Problèmes de dénombrement.



Documents pareils
Priorités de calcul :

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Les probabilités. Chapitre 18. Tester ses connaissances

EXERCICES DE REVISIONS MATHEMATIQUES CM2

Date : Tangram en carré page

Diviser un nombre décimal par 10 ; 100 ; 1 000

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

III- Raisonnement par récurrence

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)

Exercices de dénombrement

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi!

4. Exercices et corrigés

Jean Dubuffet AUTOPORTRAIT II

Le seul ami de Batman

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.

Le contexte. Le questionnement du P.E.R. :

Réseau d Éducation Prioritaire de Harnes. Défis-math Énoncés

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

5 ème Chapitre 4 Triangles

La médiatrice d un segment

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

Deux disques dans un carré

Programme de calcul et résolution d équation

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Trois personnes mangent dans un restaurant. Le serveur


Championnat de France de Grilles Logiques Finale 7 juin Livret d'instructions

Triangles isométriques Triangles semblables

Exercice numéro 1 - L'escalier

Les problèmes de la finale du 21éme RMT

PROBABILITÉS CONDITIONNELLES

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Paris et New-York sont-ils les sommets d'un carré?

Plus petit, plus grand, ranger et comparer

MAT2027 Activités sur Geogebra

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

6 ème. Rallye mathématique de la Sarthe 2013/ ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

Théorie et Codage de l Information (IF01) exercices Paul Honeine Université de technologie de Troyes France

Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français

ÉVALUATION EN FIN DE CM1. Année scolaire LIVRET DE L'ÉLÈVE MATHÉMATIQUES

Sommaire de la séquence 10

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

My Custom Design ver.1.0

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

Indications pour une progression au CM1 et au CM2

Fonctions de plusieurs variables

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Coefficients binomiaux

Introduction à la théorie des graphes. Solutions des exercices

Sommaire de la séquence 12

Le théorème de Thalès et sa réciproque

EQUATIONS ET INEQUATIONS Exercices 1/8

Angles orientés et trigonométrie

Proposition de programmes de calculs en mise en train

Chapitre 2 : Vecteurs

Corrigé du baccalauréat S Asie 21 juin 2010

Je fais le point 1. PrénoM :... Il y a... oiseaux. Guide de l enseignant p.64. Écris les nombres dictés. Écris les nombres effacés par Gribouille.

Jeux mathématiques en maternelle. Activités clés. Jeu des maisons et des jardins (Yvette Denny PEMF)

Analyse Combinatoire

Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN :

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/ Présentation. 1.2 Ressources

Nombre de marches Nombre de facons de les monter

EVALUATIONS MI-PARCOURS CM2

Je découvre le diagramme de Venn

Eté LIVRET de RÉVISIONS en MATHÉMATIQUES

Introduction au maillage pour le calcul scientifique

Sommaire de la séquence 8

2013 Pearson France Adobe Illustrator CC Adobe Press

Puissances d un nombre relatif

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur

LES TOUT PREMIERS PAS

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Activités numériques [13 Points]

MATHÉMATIQUES APPLIQUÉES S4 Exercices

PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

Tp_chemins..doc. Dans la barre "arche 2" couleur claire 1/5 21/01/13

Statistiques Descriptives à une dimension

Feuille d exercices 2 : Espaces probabilisés

Thème 17: Optimisation

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

BACCALAUREAT GENERAL MATHÉMATIQUES

Math 5 Dallage Tâche d évaluation

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Probabilités. C. Charignon. I Cours 3

avec des nombres entiers

Lecture graphique. Table des matières

Comment démontrer que deux droites sont perpendiculaires?

Transcription:

Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers la case située immédiatement à sa droite. ller d une case vers la case située immédiatement en dessous. D Combien de chemins différents existe-t-il? 2. On considère une pyramide dont la base est un carré, et dont les autres faces sont des triangles équilatéraux. Combien de patrons différents de cette pyramide peut on réaliser? (Dans ce problème, deux patrons que l on peut superposer après les avoir éventuellement déplacés ou retournés sont considerés comme identiques). 3. On cherche à décomposer le nombre 12 en une somme de trois entiers strictement positifs. Combien de décompositions différentes existe-t-il? 4. Combien peut on dessiner de triangles dont les sommets soient placés sur les points ci-dessous? Dans ce problème, deux triangles de mêmes dimensions mais utilisant des sommets différents sont considerés comme distincts. * * * * * * 5. Combien y-a-t-il de nombres entiers positifs inférieurs à 1000 qui ont pour reste 7 dans chacune des trois divisions par 9, 10 et 12? 6. Un polygone a douze côtés, combien a-t-il de diagonales? 7. On place 7 points sur une feuille sans faire aucun alignement de trois points. Combien existe-t-il de triangles ayant trois de ces 7 points pour sommets? 8. Combien y-a-t-il de nombres entiers inférieurs à 1000 dont la somme des chiffres est 6? 9. On trace 6 segments sur une feuille de papier ordinaire, les extremités des segments se trouvant tous sur les bords de la feuille. La feuille est découpée par ces segments en un certain nombre de morceaux, on appelle n ce nombre. Quelle est la plus grande valeur possible du nombre n?

