2 2y = 1. On peut facilement résoudre cette équation y 2 2y = 1 y 2 2y + 1 = 0 (y 1) 2 = 0. Ainsi, y = 1. On peut maintenant retrouver la valeur de x. D où ES = {0}. y = 7 x = 1 7 x = 7 0 x = Résolution d inéquations. Pour résoudre une inéquation qui contient une exponentielle, il faut savoir résoudre une équation. Les exemples suivants montrent comment résoudre des inéquations. Exemple 7.7. Trouvons les valeurs de x qui satisfont 3 2x 1 > 1. Pour répondre à cette question, créons la fonction f(x) = 3 2x 1 1. Ainsi, le problème revient à déterminer les valeurs de x qui rendent la fonction positive. Écrivons la fonction sous sa forme canonique. f(x) = 3 2x 1 1 = 3 2x = 1 3 9x 1. Puisque a > 0 et c > 1, alors la fonction sera strictement croissante et, donc, f(x) est positive du zéro de la fonction jusqu à l infini. Il ne reste plus qu à trouver ce zéro x 1 = 0 9 x = 3 3 2x = 3 2x = 1 x = 1 2.

126 LES FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES D où, ES = 1 2, +. C est toujours le même principe pour résoudre une inégalité. Il suffit de déterminer la fonction exponentielle dont le signe correspond à l ensemble solution. Par la suite, on trouve son zéro et le tour est joué. 2. Les logarithmes 2.1. Introduction. Dans la dernière section, nous avons vu comment résoudre une équation contenant une exponentielle. Par contre, il n est pas toujours possible d utiliser la proposition afin de déterminer l ensemble solution. Exemple 7.8. Trouvons l ensemble solution de l équation 2 x = 3. C est pourtant une équation très simple, mais puisque 3 n est pas une puissance de 2, il est impossible de la résoudre avec ce que nous connaissons actuellement. Nous aurons donc besoin d une nouvelle méthode. Celle-ci se nomme les logarithmes. Définition 7.4. Soit l équation y = c x avec c > 0. Une forme équivalente à cette équation est x = log c y. Cette formulation se lit : "x est l exposant qu il faut donner à c pour obtenir y". Exemple 7.9. Soit 2 x = 8. Sa forme équivalente est x = log 2 8. On sait que x = 3 puisque 2 3 = 8. Cela ne nous fournit cependant pas de façon de résoudre n importe quelle équation. Il faudra élaborer une théorie. NOTATION On note log 10 c par seulement log c et log e c par ln c. Ces deux touches sont sur la calculatrice. Exemple Résolvons l équation e x = 8. Pour ce faire, on peut réécrire cette équation sous sa forme logarithme. e x = 8 x = ln 8. On trouve à l aide de la calculatrice que x Malheureusement, la calculatrice possède seulement les logarithmes en base e et en base 10. Que faisons-nous dans les autres cas? Pour répondre à cette question, il faut étudier quelques propriétés qui sont présentées sous forme de propositions.

127 Proposition 7.3. Soit b > 0. Alors 2. LES LOGARITHMES 123 log b b u = u Démonstration. Posons x = log b b u. Cette forme est équivalente à b u = b x d après la définition du logarithme. Ainsi, x = b. Proposition 7.4. Soit b > 0. Alors b log b u = u. Démonstration. Posons x = log b u. Cette forme est équivalente à b x = u d après la définition du logarithme. Ainsi, b x = b log b u = u. Exemple e ln 4 = 4 Proposition 7.5. log b uv = log b u + log b v. Démonstration. Posons x = log b u et y = log b v. Nous avons donc que u = b x et v = b y. Ainsi, uv = b x+y x + y = log b uv. Et puisque x = log b u et y = log b v, alors log b u + log b v = log b uv. Proposition 7.6. log b u v = log b u log b v. Démonstration. La preuve est similaire à celle du logarithme d un produit. Proposition 7.7. log b u a = a log b u. Démonstration. La preuve est laissée en exercices. Proposition 7.8. log b 1 = 0. Démonstration. Par définition. Proposition 7.9 (Changement de base). log b x = log a x log a b.

128 LES FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES Démonstration. Posons y = log b x. Alors, b y = x. Prenons le logarithme en base a des deux côtés. b y = x log a b y = log a x y log a b = log a x y = log a x log a b. Ce sont les propriétés des logarithmes, un peu comme les exposants possèdent les tiens. Étudions maintenant comment simplifier des expressions contenant des logarithmes et comment résoudre certaines équations Résolution d équations. Afin de bien saisir les différentes propriétés, regardons quelques exemples. Exemple Simplifions l expression log a (x 1) + log a (x + 1) log a (x 2 + 1). En utilisant la propriété du logarithme d un produit et d un quotient, on obtient log a (x 1) + log a (x + 1) log a (x 2 + 1) = log a (x 1)(x + 1) log a (x 2 + 1) = log a (x 1)(x + 1) (x 2 + 1) = log a x 2 1 x Exemple Trouvons l ensemble solution de l équation 3 x = 2. Pour ce faire, on réécrit l expression à l aide des logarithmes. x = log 3 2. Afin d évaluer la valeur de x, utilisons la propriété du changement de base pour utiliser la calculatrice. x = ln2 ln Avant d entreprendre la résolution d équations plus complexes, il faut revenir sur les critères à vérifier pour déterminer le domaine. Il faut en ajouter un qui est que l argument d un logarithme doit être positif. Ainsi, les critères à vérifier sont :

129 Critères 1: Le contexte. 2. LES LOGARITHMES 125 Critères 2: On ne veut pas de division par zéro. Critères 3: Ce qui se trouve sous une racine paire doit être positif ( 0). Critères 4: L argument d un logarithme doit être plus grand que zéro (> 0). Cette nouvelle condition provient de la définition même du logarithme. On sait que y = log c x x = c y. Puisque c y est toujours plus grand que zéro, alors x > 0. D où la condition sur l argument du logarithme. Exemple Trouvons le domaine de la fonction f(x) = log(3x 1) + log(4x) + x 2 1. Il y a trois conditions à respecter : Condition 1 : 3x 1 > 0 Condition 2 : 4x > 0 Condition 3 : x Regardons chacune de ces conditions. Pour la condition 1, on a 3x 1 > 0 La condition 2 : x > 1 3 4x > 0 x > 0 Pour la condition 3, il suffit d esquisser la parabole et de voir que x ], 1] [1, + [. Ainsi, le bilan total indique que x 1. D où, dom(f) = [1, + [. Regardons comment résoudre des équations contenant des logarithmes. Exemple Trouvons l ensemble solution de l équation log 3 (x + 2) = 4.

