Cours de mécanique. M12-Chute libre avec frottements



Documents pareils
La fonction exponentielle

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Comparaison de fonctions Développements limités. Chapitre 10

Cours Fonctions de deux variables

Continuité et dérivabilité d une fonction

Circuits RL et RC. Chapitre Inductance

F411 - Courbes Paramétrées, Polaires

Commun à tous les candidats

Repérage d un point - Vitesse et

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

Etude de fonctions: procédure et exemple

Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération

Chapitre 0 Introduction à la cinématique

Fonctions de deux variables. Mai 2011

Développements limités, équivalents et calculs de limites

Nombre dérivé et tangente

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

Fonctions de plusieurs variables

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Cours IV Mise en orbite

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

3 Approximation de solutions d équations

21 mars Simulations et Méthodes de Monte Carlo. DADI Charles-Abner. Objectifs et intérêt de ce T.E.R. Générer l'aléatoire.

Chapitre 1 Régime transitoire dans les systèmes physiques

Les Conditions aux limites

Michel Henry Nicolas Delorme

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

O, i, ) ln x. (ln x)2

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

EXERCICE 4 (7 points ) (Commun à tous les candidats)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

Exercice 3 (5 points) A(x) = 1-e -0039' e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Chapitre 7 : Intégration sur un intervalle quelconque

Premier ordre Expression de la fonction de transfert : H(p) = K

Dérivation : cours. Dérivation dans R

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

Dérivation : Résumé de cours et méthodes

Chapitre 1 Cinématique du point matériel

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

TD1 Signaux, énergie et puissance, signaux aléatoires

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Probabilités sur un univers fini

OM 1 Outils mathématiques : fonction de plusieurs variables

Chapitre 6. Fonction réelle d une variable réelle

TS Physique Satellite à la recherche de sa planète Exercice résolu

Chapitre 5. Le ressort. F ext. F ressort

TSTI 2D CH X : Exemples de lois à densité 1

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

Loi binomiale Lois normales

Planche n o 22. Fonctions de plusieurs variables. Corrigé

SYSTEMES LINEAIRES DU PREMIER ORDRE

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Chapitre 4: Dérivée d'une fonction et règles de calcul

EPFL TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

1 Problème 1 : L avion solaire autonome (durée 1h)

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Chapitre 2 Le problème de l unicité des solutions

TP 3 diffusion à travers une membrane

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

agilité sécurité effi cacité technologie qualité et Plateformes Accessibilité Par des professionels, pour des professionels

DYNAMIQUE DE FORMATION DES ÉTOILES

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

TD de Physique n o 1 : Mécanique du point

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

Représentation d une distribution

Oscillations libres des systèmes à deux degrés de liberté

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Mesure de la dépense énergétique

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Calcul des pertes de pression et dimensionnement des conduits de ventilation

Complément d information concernant la fiche de concordance

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Quantification Scalaire et Prédictive

Galion: Le lidar éolien ultime

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

C f tracée ci- contre est la représentation graphique d une

TRAVAUX DIRIGÉS DE M 6

Probabilités sur un univers fini

BACCALAUREAT GENERAL MATHÉMATIQUES

NOUVEAU DISPOSITIF REGLEMENTAIRE Les ERP

Calcul intégral élémentaire en plusieurs variables

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Cours de résistance des matériaux

HYDRAULIQUE GENERALE

Chapitre 3. Les distributions à deux variables

Chapitre 2/ La fonction de consommation et la fonction d épargne

Transcription:

