FICHES OUTILS GEOMETRIE CM2



Documents pareils
Le contexte. Le questionnement du P.E.R. :

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

PRATIQUE DU COMPAS ou

Introduction au maillage pour le calcul scientifique

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Le seul ami de Batman

Sommaire de la séquence 10

MAT2027 Activités sur Geogebra

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

Math 5 Dallage Tâche d évaluation

EXERCICES DE REVISIONS MATHEMATIQUES CM2

Priorités de calcul :

Je découvre le diagramme de Venn

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)

Démontrer qu'un point est le milieu d'un segment

Construction de la bissectrice d un angle

Triangles isométriques Triangles semblables

Deux disques dans un carré

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

point On obtient ainsi le ou les points d inter- entre deux objets».

La médiatrice d un segment

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Préparation à l épreuve de Mathématiques du concours d entrée en première année d IUFM (niveau 2) Responsable : Nathalie Villa villa@univ-tlse2

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

Diviser un nombre décimal par 10 ; 100 ; 1 000

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Ch.G3 : Distances et tangentes

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Quels polygones sont formés par les milieux des côtés d un autre polygone?

Trois personnes mangent dans un restaurant. Le serveur

PROBLEME(12) Première partie : Peinture des murs et du plafond.

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Corrigé du baccalauréat S Pondichéry 12 avril 2007

"#$%&!'#$'$&%(%$)&!*$++,)(-,&!.,!/0!

Paris et New-York sont-ils les sommets d'un carré?

Indications pour une progression au CM1 et au CM2

Chapitre 2 : Vecteurs

1S Modèles de rédaction Enoncés

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Problèmes de dénombrement.

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

5 ème Chapitre 4 Triangles

Activités numériques [13 Points]

1 Création d une pièce. 2 Travail complémentaire. 1-1 Réglage des barres d outils. 1-2 Exemples de réalisation de pièces à l aide d un modeleur 3D

EVALUATIONS MI-PARCOURS CM2

chapitre 4 Nombres de Catalan

ÉVALUATION EN FIN DE CM1. Année scolaire LIVRET DE L'ÉLÈVE MATHÉMATIQUES

Exercice numéro 1 - L'escalier

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Angles orientés et trigonométrie

Proposition de programmes de calculs en mise en train

UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME

Ecrire Savoir rédiger une réponse claire à une question

Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français

Sommaire de la séquence 12

4G2. Triangles et parallèles

Le Dessin Technique.

UN TOURNOI A GAGNER ENSEMBLE

Calcul intégral élémentaire en plusieurs variables

Eté LIVRET de RÉVISIONS en MATHÉMATIQUES

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Quelques contrôle de Première S

Exercices de géométrie

Manuel de l utilisateur

Classe de troisième. Exercices de Mathématiques

Comment sélectionner des sommets, des arêtes et des faces avec Blender?

Introduction à Adobe Illustrator pour la cartographie et la mise en page

SÉQUENCE 4 Séance 1. Séquence. Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Exercice n o 54 : Tracer le graphique d une fonction

Correction des Travaux Pratiques Organiser son espace de travail

Cabri et le programme de géométrie au secondaire au Québec

Sommaire de la séquence 10

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

ANALYSE SPECTRALE. monochromateur

Cours de tracés de Charpente, Le TRAIT

1 Savoirs fondamentaux

Programme de calcul et résolution d équation

Problèmes sur le chapitre 5

Leçons et exemples de programmation en Logo

Introduction à. Version 4.4. Traduction et adaptation française.

Ressources pour la classe de seconde

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

Chapitre 2 Les ondes progressives périodiques

Mathématiques et petites voitures

6. Les différents types de démonstrations

ACTIVITES MATHEMATIQUES

Calculs de probabilités avec la loi normale

Catalogue de location

Comment démontrer que deux droites sont perpendiculaires?