130 LES FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES La première étape est de déterminer le domaine de cette équation. La seule condition ici est que x + 2 > 0. Ainsi, x > 2. Nous sommes maintenant en mesure de résoudre cette équation. log 3 (x + 2) = 4 x + 2 = 3 4 x + 2 = 81 x = 79 Par définition du log Puisque 79 est dans le domaine, on a donc que ES = {79}. Regardons quelques exemples plus complexes. Exemple Trouvons l ensemble solution de l équation log x (x 1) + log x 2x = 2. Trouvons le domaine de cette équation. Nous avons trois conditions : x 1 > 0 car argument du log doit être positif 2x > 0 car argument du log doit être positif x 1 car base du log doit ne doit pas être égal à 1 Ainsi, dom =]1, + [. Passons à la résolution de cette équation. Pour ce faire, on doit toujours ramener l équation à une équation contenant un seul logarithme afin d utiliser sa définir pour passer en forme exponentielle. log x (x 1) + log x 2x = 2 log x 2x(x 1) = 2 2x(x 1) = x 2 x 2 2x = 0 x(x 2) = 0 x = 0 ou x = 2 Puisque 0 dom et 2 dom, alors ES = {2}. Propriété du log d un produit Par définition du log Par manipulations algébriques Exemple Trouver l ensemble solution de l équation log b (x 2 + 1) log b x = log b (x + 2). Les conditions sur le domaine sont : x > 0 car argument du log doit être positif x > 0 car argument du log doit être positif x + 2 > 0 car argument du log doit être positif

131 2. LES LOGARITHMES 127 La première condition est toujours vraie, ainsi le bilan nous donne que dom =]0, + [. Regroupons tous les logarithmes du même côté et résolvons l équation. log b (x 2 + 1) log b x = log b (x + 2) log b (x 2 + 1) log b x log b (x + 2) = 0 Par manipulations algébriques x log b x(x + 2) = 0 Propriété du log d un produit x x(x + 2) = b 0 Par définition du log x x(x + 2) = 1 x = x(x + 2) Par manipulations algébriques x = x 2 + 2x Par manipulations algébriques 1 = 2x x = 1 2 Puisque 1/2 est dans le domaine, alors ES = {1/2} La fonction logarithme de base. Définition 7.5. La fonction logarithme de base est une fonction de la forme y = log c x, où est une constante strictement positive différente de 1. Afin de comprendre comment esquisser cette fonction, nous devons utiliser la fonction exponentielle. Tout d abord, écrivons le logarithme sous sa forme exponentielle. y = log c x x = c y. On remarque que la fonction y = log c x est la fonction réciproque de la fonction y = c x. Ainsi, pour tracer la fonction y = log c x, il faut tracer la fonction y = c x et faire une réflexion de cette fonction par rapport à l axe y = x. Tout ceci est expliqué dans le chapitre 3. Ainsi, le graphique de la fonction logarithme de base dépend de la valeur de c tout comme pour la fonction exponentielle.

132 LES FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES Si c > 1: Si 0 < c < 1: y = c x y = x y = x y = log c x y = log c x y = c x Analysons cette fonction. Le domaine: dom(f) =]0, + [, car l argument d un logarithme doit être strictement positif. L image: ima(f) =Ê. L ordonnée à l origine: N existe pas, car 0 dom(f). Les zéros: On résout f(x) = 0. Ainsi, log c x = 0 x = c 0 x = 1. Ainsi, la fonction possède un seul zéro en x = 1. Le signe des images: Le signe dépend de la valeur de c. Si 0 < c < 1, Si c > 1, f(x) 0 x ]0, 1], f(x) 0 x [1, + [. f(x) 0 x ]0, 1], f(x) 0 x [1, + [. Extremums: aucun maximum et aucun minimum. Croissance et décroissance: Deux cas : Si 0 < c < 1, f(x) x dom(f).

133 2. LES LOGARITHMES 129 Si c > 1, f(x) x dom(f). Équation de l axe de symétrie: Aucun axe de symétrie. Asymptote: x = La fonction transformée. Comme dans le cas des autres fonctions, étudions la fonction logarithme transformée. La forme de départ est f(x) = a log c (b(x h)) + k. Évidemment, l étude des cinq paramètres peut s avérer fastidieuse. On va donc essayer de diminuer le nombre de paramètres. Cette étape n est pas facile si l on laisse la fonction sous sa forme logarithmique. Par contre, en l écrivant sous sa forme exponentielle, la simplification devient plus simple. Regardons la façon générale de le faire et on fera un exemple par la suite. 1 c y k b y = a log c (b(x h)) + k Fonction transformée de départ y k = log a c (b(x h)) Manipulations algébriques c y k a = b(x h) Définition du log a + h = x Manipulations algébriques Nos nous retrouvons avec x en fonction de y qui est une fonction exponentielle. On sait déjà comment simplifier cette fonction. Ainsi, on obtient que x prend la forme de x = b c y + h. Ainsi, en replaçant cette équation sous sa forme logarithmique, on obtient y = log c B(x h). D où, la forme canonique de la fonction logarithme est y = log c b(x h). Nous aurons que les paramètre b, c et h qui influenceront le graphique de la fonction. Exemple Trouvons la forme canonique de la fonction f(x) = 2 log 4 (2x 4) + 4.