Cours de mécanique M12-Chute libre avec frottements 1 Introduction Nous avons modélisé au chapitre précédent le corps qui chute dans le champ de pesanteur en considérant que les frottements de l air étaient négligeables. Cette supposition n ayant qu une utilité théorique, nous complexifions ici notre modèle en tenant compte de ces frottements : comment ceux-ci vont modifier la trajectoire du corps qui chute? Ce sera l occasion de voir que ces frottements peuvent être de deux types, linéaires ou quadratiques, nous avons alors rencontré deux types d équations différentielles : la résolution de la première ne nous posera pas de problème ; mais la résolution de la seconde est moins aisée : nous en profiterons pour voir une méthode numérique itérative permettant d approcher la forme de la solution : la méthode d Euler. Enfin parmi les deux modèles de forces de frottement, lequel se révèle le plus juste pour étudier le parachutisme? Nous tenterons une réponse à l aide de la mécanique des fluides. 2 Problème 3 Un parachutiste de masse 8 kg réalise un saut depuis un hélicoptère. La première partie du saut, celle qui nous intéresse ici, est réalisée sans parachute. Quelles sont les caractéristiques de celle-ci sachant que les frottements de l air ne sont pas négligeables? 3 Système Le système étudié est le sauteur considéré ponctuel. 4 Référentiel et base On étudie son mouvement dans un référentiel terrestre lié au sol (à son point de chute), ce référentiel est considéré galiléen pendant la durée de la chute. On utilisera une base cartésienne à une dimension pour suivre l évolution du sauteur : un axe Oz vertical ascendant avec origine au point de chute constituera le repère d étude. On considère en effet que le mouvement du parachutiste est strictement vertical. 5 Forces 5.1 Bilan des forces Le sauteur est soumis à son poids noté P, force à distance exercée par la Terre sur lui. Il est soumis aux forces de frottements de l air, modélisées par une force de contact notée f. Cette force peut aussi être nommée résistance de l air. 1

Mécanique M12-Chute libre avec frottements 5.2 Deux types de forces de frottements 5.2 Deux types de forces de frottements La force de frottements de l air peut prendre deux formes : Frottements linéaires Dans le cas d une vitesse faible, la force de frottement est proportionnelle à la vitesse : f = k v (1) On parle de frottements linéaires. k est une constante qui dépend de la nature du fluide et des caractéristiques de l objet. Par exemple pour une sphère de rayon r, on a k = 6 π η r où η est la viscosité du fluide. Frottements quadratiques Dans le cas d une vitesse importante, la force de frottement est proportionnelle au carré de la vitesse : f = k v v (2) On parle de frottements quadratiques. k est aussi une constante qui dépend du fluide et des caractéristiques de l objet mais elle prend une autre forme que k : Son expression est du type k = 1 2 η C x S avec η la viscosité du fluide, S la surface frontale de l objet et C x le coefficient de trainée (appelé dans le langage courant coefficient de pénétration dans l air) qui dépend de la géométrie du corps. Par exemple, voici trois géométries et trois valeurs de C x : v v v C x = 1.32 C x =.45 C x =.4 Ce coefficient de trainée peut se calculer pour une sphère lisse (sans rugosité) dans le cas d écoulement à faible vitesse (à faible nombre de Reynolds), il dépend alors du nombre de Reynolds. Pour des écoulements turbulents (à grand nombre de Reynolds > 1 3 ), on mesure le C x en soufflerie. En sachant qu il est constant pour un corps donné. 6 Utilisation de la 2 ème loi de Newton F = m a P + f = m a (3) 7 Résolution du problème dans le cas de frottements linéaires 7.1 Equation différentielle Le PFD donne : m g k v = m a. 2