10. Parmi les nombres entiers de 1 à 1000 (1 et 1000 compris), combien y en a-t-il qui ne sont multiples ni de 2 ni de 3 ni de 4? 11. On trace des triangles en respectant les contraintes suivantes : a. Tous les triangles ont un périmètre de 15 cm b. Tous les côtés des triangles mesurent un nombre entier de cm. Combien de triangles différents peut-on tracer? 12. Les quatre schémas ci-dessous représentent des assemblages de cubes. On les désigne par «assemblage n 1», «assemblage n 2», «assemblage n 3» et «assemblage n 4» En poursuivant des assemblages selon le même principe, combien faudra-t-il de cubes pour réaliser l assemblage n 13? Combien de cubes pour l assemblage n 100? 13. Combien peut-on tracer de triangles rectangles dont les trois sommets soient situés sur les nœuds de la grille ci-dessous? Dans cette question, deux triangles isométriques mais occupant des positions différentes sont considérés comme différents, chacun d eux doit être compté. 14. Même question que la n 13, mais pour la grille ci-dessous. 15. Un nouvel état a choisi la forme de son drapeau (voir schéma ci-contre). Chacune des quatre zones du drapeau sera d une couleur unie. On n utilisera pas d autre couleur que le jaune le rouge ou le vert. Deux zones ayant un côté en commun ne peuvent pas être de la même couleur. Combien de drapeaux différents sont possibles? 16. Dans le tiroir de sa commode, Paul a 18 chaussettes noires, 12 chaussettes grises, 10 chaussettes blanches et 8 chaussettes rouges. Il prend des chaussettes sans regarder. Combien doit-il en prendre pour être certain de pouvoir constituer une paire de chaussettes assorties? Pour être certain de pouvoir constituer deux paires? 17. Même problème que le n 16 si ce n est que Paul est un martien et qu il a donc besoin comme chacun sait de constituer des triplettes de chaussettes assorties, et non des paires.

Correction des problèmes de dénombrement Très souvent, pour résoudre un problème de dénombrement, il faut partager l ensemble à dénombrer en plusieurs sousensembles disjoints, et éventuellement recommencer à décomposer les ensembles obtenus en sous-ensembles encore plus petits, jusqu à ce qu on obtienne des sous-ensembles faciles à dénombrer. Exercice 1 On peut étudier séparément les chemins qui commencent vers le bas et ceux qui commencent vers la droite., puis décomposer chacun de ces ensembles selon que le deuxième pas est vers le bas ou vers la droite, on a alors des sous ensembles suffisamment petits pour pouvoir dessiner tous les chemins de chaque sous ensemble et les compter (prévoir des couleurs différentes!). On peut aussi reformuler le problème en représentant chaque chemin possible par une suite de lettres comme «dbbddd» qui se lit ainsi : je vais vers la droite puis vers le bas. Chacun des chemins possible est alors représenté par une suite de 6 lettres (4 d, et 2 b) Dénombrer les chemins revient donc à dénombrer les suites 6 lettres dont 4d et 2b. Le plus pratique est d étudier la position des b. Si le premier b est en première position, le deuxième a 5 places possibles. Si le premier b est en deuxième position, le deuxième a 4 places possibles. Si le premier b est en troisième position, le deuxième a 3 places possibles. Si le premier b est en quatrième position, le deuxième a 2 places possibles. Si le premier b est en cinquième position, le deuxième a 1 place possible. Il y a donc en tout 15 possibilités, donc également 15 chemins. Une autre approche consiste à remarquer que les chemins aboutissant à la case sont ceux qui aboutissent à x (prolongés d un déplacement vers le bas) et ceux qui aboutissent à y, prolongés d un déplacement vers la droite). Le nombre de chemeins cherché est donc la somme du nombre de chemins aboutissant à x et du nombre de chemins arrivant à y. D y x On peut faire le même raisonnement pour x et y, et les autres cases. Il est alors possible de remplir le tableau de proche en proche en partant de D (le nombre inscrit dans une case est égal au nombre de façons d aller de la case D à cette case). D 1 1 1 1 1 2 3 4 5 1 3 6 10 15 Exercice 2 Une répartition en catégorie «naturelle» semble être la suivante : 1. Patrons dans lesquels un seul triangle est adjacent au carré : 2. Patrons dans lesquels deux triangles sont adjacents au carré : a) En utilisant deux côtés opposés du carré b) En utilisant deux côtés adjacents du carré 3. Patrons dans lesquels trois triangles sont adjacents au carré : 4. Patrons dans lesquels quatre triangles sont adjacents au carré : Il y a donc 8 patrons différents de la pyramide étudiée dans cet exercice. Cette méthode limite les risques d oubli mais n empèche pas des erreurs d un autre type. En particulier, il faut éviter de compter des figures faites d un carré et 4 triangles sans pour autant être un patron.

