I. La continuité : Définition : ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES 1 ) Définition : Soit f une fonction définie sur un intervalle I. Graphiquement, on reconnaît qu'une fonction est continue sur un intervalle I lorsque sa courbe représentative peut être tracée sans lever le crayon. On admet que les fonctions usuelles (fonctions affines, fonctions polynômes, fonctions rationnelles, inverse, racine carrée, valeur absolue) sont continues sur les intervalles où elles sont définies. sont continues sur leur ensemble de définition. Exemples : La fonction valeur absolue est continue sur R. La fonction inverse est continue sur tout intervalle contenu dans R. Rappel : R = [ ; 0[ ]0 ; + ]. Contre exemple : La fonction «partie entière» est la fonction définie sur R qui à tout réel x associe l'unique entier relatif n tel que n x < n + 1. On note cette fonction E. On a E (3,8) = 3 ; E ( 2,5) = 3;. Lorsque 0 x < 1, E(x) = 0. 2 1 Lorsque 1 x < 2, E(x) = 1. 2 1 0 1 2 Ci-contre la représentation graphique de la fonction E. Elle n'est pas continue. 1 2 2) Théorème des valeurs intermédiaires : Théorème (admis) : Soit f une fonction continue sur un intervalle I. Si a et b sont deux réels de I et si k est un réel compris entre f (a) et f (b), alors il existe au moins un réel c compris entre a et b tel que f (c) = k.
Interprétation graphique : Soit c la courbe représentative de la fonction f continue sur [a ; b] et soit k un réel compris entre f (a) et f (b). f (b) Comme la fonction f est continue, la courbe c traverse la droite D d'équation y = k en au moins un point. L'équation f (x) = k a donc au moins une solution dans l'intervalle [a ; b]. a k f (a) b (deux exemples ci-contre) Attention : Cette solution n'est pas forcément unique. Corollaire : cas des fonctions continues monotones. Si f est une fonction continue et strictement monotone sur [a ; b], alors pour tout réel k compris entre f (a) et f (b), l'équation f (x) = k admet une solution unique dans [a ; b]. a x 0 f(b) f(a) k b Démonstration de l'existence : D'après le théorème des valeurs intermédiaires il existe au moins un réel x 0 tel que f (x 0 ) = k. Démonstration de l'unicité : Soit x 1 un autre réel de [a ; b] ; celui-ci est strictement supérieur ou inférieur à x 0, et comme f est strictement monotone f (x 1 ) est strictement supérieur ou inférieur à f (x 0 ), donc à k. f (x 1 ) ne peut donc pas être égal à k, il n'y a donc pas d'autres solutions de l'équation f (x) = k dans l'intervalle [a ; b]. Une application : k = 0 Soit f une fonction continue et strictement monotone sur [a ; b]. Si f (a) et f (b) n'ont pas le même signe, alors l'équation f (x) = 0 a une solution unique sur [a ; b]. Exemple : Montrer que l'équation x 3 x 3=0 a une solution unique située entre 1 et 2. Soit g la fonction définie sur R par g (x) = x 3 + x 3. Il s'agit d'une fonction continue (fonction polynôme). D'autre part, on a g' (x) = 3x 2 + 1. Comme pour tout réel x on a g' (x) > 0, la fonction g est strictement croissante sur R. Enfin g (1) = 1 et g (2) = 7. «Si x 1, alors g (x) 1 et x ne peut pas être solution de g (x) = 0. Si x 2, alors g (x) 7 et x ne peut pas être solution de g (x) = 0.»
Par contre, comme g est continue et strictement croissante sur [1 ; 2], et comme g (1) et g (2) ont des signes opposés, il existe un unique réel situé entre 1 et 2 tel que g ( ) = 0. On peut visualiser à partir d'un tableau de variation : x 1 2 + f '(x) + + + + f(x) 1 0 7 On admet que les flèches des tableaux de variations traduisent la stricte monotonie et la continuité. Cette propriété s'étend aux cas où l'intervalle est de la forme [ a ;+ [ ; ] ; b[ ; ] a ;b ] II. Approche de la notion de ite : 1) Limite en l'infinie : Dire que f(x) tend vers + quand x tend vers + veut dire que f(x) devient aussi grand que l on veut quand x devient très grand. On note x + f (x) = +. On dit que f(x) tend vers L quand x tend vers + lorsque que f(x) peut prendre des valeurs aussi proche que l on veut de L pour x suffisamment grand. +. On note x + f (x) = L. On dit que la droite (d) d équation y = L est une asymptote à C f en On a la même chose en. C f L 2 ) Limite en un point : Soit f une fonction définie sur un intervalle du type ] ; a[ ou ]a ; + [. On dit que f(x) tend vers + quand x tend vers a par des valeurs inférieures lorsque f(x) peut prendre des valeurs aussi grandes que l on veut pour x suffisamment proche de a en restant inférieur à a dans D f. On note x <a f ( x) = + ou x a f ( x) = +. On a la même définition lorsque x tend vers a par des valeurs supérieures à a. On note x >a f ( x) = + ou x a + f ( x) = +. On a également les mêmes définitions et notations lorsque f (x) tend vers : x <a f ( x) = ou f ( x) = et x >a f ( x) = ou x a + f ( x) =.