Mécanique M12-Chute libre avec frottements 7.2 Solution de l équation différentielle On projette maintenant cette relation sur l axe Oz vertical ascendant. m g k v z = m a m dv z dt + k v z = m g (4) dv z dt + k m v z = g (5) On obtient donc une équation différentielle en v z, linéaire du premier ordre à coefficients constants. On sait résoudre cette équation mathématiquement. Une fois l expression de la vitesse v z obtenue, on en déduira la position par intégration. Une notation particulière Souvent ce type d équation sera écrite ainsi : dv z dt + v z = g avec = m k La notation fait référence à un temps. En effet, la grandeur = m k de la fonction v = f(t), comme nous allons le voir par la suite. est un temps caractéristique 7.2 Solution de l équation différentielle 7.2.1 Principe Une équation différentielle linéaire avec second membre se résout en deux temps : on cherche d abord la solution s h de l équation homogène, c est à dire l équation sans second membre ; on cherche une solution particulière s p, c est à dire une solution qui a même forme que le second membre (si le second membre est constant, la solution particulière recherchée sera une constante). La solution de l équation différentielle avec second membre est la somme de la solution homogène et de la solution particulière : s = s h + s p. Attention, dans la solution de l équation homogène apparaissent souvent des constantes (une si l équation est du premier ordre, deux si elle est du deuxième ordre). La détermination de ces constantes à l aide des conditions initiales doit être menée en tenant compte de la solution particulière. 7.2.2 Pour notre problème On recherche la solution de l équation complète (5), qui est une vitesse. Solution de l équation homogène Equation homogène : dv dt + v = = ( Solution : v h = A exp t ) avec A une constante On peut vérifier en dérivant une fois v h que cette solution vérifie l équation homogène. 3

Mécanique M12-Chute libre avec frottements 7.3 Courbe v z = f(t) Solution particulière Le second membre étant constant (égal à g), on cherche une solution particulière v p = cste. Alors dv p dt = et on obtient v p = g. Solution globale On a donc : ( v z = A exp t ) + g (6) On peut maintenant déterminer A à l aide des conditions initiales : A t = : v(t = ) = = A g A = g (7) Et finalement : v z = g ( ( exp t ) ) 1 (8) Attention, rappelons que cette vitesse est négative puisque le corps qui chute se dirige suivant l axe Oz descendant. 7.3 Courbe v z = f(t) et caractéristiques 7.3.1 Courbe On souhaite visualiser la norme de la vitesse en fonction du temps. Son expression est donc : ( ( v z = g 1 exp t )) (9) Voici la courbe obtenue : 69.5 v lim 6 vz (m.s 1 ) 4 2 Cas des frottements linéaires 1 2 3 4 Figure 1 Vitesse du parachutiste dans le cas de frottements linéaires La vitesse augmente d abord fortement, puis de plus en plus faiblement pour atteindre une valeur limite. 4

Mécanique M12-Chute libre avec frottements 7.3 Courbe v z = f(t) 7.3.2 Vitesse limite La valeur de la vitesse limite peut être obtenue en calculant la limite de v z (t) quand le temps tend vers l infini : ( ( lim v z(t) = lim g 1 exp t )) = g (1) t t On peut également la trouver à partir de l équation différentielle (5). En effet, la vitesse limite est constante, on a ainsi : dv z lim dt + v z lim = g + v z lim = g (11) v z lim = g (12) v z lim = g (13) 7.3.3 Temps caractéristique La grandeur = m est caractéristique de l évolution de la vitesse dans le temps. Dans ce k type d évolution, on parle de régime transitoire et de régime permanent : le régime est transitoire tant que la vitesse évolue ; le régime est permanent lorsque la vitesse limite est atteinte. Le temps est un bon indicateur pour savoir quand on passe d un régime à l autre : on considère qu au bout de 5, le régime permanent est atteint. Détermination de On peut obtenir la valeur de graphiquement : on cherche l abscisse du point d intersection entre la tangente à la courbe en t = et l asymptote quand t de la courbe v z = f(t). On obtient ainsi la limite entre régime transitoire et régime permanent : 69.5 v lim 6 vz (m.s 1 ) 4 Régime transitoire Régime permanent 2 1 2 3 5 4 5 Figure 2 Différents régimes lors de la chute avec frottements 5