Exercice 3 Une décomposition efficace est de trier les solutions suivant le plus grand des trois nombres (en commençant par les grandes valeurs) puis d étudier systématiquement toutes les valeurs possibles pour le deuxième nombre, dans l ordre décroissant également. 10 1 1 9 2 1 8 3 1 ; 8 2 2 7 4 1 ; 7 3 2 6 5 1 ; 6 4 2 ; 6 3 3 5 5 2 ; 5 4 3 4 4 4 Il y a 12 décompositions différentes du nombre 12 en somme de 3 entiers stictement positifs. Exercice 4 * * * * * * Certains triangles ont deux sommets sur la ligne du haut, les autres (aussi nombreux) ont deux sommets sur la ligne du bas. On peut donc compter uniquement ceux qui ont deux sommets sur la ligne du haut et multiplier leur nombre par 2. Les deux sommets peuvent être placés dans les colonnes 1 et 2, ou bien 1 et 3, ou 2 et 3. Pour chacune de ces possibilités, le troisième sommet peut être placé en colonne 1, 2 ou 3. On peut représenter les différentes possibilités sous forme d un arbre : Ligne comportant haut bas deux sommets : Colonnes de ces 1 et 2 1 et 3 2 et 3 1 et 2 1 et 3 2 et 3 deux sommets : Colonne du troisième sommet : 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Le nombre de triangles que l on peut tracer est 2 x 3 x 3 = 18 Exercice 5 L approche par décomposition de l ensemble étudié ne semble pas fonctionner. Soit n un des nombes cherchés, n-7 est un multiple commun à 9, 10 et 12. Le ppmc de 9,10 et 12 étant 180, n-7 est un multiple de 180. Pour que n soit inférieur à 1000, les valeurs possibles de n-7 sont donc 0, 180, 360, 540, 720 et 900. Les valeurs possibles de n sont 7, 187, 367, 547, 727 et 907, elles sont au nombre de 6. Exercice 6 Si un polygone a 12 côtés, il a aussi 12 sommets. De chacun de ses sommets partent 9 diagonales (une vers chacun des autres sommets à l exception de ses deux voisins). En procédant ainsi, chaque diagonale aura été comptée deux fois (elle fait partie des 9 diagonales comptées pour chacune de ses extremités). Le nombre de diagonales du polygone est donc égal à 12 x 9 : 2, soit 54. Exercice 7 Tracer un triangle revient à choisir trois des sept points On a 7 possibilités pour choisir le premier point, 6 pour le deuxième et 5 pour le troisième, ce qui fait 7 x 6 x 5 soit 210 choix possibles. En procédant ainsi, chaque triangle aura été trouvé 6 fois. Par exemple, le triangle BC aura été trouvé sous les noms BC, CB, BC, BC, CB et CB. Le nombre réel de triangles est donc égal à 210 : 6 = 35. On peut adapter cette méthode pour résoudre le problème 4. Le raisonnement ci-dessus conduit à trouver que dans le cas général avec 6 points on peut obtenir 20 triangles, mais la disposition des points dans le problème 4 fait que deux des triangles sont aplatis et ne sont donc pas pris en compte.