134 LES FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES Ce que l on doit faire est d effectuer les étapes de la recette précédente, c est-à-dire trouver la forme canonique de la fonction mise sous sa forme exponentielle et de revenir sous sa forme logarithmique. y = 2 log 4 (2x 4) + 4 y 2 = log 2 4 (2x 4) Manipulations algébriques 4 y 2 2 = 2x 4 Par définition du log 1 2 y y y 2 y y = log 1 2 Ainsi, b = 0.5, c = 0.5 et h = 2. = 2(x 2) Loi des exposants = 2(x 2) Loi des exposants = 2(x 2) Loi des exposants = 1 (x 2) Manipulations algébriques 2 1(x 2) Par définition du log 2 Nous voulons maintenant esquisser la fonction logarithme transformée. Tout d abord, regardons où se retrouve l asymptote. Puisque nous avions une asymptote en x = 0 dans la fonction de base, celle-ci se retrouve en x = h. Pour démontrer cette affirmation, il suffit d appliquer la transformation aux points (0, y). Par la suite, on peut savoir si la fonction est à gauche ou à droite de cette asymptote selon le signe de b. Si b < 0, la courbe se retrouvera à gauche de l asymptote et à droite si b > 0. Finalement, on dessine la courbe selon la valeur de c. h b > 0 0 < c < 1 b > 0 c > 1 h b < 0 c > 1 h b < 0 0 < c < 1 h Effectuons l analyse de cette fonction à l aide d exemple, le cas général étant un peu trop long.

135 Exemple Analysons la fonction 2. LES LOGARITHMES 131 f(x) = 2 ln(x + 4) 1. Premièrement, plaçons cette fonction sous sa forme canonique. y = 2 ln(x + 4) 1 y + 1 = 2 log e (x + 4) y+1 = log 2 e (x + 4) 2 = (x + 4) e y+1 1 e y+1 = x + 4 Lois des exposants 1 e y 1 e = x e y = e(x + 4) y = log 1 e ( e(x + 4)). Ainsi, b = e, c = 1 e et h = 4. L esquisse de cette fonction est On est maintenant en mesure d analyser cette fonction. Le domaine: L argument du lg doit être positif. Ainsi, x + 4 > 0 x > 4. D où, dom(f) =] 4, + [. L image: ima(f) =Ê. L ordonnée à l origine: f(0) = 2 ln(4)

136 LES FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES Les zéros: On résout f(x) = 0. Ainsi, 2 ln(x + 4) 1 = 0 ln(x + 4) = 1/2 x + 4 = e 1/2 x = e 1/2 4 x Ainsi, la fonction possède un seul zéro en x Le signe des images: Le signe dépend de la valeur de c. f(x) 0 x ] 4, ], f(x) 0 x [ , + [. Extremums: aucun maximum et aucun minimum. Croissance et décroissance: f(x) x dom(f). Équation de l axe de symétrie: Aucun axe de symétrie. Asymptote: x = 4

137 CHAPITRE 8 Les fonctions trigonométriques Les fonctions trigonométriques sont très importantes dans divers domaines. Entre autres, elles servent à décrire des mouvements oscillatoires comme le mouvement d un ressort ou des ondes sonores. Plusieurs autres phénomènes peuvent être également décrits grâce à ces fonctions Introduction. 1. Le cercle trigonométrique Définition 8.1. Le cercle trigonométrique est un cercle de rayon 1 placé dans un plan cartésien dont le centre est au point (0, 0). 1 y P 1 x Fig. 1. Cercle trigonométrique. On peut facilement montrer, à l aide du théorème de Pythagore, que si les coordonnées du point P sont (x, y), alors x 2 + y 2 = 1. C est ce que l on appelle l équation du cercle de rayon 1 centré à l origine. 133

138 LES FONCTIONS TRIGONOMÉTRIQUES 1.2. Mesures d angles. Définition 8.2. Un angle au centre est un angle dont le sommet est au centre du cercle. B O A Fig. 2. Angle au centre. On note l angle de la figure 2 par AOB. Définition 8.3. L arc d un cercle est une portion de la circonférence de ce cercle. Si l arc est défini par un angle AOB, alors on le note AB. B A Fig. 3. Arc de cercle. On se rappelle que la circonférence totale d un cercle de rayon r est donnée par la formule C = 2πr. Dans un cercle trigonométrique, on calcul toujours l angle dans le sens anti-horaire à partir de l axe des x. Si l angle est négatif, cela signifie qu il est mesuré dans le sens horaire. Cette mesure d angle peut se faire de deux façons. La première, la plus connue, est celle des degrés. On divise le cercle en 360 pointes de mêmes dimensions. Ainsi, l angle correspond au nombre de pointes comprises dans une section du cercle. Ainsi, si un angle prend 43 pointes, on dit qu il fait 43. Le symbole se lit degré. La deuxième manière est un peu plus complexe, mais beaucoup plus utile en mathématique. C est le radian. Voici sa définition.

139 1. LE CERCLE TRIGONOMÉTRIQUE 135 Fig. 4. Mesure d angle. Définition 8.4. Un radian correspond à l angle nécessaire entre deux rayons d un cercle afin que l arc engendré par ces rayons soit de la même longueur que le rayon du cercle. r θ r Fig. 5. Définition d un radian. Ici, l angle θ = 1 rad. NOTATION Habituellement, on omet de mettre rad. Ainsi, si un angle θ mesure 3 radian, on écriera θ = 3. Un peu comme pour les degrés, on peut savoir combien il y a de radians dans un cercle. Il suffit de déterminer le nombre de fois qu entre le rayon dans la circonférence d un cercle. Puisque C = 2πr, on voit bien que r entre 2π fois dans la circonférence d où le fait qu il y a 2π radians dans un cercle. Cette information nous permet de convertir des degrés en radians et des radians en degrés. Il suffit de faire une règle de trois. Exemple 8.1. Combien fait 45 en radian?