Mécanique M12-Chute libre avec frottements 7.4 Obtention de la position 7.4 Obtention de la position La fonction z = f(t) s obtient en intégrant la fonction v z = f(t) : ( ( v z = g exp t ) ) 1 ( = z(t) = g 2 exp t ( = g exp t ) g (14) ) g t + cste (15) La constante est obtenue à l aide de la condition initiale de position : A t =, z = h donc g 2 + cste = h cste = h + g 2 On a finalement : On prend comme altitude de départ h = 4 m. ( z(t) = g (1 2 exp t )) g t + h (16) 5,.5 4,.4 ) z(m) 3, 2, t ( 1 exp.3.2 1,.1 1 2 3 4 1 2 3 4 Figure 3 Position du parachutiste dans le cas de frottements linéaires La forme de la courbe z = f(t) montre que la position varie quasi linéairement par rapport au temps, c est-à-dire qu on a pratiquement z = a t + ( b avec a la pente négative. En effet, nous pouvons voir que l expression 1 exp t ) est très petite et que l expression de z(t) écrite à l équation (16) tend vers : Il s agit bien d une droite de pente g négative. z(t) = g t + h (17) 8 Résolution dans le cas de frottements quadratiques 8.1 Equation différentielle Le PFD donne : m g k v v = m a. Dans l optique d utiliser la méthode d Euler, nous allons utiliser un axe Oz vertical descendant afin de travailler avec une vitesse positive. m g k v 2 z = m a m dv z dt + k v 2 z = m g (18) dv z dt + k m v2 z = g (19) 6

Mécanique M12-Chute libre avec frottements 8.2 Vitesse limite On pourra également introduire le temps caractéristique = m. Cette équation différentielle k n est pas linéaire, nous ne pouvons pas la résoudre facilement. 8.2 Vitesse limite Par contre, nous pouvons d ores et déjà connaître la vitesse limite : Lorsque dv z g m dt = alors v z lim = k = g. Cette équation différentielle, complexe à résoudre, va être l occasion d utiliser une méthode de résolution numérique itérative : la méthode d Euler. 8.3 Résolution par la méthode d Euler 8.3.1 Ce qu est la méthode d Euler La méthode d Euler est une méthode numérique itérative qui permet d obtenir une solution approchée d une équation différentielle à partir des conditions initiales. Rappels mathématiques Dérivée = cœfficient directeur de la tangente à la courbe. Calcul d une dérivée en un point aisée : 6 B v(m.s 1 ) 4 2 A t = t B t A v = v B v A 5 1 15 2 25 Figure 4 Calcul de la dérivée d une courbe en un point D après la définition mathématique de la dérivée : ( ) dv = v dt t=1 s t (2) Si on réalise un zoom sur la courbe : 7

Mécanique M12-Chute libre avec frottements 8.3 Résolution par la méthode d Euler v(m.s 1 ) 6 4 2 A t = t B t A 5 1 15 2 25 B v = v B v A A δt δv B Figure 5 Dérivée et temps infinitésimal On peut alors écrire, en considérant un intervalle de temps δt suffisamment petit : ( ) dv = δv dt δt On peut alors exprimer la petite variation de vitesse δv qui se produit pendant le petit intervalle de temps δt grâce à l équation différentielle : Mise en œuvre t (21) Si dv dt = A v2 + B alors δv = (A v 2 + B) δt lorsque δt (22) On part de la condition initiale, la valeur de v(t = ) = v ; on choisit le pas de calcul, soit la valeur de δt ; on calcule : v 1 = v + δv = v + (A v 2 + B) δt (23) et ainsi de suite : v i+1 = v i + (A v 2 i + B) δt (24) un tableur viendra nous assister dans la répétition des calculs. le choix du pas de calcul δt doit être judicieux : il faut prendre un intervalle suffisamment petit pour que l approximation soit valable, mais pas trop petit afin que les calculs ne soient pas trop longs. 8.3.2 Utilisation de cette méthode dans notre cas Obtention de la vitesse en fonction du temps Pour utiliser cette méthode, il nous faut la valeur des cœfficients A et B qui apparaissent dans l équation différentielle : dv z dt + k m v2 z = g (25) dv z dt = k m v2 z + g = A vz 2 + B avec A = k et B = g (26) m La valeur de B est donc connu, on peut évaluer la valeur de A à partir de la vitesse limite atteinte par un parachutiste. Celle-ci, qui dépend de la position (groupé ou droit comme un i) du sauteur lors de la chute, est de 69,5 m.s 1. Donc : g m g v zlim = k = A = A = g v zlim 2 = 9,81 69,5 2 = 2, 1 2 SI (27) 8