Exemple : Pour la fonction dont nous avons la représentation graphique ci-contre, nous avons O a C f x a x<a f ( x) = + x >a f ( x) = On dit que la droite d'équation x = a est une asymptote verticale à la courbe C f. III. Calculs de dérivées : 1 ) Fonctions de référence, opération,utilisation : Voir votre cours de l'année dernière ou les rappels p. 118 et 120 (sauf dernière ligne du tableau et du texte qui suit). 2 ) Nouvelles formules de dérivées (admises): fonction Fonction dérivée conditions u u n u ' 2 u nu n 1 u' x f (ax + b) x a f ' (ax + b) 3 ) Dérivabilité et continuité : Théorème (admis) : soit f une fonction définie sur un intervalle I contenant le réel a. si f est dérivable en a alors elle f est continue en a. si f est dérivable sur I alors elle f est continue sur I. Attention : u dérivable sur I et u > 0 sur I u dérivable sur I ; n un entier relatif non nul ; pour n 1, u ne s'annule pas sur I. a et b deux réels a 0 ; f dérivable sur I et J l'intervalle formé des réels x tel que ax + b appartient à I La réciproque est fausse. Par exemple la fonction valeur absolue est continue en 0, mais elle n'est pas dérivable en 0. justification : f (x) = x. f est définie et continue sur R On rappelle que si x 0, on a f (x) = x donc f ' (x) = 1 et si x < 0 f (x) = x et f ' (x) = 1. f est dérivable à droite et à gauche en 0 mais f n est pas dérivable en 0. IV. Fonctions primitives : 1 ) Définition : Définition : Soit f une fonction définie et dérivable sur un intervalle I. On appelle fonction primitive de f sur I toute fonction F dérivable sur I telle que F' = f sur I.
Exemple : Si f (x) = 2x + 1, une primitive de f est F(x) = x 2 + x, une autre est F 2 (x) = x 2 + x + 7. 2 ) Ensemble des primitives : Théorème : Soit F une primitive de f sur un intervalle I. Alors pour tout réel c, la fonction G définie par G(x) = F(x) + c est aussi une primitive de f sur I. Toute primitive de f sur I est de ce type. Une fonction admettant des primitives sur I en possède donc une infinité. Exemple : Si f (x) = 2x + 1, toutes les primitives de f sont de la forme F(x) = x 2 + x + c avec c R. Propriété : Soit f une fonction dérivable sur un intervalle I. Soit x 0 un nombre de l'intervalle I et a un nombre réel quelconque. Il existe une unique fonction F, primitive de f sur I, telle que F (x 0 ) = a. Exemple : Soit f (x) = x. Déterminons la primitive F de f telle que F(2) = 3. F est de la forme F(x) = x2 2 La primitive cherchée est donc F (x) = x2 2 + 1. + c. On doit avoir F(2) = 3 donc F(2) = 22 2 + c = 3 donc c = 1. 3 ) Tableau des primitives : En lisant le tableau des dérivées à «l envers», on obtient le tableau suivant : La fonction f Fonctions primitives F Définie sur (c est une constante réelle) f (x) = 0 F (x) = c R f (x) = k F (x) = kx + c R f (x) = x f (x) = x n F (x) = x2 2 + c R (n entier relatif F (x) = xn+1 n+1 + c non nul différent de 1) R si n 1 et R * si n 2 1 f (x) = x 2 F (x) = 1 x + c R 1 f (x) = x. F (x) = 2 x + c R + 4 ) Primitives et opérations : fonction fonctions primitives conditions u ' u 2 u + c u dérivable sur I et u > 0 sur I u'u n u n+1 (x) n+1 + c u dérivable sur I ; n un entier relatif différent de 1 ; pour n < 1, u ne s'annule pas sur I.