Exercice 8 Le seul nombre à un chiffre répondant à la question est 6 Les nombres à deux chiffres répondant à la question sont 60, 51, 42, 33, 24 et 15 Les nombres à trois chiffres répondant à la question sont : 600 510 et 501 420, 411et 402 330, 321, 312 et 303 240, 231, 222, 213 et 204 150, 141, 132, 123, 114et 105. Il y a donc 28 nombres entiers inférieurs à 1000 dont la somme des chiffres est 6 Une autre approche du même problème : On considère que tous les nombres s écrivent avec trois chiffres, par exemple 6 s écrit 006 On remarque que quand les deux premiers chiffres sont choisis, le troisième est déterminé, il n y a qu une possibilité pour que la somme des trois chiffres soit 6. Si le premier chiffre est 0, il y a 7 choix pour le deuxième ( de 0 à 6) Si le premier chiffre est 1, il y a 6 choix pour le deuxième ( de 0 à 5) Si le premier chiffre est 2, il y a 5 choix pour le deuxième ( de 0 à 4) Si le premier chiffre est 3, il y a 4 choix pour le deuxième ( de 0 à 3) Si le premier chiffre est 4, il y a 3 choix pour le deuxième ( de 0 à 2) Si le premier chiffre est 5, il y a 2 choix pour le deuxième ( 0 ou 1) Si le premier chiffre est 6, il n y a qu une possibilité : les deux autres chiffres sont 0 On retrouve les 28 nombres divvérents, mais sans avoir eu besoin de les expliciter. E C D B Le schéma ci-dessus illustre une étape du tracé de la figure de l Exercice 9 On considère que les trois segments en traits fins sont déjà tracés, et que l on ajoute sur le dessin la segment en trait épais. Le segment [B] découpe un morceau de la feuille en deux parties, il rajoute donc 1 au nombre de morceaux. Il en est de même pour les segments [BC], [CD] et [DE]. Cette remarque peut se généraliser de la façon suivante : quand on trace un nouveau segment, on ajoute autant de morceaux qu il y a de parties sur ce segment. D autre part, le nombre de parties sur le nouveau segment est supérieur de 1 au nombre de points d intersections avec les segments déjà tracés : si le segment n en coupe aucun autre, il est d un seul tenant, si il en coupe un autre il est constitué de deux morceaux, etc Soit m le nombre de morceaux dans la feuille, avant de tracer les segments, m = 1 après avoir tracé un segment, m = 2 en traçant le deuxième segment, on peut choisir de couper ou non le premier. Pour obtenir le plus possible de morceaux, il faut choisir de le couper. On augmente alors m de deux, m = 4. De même, pour obtenir le plus grand nombre possible de morceaux, il faut que le troisième segment coupe les deux premiers, que le quatrième coupe les trois premiers et ainsi de suite. Le nombre maximum de morceaux que l on peut obtenir avec 6 segments est donc : n = 1 +1 + 2 + 3 + 4 + 5 + 6 = 22

Exercice 10 Remarquons tout d abord qu il est inutile de tenir compte de la contrainte concernant les multiples de 4. En effet, si on détermine les nombres qui ne sont pas multiples de 2, ils ne seront pas non plus multiples de 4. Les multiples de 2 sont au nombre de 500 (de 2 x 1 à 2 x 500) Les multiples de 3 sont au nombre de 333 (de 3 x 1 à 3 x 333) Les multiples de 6 sont au nombre de 166 (de 6 x 1 à 6 x 166) Les nombres qui sont multiples de 2 ou de 3 sont donc au nombre de 500 + 333 166 = 667. En effet, si on ajoute le nombre de multiples de 2 et le nombre de multiples de 3, les multiples de 6 sont comptés deux fois. Les nombres qui ne sont multiples ni de 2 (et donc pas de 4) ni de 3 sont donc au nombre de 1000 667 = 333. Exercice 11 Classons les triangles selon la mesure de leur plus grand côté. Les trois nombres choisis étant les mesures de longueurs de côtés d un triangle, ils doivent respecter l inégalité triangulaire. utrement dit, le plus grand des trois doit être inférieur à la somme des deux autres. Le plus grand côté peut donc mesurer au maximum 7 cm. On peut éventuellement accepter que le plus grand soit égal à la somme des deux autres si on accepte de considérer que trois points alignés forment un triangle. Il faut alors le préciser clairement. Dans ce corrigé, nous n avons tenu compte que des triangles «ordinaires», non applatis. Mesure du plus grand côté Mesure du plus grand côté restant Mesure du troisième côté. 7 7 1 7 6 2 7 5 3 7 4 4 6 6 3 6 5 4 5 5 5 Il y a 7 triangles différents qui répondent aux contraintes données. Exercice 12 Chaque assemblage peut être transformé de la façon suivante : L assemblage n 13, dont la hauteur est de 13 cubes, peut être transformé en une plaque carrée de 13 x 13 = 169 cubes, il faut donc 169 cubes pour le réaliser. Pour la même raison, il faut 10 000 cubes pour l assemblage n 100. Exercice 13 Une solution possible consiste à reprendre l exercice 4 et à soustraire du nombre total de triangles ceux qui ne sont pas rectangles. Une autre possibilité est de classer les triangles selon la position de leur angle droit. Si le sommet de l angle droit est un sommet du rectangle, il y a deux triangles rectangles possibles pour chaque sommet. et Si le sommet de l angle droit est sur le côté du rectangle il y a trois triangles rectangles possibles pour chaque point. et Le nombre total de triangles rectangles est donc 4 x 2 + 2 x 3 = 14. Exercice 14