Mécanique M12-Chute libre avec frottements 8.3 Résolution par la méthode d Euler On connaît également la vitesse initiale : v z (t = ) =. On peut donc appliquer la méthode en choisissant un pas δt judicieux. On prendra par exemple δt =,3 s. Alors : v 1 = v + (A v 2 + B) δt = B δt = 2,94 m.s 1 v 2 = v 1 + (A v1 2 + B) δt = 5,87 m.s 1... A l aide d un tableur, on répète les calculs jusqu au temps voulu. On peut ensuite tracer la courbe v z = f(t). Ci-dessous, on a tracé les courbes pour des pas de calculs différents. On remarque qu il n y a pas de différences entre nos trois tests. 9

Mécanique M12-Chute libre avec frottements 9. Quel type de frottements choisir? 69.5 v lim 6 vz(m.s 1 ) 4 2 Cas des frottements quadratiques δt =.3 δt =.7 δt =.1 1 2 3 4 Figure 6 Méthode d Euler appliquée aux cas des frottements quadratiques Qu en est-il de la position en fonction du temps? Pour obtenir la courbe de position en fonction du temps, on part de la donnée de vitesse et on calcule la distance parcourue par la formule classique v = d. On utilise cette formule pour t chaque ligne du tableur dans lequel on a exploité la méthode d Euler. On a ensuite changé l origine pour prendre le point de départ du parachutiste à 4 m. 5, 4, z + 4 ()m) 3, 2, 1, 1 2 3 4 Figure 7 Position en fonction du temps dans le cas de frottements quadratiques 9 Quel type de frottements est le plus approprié pour l étude du mouvement d un parachutiste? Il faut faire appel à la mécanique des fluides pour répondre à cette question. En effet, on peut changer de point de vue, et plutôt que de considérer la chute du parachutiste dans l air, on étudie l écoulement de l air autour du parachutiste fixe. C est écoulement est souvent complexe, il n est pas seulement caractérisé par la vitesse relative v du fluide, mais par un nombre sans dimension appelé nombre de Reynolds : 1

Mécanique M12-Chute libre avec frottements 9. Quel type de frottements choisir? R e = v d ρ η (28) R e : nombre de Reynolds sans dimension. v : vitesse relative de fluide en m.s 1. d : taille caractéristique de l écoulement en m. ρ : masse volumique du fluide en kg.m 3. η : viscosité du fluide en Pa.s. On distingue alors plusieurs types d écoulement : si R e < 1, l écoulement est dit laminaire. Dans ce cas, la force de frottements fluides est proportionnel à la vitesse : frottements linéaires, f = k v ; si R e > 1 3, l écoulement est dit turbulent. Alors la force de frottements fluides est quadratique : f = k v v. Dans le cas de la chute du parachutiste, le fluide est l air, sa viscosité est d environ η = 1,7 1 5 Pa.s ; le nombre de Reynolds a de grande chance d être supérieur à 1 3 : l écoulement est turbulent et les frottements quadratiques. Références "Physique Tout-en-un MPSI PCSI PTSI" - Marie-Noëlle Sanz / Anne-Emmanuelle Badel / François Clausset - Editions Dunod 28 ; Le site Culture Sciences Physiques de l ENS de Lyon. : http ://owl-ge.ch/img/pdf/frottement.pdf 11