140 LES FONCTIONS TRIGONOMÉTRIQUES On sait qu il y a 360 dans un cercle et également 2π rad. Ainsi, La réponse est donc 45 2π =? 2π. = π 4. Le même principe est utilisé pour convertir des radians en degrés Angles remarquables. Avant d aller plus loin, effectuons un léger rappel de la définition géométrique du cosinus et du sinus d un angle. Définition 8.5. Soit le triangle rectangle suivant : c θ a On appelle le côté c l hypothénuse du triangle, a le côté adjacent à l angle θ et b son côté opposé. On définit alors le cosinus, le sinus et la tangente de l angle θ comme suit : cosθ = a c, b sin θ = b c, tan θ = b a. Regardons maintenant la fonction P(θ) qui associe un point du cercle trigonométrique selon l angle que fait le rayon passant par le point P avec l axe des x positifs. Pour déterminer ce point, il faut faire un peu de trigonométrie. θ P(θ) On forme un triangle rectangle où l hypoténuse correspond au rayon du cercle et vaut 1. Ainsi, on s apperçoit que la coordonnée x du point

141 1. LE CERCLE TRIGONOMÉTRIQUE 137 P(θ) correspond à la longueur du côté adjacent à l angle θ. D où cos θ = x Hyp cosθ = x 1. D une manière similaire, on obtient que y = sin θ. Ainsi, Il est important de noter que P(θ) = (cosθ, sin θ). P(θ) = P(θ + 2πk), où k. Cette propriété provient du fait que si l on ajoute un multiple de 2π à un angle, cela revient à faire des tours supplémentaires du cercle, car ce dernier possède 2π radians. Par exemple, P(π/2) = P(5π/2) = P(9π/2) =... Nous sommes maintenant en mesure d étudier certains angles remarquables du cercle trigonométrique. Cela nous permettra d évaluer rapidement le cosinus et le sinus de certains angles. Ceux-ci sont montrés à la figure 6. P( π ) = (0, 1) 2 P( π 3 ) = 1 P( 2π 3 ) = 1 2, 3 2, 3 P( 3π P( π = 4 ) = 2 2, 2 4 ) 2 2, , 2 2, 1 P( 5π 6 ) = 3 P( π 6 ) = 3 2 P(π) = ( 1, 0) 2 2 P(0) = (1, 0) P( 7π 6 ) = , 1 11π = P( 6 ) 3 2, 1 P( 5π 4 ) = 2 2, 2 P( 7π = 4 ) 2 2, 2 P( 4π 3 ) = 1 2, 3 P( 5π 3 ) = 1 2, 3 P( 3π ) = (0, 1) 2 Fig. 6. Cercle trigonométrique

142 LES FONCTIONS TRIGONOMÉTRIQUES Regardons d où proviennent ces résultats. Pour ce faire, étudions seulement les points qui sont dans le premier quadrant. Les coordonnées des autres points sont obtenues par déduction en s assurant d avoir le bon signe. Pour P( π 4 ) Débutons par P( π 4 ). On sait que π 4 radians correspond à 45. Ainsi, le triangle rectangle en est un isocèle x Trouvons la valeur de x et de y. Il est à noter que ces valeurs doivent être négatives puisqu elles représentent des longueurs. Ainsi, x 2 + y 2 = 1 Par Pythagore x 2 + x 2 = 1 Triangle isocèle, x = y 2x 2 = 1 x 2 = 1 2 x = 1 On prend la racine positive 2 x = 2 En rationalisant le dénominateur P π 4 = 2, 2. Pour les angles de 3π/4, 5π/4 et 7π/4, il suffit de raisonner de la même manière, mais en s assurant d avoir le bon signe pour les coordonnées. Pour P( π ) 6 Pour le point P( π ), il faut se rappeler d un théorème important, celui 6 de l angle de 30. Ce dernier dit que si un triangle rectangle possède un angle de 30, alors le côté opposé de l angle de 30 faut la moitié de la longueur de l hypoténuse. Puisque π/6 = 30, alors ce théorème nous sera très utile. Nous avons donc à trouver la valeur de x et de y dans le triangle suivant : y 1 30 x y

143 1. LE CERCLE TRIGONOMÉTRIQUE 139 Par le théorème de l angle de 30, nous avons que y = 1. Il suffit de 2 trouver x à l aide de Pythagore. x 2 + y 2 = 1 x = 1 x 2 = 3 4 Ainsi, x = 3 2. P π 3 = 3 2, 1 2. Le même principe est utilisé pour déterminer les coordonnées de 5π/6, 7π/6 et de 11π/6. Pour P( π 3 ) On sait que π 3 = 60, ce qui signifie que le triangle rectangle possède un angle de 30. Par contre, cette fois c est x qui est le côté opposé à cet angle. Donc x = 1 2 et y = y t x 1.4. Résolution d équations trigonométriques. Avant de passer à la résolution d équations trigonométriques, définissons trois autres fonctions trigonométriques. Définition 8.6. Soit le triangle rectangle suivant : c θ a b

144 LES FONCTIONS TRIGONOMÉTRIQUES On définit la sécante, la cosécante et la cotangente de l angle θ par sec θ = 1 cos θ = c a, csc θ = 1 sin θ = c b, cot θ = 1 tan θ = a b. Passons maintenant à la résolution d équations contenant des fonctions trigonométriques. Commençons par un exemple assez simple pur montrer la méthode. Exemple 8.2. Trouvons l ensemble solution de l équation 2 sin θ 1 = 0. La première manipulation à faire est d isoler la fonction trigonométrique, sinus dans cet exemple. Ainsi, sin θ = 1 2. Pour déterminer quelles sont les valeurs de θ qui satisfont cette équation, il faut utiliser le cercle trigonométrique. Puisque y = sin θ, on recherche qu elles sont les valeurs de θ qui rendent y = 1. Nous avons 2 donc que θ = π 6 ou θ = 5π 6. Par contre, ce ne sont pas les seules valeurs. Comme nous l avons mentionné, Ainsi, l ensemble solution est P(θ) = P(θ + 2πk), où k. ES = π 6 + 2πk, 5π 6 + 2πk k. Définition 8.7. Les solutions principales d une équation contenant une fonction trigonométrique sont les solutions de l équation contenues dans l intervalle [0, 2π[. Cela signifie que dans l exemple précédent, les solutions principales sont θ = π 6 et θ = 5π 6.