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :

Corrigé du baccalauréat S Asie 21 juin 2010

ANALYSE CATIA V5. 14/02/2011 Daniel Geffroy IUT GMP Le Mans

Fonctions de deux variables. Mai 2011

Transcription:

FICHES OUTILS GEOMETRIE 1 Les instruments pour reproduire 2 Reproduire des figures planes 3 Les polygones 4 Les quadrilatères 5 Le carré et le rectangle 6 Les triangles 7 Construire des figures géométriques 8 Les translations 9 Symétrie par rapport à un axe 10 Les axes de symétrie 11 Les rotations 12 Les solides 13 Les pavés 14 Les cubes 15 Les pyramides

G1 G2 CHOISIR LE BON INSTRUMENT POUR REPRODUIRE DES FIGURES REPRODUIRE DES FIGURES PLANES Pour REPRODUIRE une figure géométrique plane il faut: - l observer attentivement, - trouver de quelles figures simples elle est composée, - choisir les bons instruments Exemple: Pour REPRODUIRE DES FIGURES PLANES je peux utiliser différents OUTILS selon la figure à reproduire. 1) Pour reproduire UNE FIGURE GÉOMÉTRIQUE composée de figures simples (cercles, triangles, carrés, rectangles..), j utilise: - la règle - l équerre - le compas 2) Pour reproduire UNE FIGURE NON GÉOMÉTRIQUE (lignes courbes, tracés irréguliers..), j utilise: - le papier calque - les quadrillages Un triangle: - règle - compas Un figure quelconque: - papier calque Un rectangle: - règle - équerre Un rectangle: - règle - équerre

G3 G4 LES POLYGONES LES QUADRILATÈRES 1) Un POLYGONE est une figure plane limitée par une ligne brisée, fermée. 2) Le mot POLYGONE vient du grec poly(plusieurs) et gone (côté). 3) Un polygone peut être: Un QUADRILATÈRE est un POLYGONE À QUATRES CÔTÉS Il a donc aussi QUATRE SOMMETS Les quadrilatères les plus courants sont les suivants: Quelconque Croisé Régulier LE CARRÉ: - 4 angles droits - 4 côtés égaux - côtés opposés parallèles LE RECTANGLE:- 4 angles droits - côtés opposés égaux - côtés opposés parallèles 4) Le NOMBRE DES CÔTÉS détermine le nom du polygone: 3 côtés TRIANGLE 4 côtés QUADRILATERE 5 côtés PENTAGONE en grec, gone = côté penta = 5 hexa = 6 octo = 8 en latin, latere = côté tri = 3 quadri = 4 LE TRAPÈZE: 2 côtés opposés parallèles LE TRAPÈZE RECTANGLE: 2 côtés opposés parallèles 1 angle droit 6 côtés HEXAGONE 8 côtés OCTOGONE LE PARALLÉLOGRAMME: - côtés opposés parallèles - côtés opposés égaux LE PARALLÉLOGRAMME: - 4 côtés égaux - côtés opposés parallèles

G5 G6 LE CARRÉ ET LE RECTANGLE Le RECTANGLE est un quadrilatère qui a les propriétés suivantes: 1) les côtés opposés sont parallèles (on dit aussi :les côtés sont parallèles 2 à 2) 2) les côtés opposés sont égaux 3) les 4 ANGLES sont droits 4) les DIAGONALES sont égales 5) les DIAGONALES se coupent en leur milieu 6) les MÉDIANES sont perpendiculaires 7) les MÉDIANES se coupent en leur milieu 8) lorsqu on parle du rectangle ABCD, cela signifie que les 4 sommets sont les points A, B, C et D A E o B LES TRIANGLES Un TRIANGLE est un polygone a trois côtés donc 3 angles. (tri=3; angle) Il existe plusieurs sortes de triangles: QUELCONQUE: 3 côtés différents D F C ISOCÈLE: 2 côtés égaux A D o B C Le CARRE est un quadrilatère qui a les propriétés suivantes: 1) les côtés opposés sont parallèles 2) les 4 côtés sont égaux 3) les 4 ANGLES sont droits 4) les DIAGONALES sont égales 5) les DIAGONALES se coupent en leur milieu 6) les DIAGONALES sont perpendiculaires 7) les MÉDIANES sont perpendiculaires 8) les MÉDIANES se coupent en leur milieu 9) les MÉDIANES sont égales RÉGULIER OU ÉQUILATÉRAL: 3 côtés égaux RECTANGLE: 1 angle droit RECTANGLE ISOCÈLE: 1 angle droit et 2 côtés égaux