En reprenant la même méthode que dans l exercice 13, adaptée à la nouvelle grille, c est à dire en classant les triangles rectangles suivant la position du sommet de l angle droit, on trouve qu il y a : Pour chaque sommet du rectangle, 6 triangles rectangles dont le sommet de l angle droit se situe sur ce sommet. Pour chaque point situé sur une longueur du rectangle, 8 triangles rectangles. Si vous n en trouvez que 7, c est probablement celui-ci qui vous manque : Pour chaque point situé sur une largeur du rectangle,7 triangles rectangles. Pour chaque point situé à l intérieur du rectangle, 10 triangles rectangles. Le nombre de triangles rectangles que l on peut tracer est donc égal à : 4 x 6 + 4 x 8 + 2 x 7 + 2 x 10, soit 90 triangles rectangles. Exercice 15 Chaque coloriage possible sera désigné par les initiales des couleurs employées, de gauche à droite et de haut en bas. insi, jrvj désigne le drapeau dont la case en haut à gauche est jaune, la case en haut à droite rouge Les drapeaux bicolores sont tels qu une couleur occupe les cases 1 et 4 (on peut la choisir de 3 façons) et une autre couleur occupe les cases 2 et 3 ( on peut la choisir de deux façons). Il y a donc 6 drapeaux bicolores qui sont jrrj, jvvj, rvvr, rjjr, vjjv, vrrv. Pour les drapeaux tricolores, une des couleurs occupe l une des deux «diagonales». Il y a trois choix possibles de cette couleur, et deux choix de la diagonale, donc six façons de choisir les deux cases de la même couleur. Pour chacune de ces six possibilités, les deux autres cases peuvent être placées de deux façons différentes, ce qui fait 12 drapeaux tricolores possibles. jrrv, rvvj, vjjr, vjrv, rjvr, jvrj vrrj, jvvr, rjjv, vrjv, rvjr. Jrvj. En tout, il y a donc 18 drapeaux différents respectant les contraintes imposées. Exercice 16 Les quatre premières chaussettes tirées peuvent éventuellement être toutes différentes, mais alors la cinquième sera nécessairement d une des quatre couleurs, déjà toutes tirées. 5 chaussettes suffisent donc pour avoir à coup sûr une paire. Dans le cas le plus défavorable, après avoir tiré 5 chaussettes on a constitué une paire, si on met de côté cette paire, il suffit de tirer deux nouvelles chaussettes qui, avec les trois restantes du premier tirage, font un tirage de cinq et assurent donc d avoir une nouvelle paire. 7 chaussettes permettent donc d avoir à coup sûr deux paires alors que 6 chaussettes ne permettent pas d être certain d avoir deux paires, on peut par exemple tirer NNNGBR. Exercice 17 Jusqu à huit chaussettes, Paul n est pas certain d avoir une triplette car il peut avoir deux chaussette de chaque couleur. Dans ce cas, la 9 ème chaussette complètera une triplette. Un tirage de 9 chaussettes garantit donc une triplette assortie. Comme précédemment, en isolant la triplette formée et en gardant les 6 chaussettes suplémentaires, 3 nouveaux tirage assurent de reconstituer une collection de 9, donc une nouvelle triplettte. Un tirage de 12 chaussettes assure donc d obtenir deux triplettes. Exemple de tirage de 11 chaussettes ne donnant qu une seule triplette assortie : NNNNNGGBBRR