145 1. LE CERCLE TRIGONOMÉTRIQUE 141 Exemple 8.3. Trouvons les solutions principales de l équation tan θ = 2 sin θ. Pour résoudre, il est plus simple de réécrire tan θ à l aide du cosθ et de sin θ. Ainsi, sin θ = 2 sin θ. cosθ Il faut d abord déterminer le domaine de cette équation. Puisque l on cherche les solutions principales, il faut restreindre le domaine à [0, 2π[. De plus, il faut que cos θ 0. Ce qui signifie que θ π/2 et θ 3π/2. Ainsi, dom = [0, 2π[\{ π 2, 3π 2 }. Il ne reste plus qu à manipuler l équation. sin θ 2 sinθ cosθ = 0 sin θ(1 2 cosθ) = 0 sin θ cosθ = 2 sin θ sin θ = 2 sin θ cos θ Ici, il y a deux possibilités : sin θ = 0 ou 1 2 cosθ = 0. Ainsi, sin θ = 0 θ = 0 ou θ = π. Ces valeurs sont déterminées à l aide du cercle trigonométrique. Pour l autre possibilité, nous obtenons cosθ = 1 2 θ = π 3 ou θ = 5π 3. Le prochain exemple nécessite une petite astuce, la même que nous avons utilisée plus tôt pour résoudre des équations exponentielles. Exemple 8.4. Résoudre l équation cos 2 θ 1 2 cosθ = 1 2. NOTATION On note [cos θ] 2 par cos 2 θ. On fait de même pour les autres fonctions trigonométriques. Plaçons l équation égale à zéro et voyons ce qui apparaît. cos 2 θ 1 2 cos θ 1 2 = 0.

146 LES FONCTIONS TRIGONOMÉTRIQUES Si l on pose u = cosθ, on obtient une équation du second degré à résoudre. u u 1 2 = 0. En utilisant la formule quadratique, on trouve que u = 1 ou u = 1 2. Ainsi, on peut déterminer les solutions principales : et Ainsi, cosθ = 1 θ = 0 cosθ = 1 2 θ = 2π 3 ou θ = 4π 3 ES = 2πk, 2π 3 + 2πk, 4π 3 + 2πk k Jusqu ici, nous nous sommes retrouvés en présence d angles remarquable. Mais qu arrive-t-il lorsque ce n est pas le cas? Par exemple, quel est l ensemble solution de l équation cosθ = 0.2? Pour être en mesure de répondre à cette question, nous devrons définir de nouvelles fonctions. Définition 8.8. Soit l équation y = cos x. On réécrire l équation comme suit : x = arccosy. Cette fonction se trouve sur la calculatrice et sa touche est cos 1. C est le même principe pour le sinus et la tangente. Exemple 8.5. Trouvons l ensemble solution de l équation cos θ = 0.2. Utilisons la fonction arccos. cosθ = 0.2 θ = arccos 0.2 θ 1.37 Comme on le voit, la fonction arccos nous donne seulement un angle principal. On sait qu il y en a deux.

147 2. LA FONCTION SINUS 143 θ θ Comme le montre la figure, les solutions principales seront donc 1.37 et Cependant, les solutions principales doivent se trouver entre 0 et 2π. Il faut donc réécrire Cet angle vaut également 2π Ainsi, ES = {1, πk, πk k }. Le même phénomène se produit lorsque nous devons résoudre une équation de la forme sin θ = c θ = arcsin c. À ce moment, les solutions principales sont obtenues en esquissant le graphique suivant : π θ θ Exemple 8.6. Trovons les solutions principales de On calcul sin x = 0.3. x = arcsin Ainsi, les solutions principales sont et π La fonction de base. 2. La fonction sinus Définition 8.9. La fonction sinus de base est une fonction de la forme f(x) = sin x.

148 LES FONCTIONS TRIGONOMÉTRIQUES Son graphique est une courbe qui oscille autour d un axe porteur (ici, y = 0) : pi 4pi 3pi 2pi pi 0 pi 2pi 3pi 4pi 5pi Pour comprendre d où provient ce graphique, il faut étudier la valeur de la coordonnée y sur le cercle trigonométrique. On a que le maximum de cette coordonnée est 1 et que son minimum est 1. Ainsi, f(x) = sin x sera au maximum égale à 1 et au minimum à 1. Par la suite, si x = 0 (ce qui signifie que l angle dans le cercle trigonométrique est nul), alors sin x = 0. C est également le cas pour tous les multiples π. Étudions cette fonction plus en détail. Le domaine: dom(f) =Ê L image: ima(f) = [ 1, 1]. L ordonnée à l origine: f(0) = sin 0 = 0. Les zéros: On doit résoudre f(x) = 0. sin x = 0 x = 0 ou x = π. Ainsi, sinx = 0 si x {0+2πk, π +2πk k }. Cet ensemble peut se réécrire comme étant l ensemble de tous les multiples de π. Ainsi, l ensemble des zéros est {πk k }. Le signe des images: f(x) 0 x [2πk, π + 2πk], où k f(x) 0 x [π + 2πk, 2π(k + 1)], où k