G7 G8 CONSTRUIRE DES FIGURES GÉOMÉTRIQUES LES TRANSLATIONS Pour CONSTRUIRE une figure géométrique, il faut connaitre SES PROPRIÉTÉS et choisir celles qui permettront de construire le plus facilement possible cette figure. Exemple: 1) soit à partir de ses côtés: Je peux construire un carré : A SAVOIR: Une TRANSLATION est le déplacement d une figure qui permet de retrouver une figure identique. Ce déplacement est caractérisé par : - un GLISSEMENT HORIZONTAL - et un GLISSEMENT VERTICAL EXEMPLE: Les 4 côtés sont égaux et perpendiculaires. 2) soit à partir de ses diagonales: 10 3 Les diagonales sont égales et perpendiculaires. Elles se coupent en leur milieu La figure verte a été obtenue en faisant glisser horizontalement la figure rouge de 10 carreaux et en la faisant glisser verticalement de 3 carreaux. ON DIT QUE LA FUGURE VERTE A ÉTÉ OBTENUE PAR UNE TRANSLATION (10,3) DE LA FIGURE ROUGE.

G9 G10 LA SYMÉTRIE PAR RAPPORT À UN AXE A SAVOIR: DEUX FIGURES SONT SYMÉTRIQUES par rapport à une droite, si, en pliant la feuille sur la droite, les deux figures correspondent. La droite s appelle l AXE DE SYMÉTRIE LES AXES DE SYMÉTRIE A SAVOIR: Une FIGURE GÉOMÉTRIQUE peut avoir: - aucun axe de symétrie - un axe de symétrie - plusieurs axes de symétrie. Les AXES DE SYMÉTRIE sont en général tracés en rouge. En pliant la figure selon l axe de symétrie, les deux parties se recouvrent exactement. EXEMPLES: (D) EXEMPLE: 2 axes de symétrie Pas d axe de symétrie (D) 1 axe de symétrie 4 axes de symétrie Les figures bleues sont SYMÉTRIQUES aux figures mauves par rapport à la droite (D) Pour construire le symétrique d un point par rapport à un axe, on trace une PERPENDICULAIRE à cette droite passant par ce point et on mesure la MÊME DISTANCE de chaque côté de l axe Une infinité d axes de symétrie

G11 G12 LES ROTATIONS LES SOLIDES A SAVOIR: A partir d une figure géométrique, on peut obtenir une figure semblable en faisant tourner la première autour d un point. Ce déplacement s appelle UNE ROTATION. EXEMPLE: A savoir: 1) Des figures qui ont un volume, c est à dire 3 dimensions (longueur, largeur et épaisseur) sont des SOLIDES. 2) Les solides dont toutes les faces sont des polygones s appellent des POLYÈDRES. 3) Un polyèdre a donc des faces planes, des arêtes et des sommets VOICI DES SOLIDES. UN SOLIDE O A DES POLYÈDRES le pavé ou parallélépipède A1 la pyramide le cube le prisme Chaque sommet de la figure rose a effectué un quart de tour autour du point O. On obtient une nouvelle figure (verte) identique à la figure de départ par une rotation d un quart de tour de centre O. le tronc de cône ET D AUTRES SOLIDES RÉGULIERS la sphère le cylindre le cône

G13 G14 LES PAVÉS LES CUBES A savoir: A savoir: Un PAVÉ est un polyèdre dont toutes les faces sont des rectangles. On l appelle aussi le PARALLÉLÉPIPÈDE RECTANGLE. Il a 6 faces, 8 sommets et 12 arêtes. Ses faces opposées sont identiques. Un CUBE est un polyèdre dont toutes les faces sont des carrés. Il a 6 faces, 8 sommets et 12 arêtes égales. Ses faces sont identiques. Voici un pavé Voici un cube Voici un des ses patrons possibles Voici un des ses patrons possibles

G15 D AUTRES POLYÈDRES: LES PYRAMIDES A savoir: Un PYRAMIDE est un polyèdre. Sa BASE est un polygone. Toutes ses autres faces sont des TRIANGLES qui ont un sommet commun Voici des pyramides La base est un pentagone La base est un carré La base est un hexagone La base est un triangle, le solide a 4 faces, c est un tétraèdre La base est un octogone