149 2. LA FONCTION SINUS 145 Extremums: max(f) = 1 et min(f) = 1. La fonction est maximale lorsque et est minimale lorsque x {π/2 + 2πk k } x {3π/2 + 2πk k }. Ces points correspondent aux sommets de la fonction. Croissance et décroissance: f(x) x [π/2 + 2πk, 3π/2 + 2πk], où k f(x) x [3π/2 + 2πk, π/2 + 2π(k + 1)], où k. Équation de l axe de symétrie: À tous les sommets. Asymptote: Aucune. Il y a deux nouvelles quantités qui caractérisent les fonctions trigonométriques : l amplitude et la période. Voici leur définition : Définition L amplitude d une fonction trigonométrique, que l on note A, est donnée par la formule suivante : A = max(f) min(f). 2 Celle-ci correspond à la distance parcourue verticalement par rapport à l axe porteur de la fonction trigonométrique. Définition La période d une fonction trigonométrique est la longueur que prend cette fonction avant de se répéter. On note la période par ω. On a également la fréquence de la fonction. Celle-ci se note f et se calcule comme suit : f = 1 ω. Ces quantités sont très importantes dans les applications physiques des fonctions sinusoïdales. Elles nous aideront également pour esquisser les graphiques.

150 LES FONCTIONS TRIGONOMÉTRIQUES ω 0.5 A Dans le cas de la fonction f(x) = sin x, l amplitude est de 1 et la période est de 2π, car la même valeur de y revient après 2π. Nous aurons aussi que la fréquence est f = 1 2π La fonction sinus transformée. Définition La forme canonique de la fonction sinus transformée est f(x) = a sin(b(x h)) + k. Le rôle de ces paramètres reste le même que pour les autres fonctions. Regardons néanmoins l impact précis de certains paramètres, surtout a et b Rôle de a et de k. Le paramètre a affecte l amplitude de la fonction. Puisque le sinus est toujours compris entre 1 et 1, alors a sin(b(x h)) sera dans l intervalle [ a, a ]. Par la suite, on additionne k qui aura pour effet de déplacer verticalement la fonction. L axe porteur de la fonction se retrouvera donc en y = k et la fonction oscillera autour de cet axe. On obtiendra que max(f) = a + k et min(f) = a + k, d où une amplitude de a. Lorsque a est négatif, il y aura réflexion par rapport à l axe des x. La figure suivante montre ce qui se produit. La fonction de base est en pointillés.

151 2. LA FONCTION SINUS 147 k + a a > k a 5pi 4pi 3pi 2pi pi 0 pi 2pi 3pi 4pi 5pi 2 1 a = pi 4pi 3pi 2pi pi 0 pi 2pi 3pi 4pi 5pi Rôle de b et de h. Dans cette fonction, le rôle du paramètre b est très évident et très important. Il affectera la période de la fonction. Oublions les trois autres paramètres pour se concentrer dessus. Le graphique suivant explique bien son influence. 1 b = pi pi 0 pi 2pi 1 b = pi 4pi 3pi 2pi pi 0 pi 2pi 3pi 4pi 5pi On remarque que si b = 2, la fonction oscille plus rapidement. Afin de faire un cycle, elle prend la moitié moins de temps. De plus, si b = 1 2, elle oscille plus lentement, deux fois moins vite pour être précis. On a donc que b affecte directement la période ω de la fonction. On aura alors que la période est donnée par la formule suivante : ω = 2π b. Lorsque b est négatif, il y a une réflexion par rapport à l axe de y, ce qui revient à changer le signe de a. Pour h, il il effectue une translation

152 LES FONCTIONS TRIGONOMÉTRIQUES horizontale. Voici la recette pour tracer une fonction sinus. Étape 1: Écrire la fonction sous sa forme canonique, c est-à-dire f(x) = a sin(b(x h)) + k. Étape 2: Déterminer la période ω, l amplitude A et l équation de l axe porteur à l aide des relations suivantes : ω = 2π b, A = a et y = k (l axe porteur). Étape 3: Dessiner l axe porteur et mettre le point (h, k) qui correspond au point de départ de ma fonction sinus. Ajouter les axes y = a + k et y = k a qui correspondent au maximum et au minimum de la fonction. Étape 4: Dessiner un point sur l axe y = k à chaque intervalle de ω/2 à partir du point (h, k). Ce sont les endroits où la fonction croise l axe porteur. Étape 5: On détermine dans quelle direction on trace la fonction en partant du point (h, k). Cette direction est déterminée par le signe de a et de b. Le tableau suivant montre ces directions : a > 0 a < 0 b > 0 b < 0 Étape 6: On esquisse la fonction en partant du point (h, k) selon la direction en s assurant de passer par les points et les axes tracés. Regardons un exemple. Exemple 8.7. Soit la fonction y = 2 sin(πx π) + 1. Essquissez cette fonction et analysez-la. Étape 1: On trouve la forme canonique de cette fonction. Ainsi, y = 2 sin(πx π) + 1 = 2 sin(π(x 1)) + 1.

153 2. LA FONCTION SINUS 149 Ainsi, a = 2, b = π, h = 1 et k = 1. Étape 2: ω = 2π b = 2π π = 2, A = a = 2, y = k = 1 (l axe porteur). Étape 3: Le point de départ est (h, k) = (1, 1) et les axes de maximum et minimum sont y = 3 et 1. Ainsi, ymax ymin Étape 4: Ici, ω/2 = 1. On place donc des points à intervalle de 1 sur l axe porteur ymax ymin Étape 5: Puisque a < 0 et b >, on dessinera la courbe vers la droite et vers le bas en partant de (1, 1).

154 LES FONCTIONS TRIGONOMÉTRIQUES ymax ymin Étape 6: On trace le graphique en partant dans la bonne direction ymax ymin La fonction de base. 3. La fonction cosinus 4. La fonction tangente Définition La fonction tangente de base est de la forme f(x) = tanx. Afin de tracer cette fonction, on utilise le graphique de la fonction sinus et cosinus. On sait que tan x = sin x cosx. Ainsi, la fonction f(x) n est pas définie lorsque le cosinus sera zéro. Il y aura alors des asymptotes à ces valeurs de x. De plus, la fonction est nulle lorsque le sinus est nul. La figure suivante montre le graphique de la fonction tangente. Nous avons également placé les fonctions et cosinus afin de visualiser ce qui se produit.

155 4. LA FONCTION TANGENTE 151 y=sin x π/2 π π/2 y=cos x π/2 π 3π/ π/2 π π/2 0 π/2 π 3π/2 y=tan x π/2 π π/2 0 π/2 π 3π/2 On remarque que la fonction est périodique et celle-ci est de π. Analysons cette fonction. Le domaine: dom(f) =Ê\ π 2 + πk. Les valeurs exclues correspondent aux endroits où le dénominateur (la fonction cos x) s annule. L image: ima(f) =Ê. L ordonnée à l origine: f(0) = tan0 = 0. Les zéros: On doit résoudre f(x) = 0. Ainsi, tan x = 0 sin x cosx = 0 sin x = 0 Ainsi, trouver les zéros de la fonction tangente revient à trouver ceux de la fonction sin x. sin x = 0 x = 0 ou x = π. Ainsi, sin x = 0 si x {0+2πk, π +2πk k }. Cet ensemble peut se réécrire comme étant l ensemble de tous les multiples de π. Ainsi, l ensemble des zéros est {πk k }.

156 LES FONCTIONS TRIGONOMÉTRIQUES Le signe des images: f(x) 0 x [πk, π/2 + πk[, où k f(x) 0 x ] π/2 + πk, πk], où k Extremums: Aucun Croissance et décroissance: f(x) x dom(f). Équation de l axe de symétrie: Aucune axe de symétrie. Asymptote: En x = π/2 + πk. Comme on peut le remarquer, la fonction tangente est assez différente des autres fonctions trigonométriques que nous avons vues. Par contre, elle possède certains points en commun comme la périodicité La fonction transformée. La forme canonique de la fonction tangente est f(x) = a tan(b(x h)) + k. La manière d obtenir le graphique est assez simple. Voici, les étapes : Étape 1: Écrire la fonction sous sa forme canonique. Étape 2: Trouver la période ω et les asymptotes. ATTENTION : ici, on calcule la période par la formule ω = π b. Les asymptotes sont obtenues en résolvant l équation b(x h) = π 2 + nπ. Étape 3: On trace les asymptotes et le point de départ qui est (h, k). Ce point se nomme point d inflecxion. Étape 4: En partant du point (h, k), on dessine la moitié de la fonction selon le signe de a et de b. La direction est donnée dans le tableau suivant : a > 0 a < 0 b > 0 b < 0 Étape 5: On complète la fonction sur la période et on reproduit le motif à chaque période.

157 4. LA FONCTION TANGENTE 153 Exemple 8.8. Esquisser et analyser la fonction f(x) = tan(2(x π )) Calculons d abord la période et les asymptotes. ω = π b = π 2. Pour trouver l équation des asymptotes, on résout Ainsi, 2(x π ) = π/2 + nπ, n. 4 2(x π 4 ) = π 2 + nπ x π 4 = π 4 + nπ 2 x = (n + 1) π 2 D où une asymptote à tous les multiples de π/2. On indique maintenant le point d inflexion (h, k) = (π/4, 1) et les asymptotes. Par la suite, on trace la fonction en partant du point d inflexion en se dirigeant vers le bas et la droite. On complète la fonction et on remplit les autres périodes π/2 L analyse de cette fonction se fait relativement bien. Le seul point difficile est de déterminer les zéros de cette fonction. Voici comment on

158 LES FONCTIONS TRIGONOMÉTRIQUES procède. Puisque tan(2(x π 4 )) + 1 = 0 tan(2(x π 4 )) = 1 tan θ = sin θ cosθ, alors si tan θ = 1, c est que sin θ = cos θ. Cela se produit si θ = π/4. Ainsi, 2(x π 4 ) = π 4 x = 3π 8 Puisque la période de π/2, alors les zéros sont 3π 8 + π k, où k. 2 Il est à noter que pour trouver les zéros d une fonction tangente, il n est pas toujours possible d obtenir des angles remarquables comme ce fût le cas. Il faut alors utiliser la fonction arctan qui correspond à la touche tan 1 sur la calculatrice. 5. Les fonctions sécante, cosécante et cotangente Dans cette partie, nous étudierons les fonctions sécante, cosécante et cotangente. Puisque ce sont des fonctions qui sont l inverse des fonctions cosinus, sinus et tangente, on peut facilement les esquisser en suivant la procédure suivante : Étape 1: On trace la fonction inverse de celle que l on veut esquisser. Étape 2: Sur le graphique de la fonction à esquisser, à chaque fois que la fonction inverse est nulle, on met une asymptote verticale. Étape 3: À chaque fois que la fonction inverse possède une asymptote, la fonction à esquisser est nulle. C est le cas pour la fonction cot. Étape 4: Trouver un point remarquable. Pour les fonctions sécante et cosécante, on cherche en quels points elles valent 1 et 1.

159 6. IDENTITÉS TRIGONOMÉTRIQUES 155 Étape 5: On complète le dessin à l aide des asymptotes et des points remarquables. Exemple 8.9. Esquissons la fonction y = sec x. Pour ce faire, on doit tracer la fonction y cosx. Les endroits où cette fonction est nulle correspondent à des asymptotes de la fonction y sec x. Il faut maintenant trouver les points remarquables. Puisque sec x = 1 cos x, alors sec x = 1 lorsque cosx = 1 et sec x = 1 lorsque cosx = 1. Il ne reste plus qu à tracer la fonction π 3π/2 π/2 π/2 0 π/2 π 3π/2 2π π 3π/2 π/2 π/2 0 π/2 π 3π/2 2π Les deux autres fonctions se tracent de la même façon. 6. Identités trigonométriques Les identités trigonométriques sont très importantes afin de simplifier certaines expressions. En réalité, il n y en a qu une à connaître. C est la suivante : sin 2 A + cos 2 A = 1. Cette égalité provient directement du cercle trigonométrique et du théorème de Pythagore. Supposons que nous avons un angle de mesure A. Alors, P(A) = (cosa, sin A). Nous savons que l équation du cercle trigonométrique est x 2 + y 2 = 1.

160 LES FONCTIONS TRIGONOMÉTRIQUES Ainsi, puisque x = cos A et y = sin A, on obtient l identité. Deux identités découlent de celle-ci. La première consiste à diviser l identité par cos 2 A. Ainsi, sin 2 A + cos 2 A = 1 cos 2 A cos 2 A tan 2 A + 1 = sec 2 A. Au lieu de diviser par cos 2 A, on peut diviser par sin 2 A ce qui nous donne la troisième identité : sin 2 A + cos 2 A sin 2 = 1 A sin 2 A 1 + cot 2 A = csc 2 A. On est maintenant en mesure de démontrer des identités trigonométriques. Regardons quelques exemples. Exemple Démontrons que tan 2 x cos 2 x + cos 2 x = 1. Il est plus simple de travailler en termes de sinus et de cosinus. Ainsi, la première étape consiste toujours à réécrire l équation avec des sinus et des cosinus. Ici, nous avons tan 2 x cos 2 x + cos 2 x = sin2 x cos 2 x cos2 x + cos 2 x = sin 2 x + cos 2 x = 1 Exemple Démontrons que sec 2 x cot x csc 2 x = tan x.

161 6. IDENTITÉS TRIGONOMÉTRIQUES 157 sec 2 x cotx csc 2 x = = 1 cos 2 x cosx sin x 1 sin 2 x 1 sin x cos x 1 sin 2 x = sin2 x sin x cos x = sin x cosx = tan x. Les identités nous permettent également de résoudre certaines équations qui contiennent plusieurs fonctions trigonométriques. Exemple Trouvons l ensemble solution de l équation 3 4 sin 2 x = 2 cos 2 x. Pour résoudre une équation contenant des fonctions trigonométriques, il faut la simplifier afin d obtenir une équation de la forme fonction trigonométrique = constante. 3 4 sin 2 x = 2 cos 2 x 3 4 sin 2 x = 2(1 sin 2 x) 3 4 sin 2 x = 2 2 sin 2 x 1 = 2 sin 2 x sin 2 x = 1 2 sin x = ± sin x = ± 2 Si sin x = 2, alors les solutions principales sont π et 3π. Si sin x = , alors les solutions principales sont 5π et 7π. Ainsi, l ensemble solution est ES = π 4 + 2πk, 3π 4 + 2πk, 5π 4 + 2πk, 7π 4 + 2πk k.

162 LES FONCTIONS TRIGONOMÉTRIQUES Exemple Trouvons l ensemble solution de l équation Simplifions d abord l équation tan t + cot t = 5 csc t. tan t + cot t = 5 csc t sin t cost + cos t sin t = 5 sin t sin t sin t + cos t cost = 5 cost sin t cost sin t cost sin 2 t + cos 2 t = 5 cost 1 = 5 cost 1 5 = cost t = arccos 1 5 Ainsi, D où, t 1.37 t 1.37 = 2π ES = { πk, πk k }.

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau

Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau i Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau Bonjour, bienvenue dans votre début d étude du cours de mathématiques de l année de remise à niveau en vue du D.A.E.U. B Au cours

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements 3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?

Plus en détail

Les nombres entiers. Durée suggérée: 3 semaines

Les nombres entiers. Durée suggérée: 3 semaines Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Glossaire des nombres

Glossaire des nombres Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

V- Manipulations de nombres en binaire

V- Manipulations de nombres en binaire 1 V- Manipulations de nombres en binaire L ordinateur est constitué de milliards de transistors qui travaillent comme des interrupteurs électriques, soit ouverts soit fermés. Soit la ligne est activée,

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

LES TYPES DE DONNÉES DU LANGAGE PASCAL

LES TYPES DE DONNÉES DU LANGAGE PASCAL LES TYPES DE DONNÉES DU LANGAGE PASCAL 75 LES TYPES DE DONNÉES DU LANGAGE PASCAL CHAPITRE 4 OBJECTIFS PRÉSENTER LES NOTIONS D ÉTIQUETTE, DE CONS- TANTE ET DE IABLE DANS LE CONTEXTE DU LAN- GAGE PASCAL.

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro. Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Algorithme. Table des matières

Algorithme. Table des matières 1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............

Plus en détail

Sites web éducatifs et ressources en mathématiques

Sites web éducatifs et ressources en mathématiques Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Cours d arithmétique Première partie

Cours d arithmétique Première partie Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant

Plus en détail

Chapitre 14. La diagonale du carré

Chapitre 14. La diagonale du carré Chapitre 4 La diagonale du carré Préambule Examinons un puzzle tout simple : on se donne deux carrés de même aire et on demande, au moyen de quelques découpages, de construire un nouveau carré qui aurait

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Exercices sur les équations du premier degré

Exercices sur les équations du premier degré 1 Exercices sur les équations du premier degré Application des règles 1 et Résoudre dans R les équations suivantes en essayant d appliquer une méthode systématique : 1 x + = x + 9 x + = x x 1 = x + x +

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Fibonacci et les paquerettes

Fibonacci et les paquerettes Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail