PHY-144 : Introduction à la physique du génie

Documents pareils
Voyez la réponse à cette question dans ce chapitre.

Problèmes sur le chapitre 5

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.

Chapitre 2 : Caractéristiques du mouvement d un solide

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

Mécanique. 1 Forces. 1.1 Rappel. 1.2 Mesurer des forces. 3BC - AL Mécanique 1

Repérage d un point - Vitesse et

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

TS Physique Satellite à la recherche de sa planète Exercice résolu

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

F411 - Courbes Paramétrées, Polaires

DISQUE DUR. Figure 1 Disque dur ouvert

Gymnastique Rythmique HELP DESK

PHYS-F-104_C) Physique I (mécanique, ondes et optiques) Solutions des questions d'examens ( )

Chapitre 5 : Le travail d une force :

Chapitre 5. Le ressort. F ext. F ressort

Michel Henry Nicolas Delorme

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

Fonctions de deux variables. Mai 2011

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

1 Mise en application

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

La gravitation universelle

TD de Physique n o 1 : Mécanique du point

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

RELAIS STATIQUE. Tension commutée

Chapitre 6. Fonction réelle d une variable réelle

Oscillations libres des systèmes à deux degrés de liberté

My Custom Design ver.1.0

La technique en 7 étapes. Déroulement du mouvement. ASTA Association Suisse de Tir à l Arc. Conseil des entraîneurs

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

Pack ADSL rural. Guide d installation

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Dans ce chapitre : Sommaire 93

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Athénée Royal d Evere

1 Problème 1 : L avion solaire autonome (durée 1h)

Chapitre 0 Introduction à la cinématique

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Sommaire Table des matières

Le maçon à son poste de travail

Communauté française de Belgique ENSEIGNEMENT À DISTANCE. Cours 219 Série 9 PHYSIQUE C2D. Synthèse

Je découvre le diagramme de Venn

Cours de Mécanique du point matériel

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

Cours de tracés de Charpente, Le TRAIT

Angles orientés et fonctions circulaires ( En première S )

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

Equipe EPS 68 L athlétisme à l école primaire Page 56 sur 109

3) Demandeur: FIVES-CAIL BABCOCK, Société anonyme 7 rue Montallvet F Parts Cedex 08 (FR)

Chapitre 5: Oscillations d un pendule élastique horizontal

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Représentation géométrique d un nombre complexe

INSTRUCTIONS D INSTALLATION MODÈLE

Limites finies en un point

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

STRUCTURE D UN AVION

Le plombier chauffagiste a aussi besoin de cette représentation pour savoir ce qu il y a à l intérieur de la maison au niveau des hauteurs.

Chap 8 - TEMPS & RELATIVITE RESTREINTE

MANUEL D UTILISATION MODE D EMPLOI ALT 600 MODE D EMPLOI ALT 600 FABRICANT DE MATERIEL SCENIQUE

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Quick Tower. Blocs verticaux nus Page 123. Quick Point. Plaques pour Quick Tower Page 124. Präge Fix. Makro Grip. Quick Point. Quick Tower.

Calcul intégral élémentaire en plusieurs variables

Guide d installation ADSL + TÉLÉPHONE + TV NUMERIQUE

Documentation Technique du programme HYDRONDE_LN

PHYSIQUE Discipline fondamentale

1S Modèles de rédaction Enoncés

Salle de technologie

NORMES D INSTALLATION PARTITION W/SCA Avec rideau gonflable

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

TD: Cadran solaire. 1 Position du problème

Mesurer les altitudes avec une carte

Collecteur de distribution de fluide

F210. Automate de vision hautes fonctionnalités. Caractèristiques. Algorithmes vectoriels

Qu est-ce que la virtualisation?

ALICEBOX. Guide d installation ADSL + TÉLÉPHONE + TV NUMERIQUE. Découvrir ma télécommande 12 TÉLÉCOMMANDE. Accès au médiacenter

MAT2027 Activités sur Geogebra

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

ELEGANT ET COMPACT. Pièces frontales décoratives ETAP

Satisfaction des stagiaires de BRUXELLES FORMATION Résultats 2013

Notice d utilisation de la : Pro-Ject Debut & Debut Phono SB

Analyse statique d une pièce

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

TP 7 : oscillateur de torsion

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Utilisation du logiciel GALAAD

Conception parasismique des diaphragmes de toit selon la norme CSA-S16

ERGOMÉTRIE ERGOMÉTRIE

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

ATTENTION! Après quelques mois d utilisation, un ordinateur s encrasse et surtout son ennemi mortel est la poussière.

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

Transcription:

PHY-144 : Introduction à la phsique du génie Chapitre 2 : Statique: équilibre de translation. 2.1 Introduction Le cours PHY-144 est un cours qui traite de la «mécanique». La mécanique est la science qui étudie les conditions de repos, de mouvement et de déformation des corps. des fluides Mécanique des corps déformables (résistance des matériaux) des corps rigides (statique et dnamique) Figure 2.1 : Les branches de la mécanique. Dans ce cours, nous étudierons le cas le plus simple, c est-à-dire la statique et la dnamique des corps rigides. Lorsqu un corps est soumis à des forces, il peut possiblement se déformer. Un corps est considéré «rigide» lorsque cette déformation est négligeable. La statique et la dnamique des corps rigides ne s intéressent qu à l effet des forces sur le repos et le mouvement des corps. L étude de leur déformation est habituellement vue dans des cours intitulés «résistance des matériaux». Dans ce chapitre 2, nous nous intéresserons à la statique des corps rigides, c est- à-dire aux corps rigides au repos. 2.2 Les forces Qu est-ce qu une force? Une force est l action d un corps sur un autre. 2-1

Une force est un vecteur. Comme tout vecteur, la force est désignée par un smbole surmonté d une petite flèche : F En plus des caractéristiques habituelles des vecteurs (grandeur, direction, sens), une autre caractéristique de la force est son point d application. À la figure 2.2, on comprend que l effet de la force F est différent si elle est appliquée au point A ou au point B. F A F B Figure 2.2 : Le point d application d une force est important. L unité SI de la force est le newton (N) : En bref : 1 N = 1 kg 1 m/s 2 Une force F possède : Une grandeur F (en newtons) Une direction Un sens Un point d application 2-2

Voons maintenant quelques exemples de forces. 2.2.1 Le poids (force gravitationnelle) Le poids d un objet est l action de la planète sur cet objet. Il est fréquemment désigné par le smbole W. Les caractéristiques du poids sont : Sa grandeur : W = mg où m = la masse (en kg) et g = 9,81 m/s 2 (sur la Terre). Sa direction et son sens: verticalement, vers le bas. Son point d application : au «centre de gravité» de l objet (le centre de l objet, si celui-ci est smétrique). W W a) b) Figure 2.3 a) Le poids d un bloc sur un plan incliné. b) Le poids d une balle de tennis en mouvement. 2.2.2 La force de contact Si l objet qui nous intéresse est en contact avec une surface quelconque, cet objet subit une force, exercée par la surface sur l objet. Si on considère le bloc sur le plan incliné de la figure 2.3a), ce bloc ne peut pas pénétrer dans le plan. Une force perpendiculaire au plan, ou «normale» N, l en empêche (note : le mot «normal» est un snonme de «perpendiculaire»). 2-3

Il est possible que le plan soit assez «rugueux» pour empêcher le bloc de glisser le long du plan. Le plan exerce alors une «force de frottement» F f sur le bloc. F f N W Figure 2.4 : Forces de contact N et F f sur un bloc. La force N est toujours perpendiculaire à la surface de contact. La force de frottement F f est toujours parallèle à la surface de contact. 2.2.3 La tension d une corde Si l objet qui nous intéresse est attaché à une corde (ou un câble), la force exercée par la corde sur l objet est désignée par le smbole T. La grandeur de cette force est appelée tension dans la corde. La force T est toujours dans la direction de la corde et dans le sens pour lequel la corde tire sur l objet. Note : toutes les cordes considérées dans ce cours sont de poids négligeable et forment donc une belle ligne droite lorsqu elles sont tendues. corde A corde B T A T B Figure 2.5 : Forces exercées par des cordes tendues. 2-4

2.2.3.1 Les cordes et les poulies Les poulies sont des instruments simples permettant, dans certains arrangements, de soulever des poids plus facilement. Si une poulie est statique (ne tourne pas) et qu il n a pas de frottement au niveau de son axe, alors : la tension dans la corde est la même de chaque côté de la poulie. T = 300 N T = 300 N T = 300 N 300 N 300 N 300 N Figure 2.6 : la tension dans la corde est la même de chaque côté de la poulie. Dans l exemple de la figure 2.6, si la tension à gauche de la poulie était supérieure à 300 N, la poulie tournerait dans le sens anti-horaire. Pour que la poulie ne tourne pas, cette tension doit être égale à 300 N, peu importe l orientation de la corde. 2.3 Les 3 lois de Newton En mécanique, on utilise constamment 3 «lois» qui furent énoncées pour la première fois par Isaac Newton (1642-1727). Ces 3 «lois» ne sont rien d autre que des principes de base qui permettent de faire des calculs et des prédictions qui collent à la réalité. 1 ère loi : Si la force résultante sur un objet est nulle, alors l objet demeure au repos s il était déjà au repos, et bouge en ligne droite avec une vitesse constante s il était déjà en mouvement. 2 ème loi : S il a une force résultante sur un objet, alors l objet subit une accélération a proportionnelle à la force résultante. F = ma 3 ème loi : Si un objet A exerce une force sur un objet B, alors l objet B exerce sur l objet A une force de même grandeur, de même direction et de sens opposé. 2-5

F f N F f N Forces exercées sur le bloc (par le plan) Forces exercées sur le plan (par le bloc). Elles sont de grandeur égale, mais de sens opposé. Figure 2.7 : La 3 ème loi de Newton pour un bloc sur un plan incliné. 2.4 L équilibre de translation Pour qu un objet soit au repos, il faut absolument que la force résultante R sur cet objet = 0. R= = 0 Sinon, l objet serait accéléré (2 ème loi de Newton). Cette condition est appelée «équilibre de translation». On a vu, au chapitre 1, qu il est aisé d additionner des forces en les décomposant en «composantes x» et en «composantes». Pour qu un vecteur soit égal à 0, il doit être de grandeur égale à 0. Chaque composante d un tel vecteur est égale à 0! Et donc, la condition d équilibre de translation peut s écrire : ** R R x = F = x = F = 0 0 ** Le «0» est en fait, ici, un 0 vectoriel. Pour être formel, nous pourrions l écrire 0. 2-6

Note : la translation est un tpe de mouvement ou toutes les particules de l objet ont des trajectoires parallèles et parcourent la même distance. Voici différents tpes de mouvement : a) Translation rectiligne b) Translation curviligne le long d un arc de cercle c) Rotation autour d un point d) Rotation et translation. Figure 2.8 : Différents tpes de mouvement. 2.5 Le diagramme de forces (DCL) Pour résoudre les problèmes de statique, la méthode la plus efficace est la suivante : Étape 1 : On choisit un objet. Étape 2 : On dessine le diagramme de forces de l objet, aussi appelé DCL (diagramme du corps libre). Il s agit d un dessin de l objet choisi et des forces exercées sur l objet. On peut ajouter un sstème d axes x-. Étape 3 : On écrit les conditions d équilibre. Étape 4 : On résout les équations. 2-7

Exemple 2.1 : Un bloc de masse 10 kg est au repos sur une table. Calculez la grandeur de la force de la table sur le bloc. Objet choisi : le bloc. Son poids est W = mg = (10 kg)(9,81 m/s 2 ) = 98,1 N Diagramme de forces : ** x W N Conditions d équilibre : x = 0 Aucune force en x. = 0 N 98,1 N = 0 Réponse : N = 98,1 N. ** Note des auteurs : sur les diagrammes de forces, nous avons choisi de représenter les forces à l aide de leur grandeur ou de leurs composantes. Il n a donc pas de «flèches» sur N et W. 2-8

Exemple 2.2 : Un bloc de masse 10 kg est au repos sur un plan incliné. a) Calculez la grandeur de la force normale sur le bloc. b) Calculez la grandeur de la force de frottement sur le bloc. 10 Objet choisi : le bloc. Son poids est W = mg = (10 kg)(9,81 m/s 2 ) = 98,1 N Diagramme de forces : F f N ou encore : 10 W W x F f N W 10 2-9

Conditions d équilibre : x = 0 W x F f = 0 ou 98,1 N sin(10 ) F f = 0 = 0 N W = 0 ou N - 98,1 N cos(10 ) = 0 Réponse : N = 96,6 N F f = 17,0 N Exemple 2.3 : Un bloc de masse 10 kg est en équilibre, suspendu à l aide de 2 cordes. Calculez la tension dans les 2 cordes. corde 1 corde 2 30 40 Objet choisi : le bloc. Son poids : W = mg = (10 kg)(9,81 m/s 2 )= 98,1 N Diagramme de forces : T 1 T 2 30 40 x Conditions d équilibre : W x = 0 - T 1 cos(30 ) + T 2 cos(40 ) = 0 = 0-98,1 N + T 1 sin(30 ) + T 2 sin(40 ) = 0 Nous avons 2 équations et 2 inconnues. La solution est : T 1 = 79,97 N T 2 = 90,41 N. 2-10

Exemple 2.4 : Un bloc de 60 N est en équilibre (ci-dessous). Si la poulie est de masse négligeable, calculez les tensions T 1 et T 2. T 1 T 2 60 N a) Objet choisi : le bloc. Diagramme de forces : T 2 (force de la corde sur le bloc) x 60 N Conditions d équilibre : = 0-60 N + T 2 = 0 Donc T 2 = 60 N. b) Objet choisi : la corde #2 (masse négligeable). Diagramme de forces : T 2 (force de la poulie sur la corde) 60 N (force du bloc sur la corde) 2-11

Conditions d équilibre : = 0-60 N + T 2 = 0 Donc T 2 = 60 N. Note : Les diagrammes de forces des cordes sont peu utiles. Il est habituel de ne pas faire cette étape et de simplement considérer que la tension est la même à chaque bout de la corde. c) Objet choisi : la poulie et le bout de corde qui l entoure. Diagramme de forces : La tension est la même de chaque côté de chaque petite poulie (en haut à gauche et en haut à droite). La corde #1 tire donc, avec la même tension T 1, à 3 endroits différents de l objet choisi : T 1 T 1 T 1 60 N Conditions d équilibre : = 0 T 1 + T 1 + T 1 60 N = 0 Donc T 1 = 20 N. 2-12

Exemple 2.5 : Un bloc de 100 N est en équilibre (ci-dessous). Calculez la tension dans la corde et l angle θ. 70 θ 100 N a) Objet choisi : le bloc, la poulie et le bout de corde qui l entoure. Diagramme de forces : T T T 70 θ x 100 N Conditions d équilibre : x = 0 - T cos(70 ) + - T cos(70 ) + T cos(θ) = 0 = 0-100 N + T sin(70 ) + T sin(70 ) + T sin(θ) = 0 À nouveau, nous avons un sstème de 2 équations, 2 inconnues. On trouve : θ = 46,84 et T = 38,33 N 2-13

Problèmes du chapitre 2: Note : toutes les poulies sont de masse négligeable. 1. Un bloc pesant 36 N est au repos sur un plan incliné d un angle de 37 avec l horizontale, tel qu illustré à la figure 1. 37 o Déterminez : Figure 1 a) la force normale au plan incliné; b) la composante du poids parallèle au plan incliné; c) la force de frottement. 2. Une force horizontale de 15 N tient en équilibre un bloc placé sur un plan incliné sans frottement, tel qu illustré à la figure 2. L angle que fait le plan incliné avec l horizontale est de 30. 15 N 30 o Déterminez : Figure 2 a) le poids du bloc; b) la grandeur de la force normale au plan. 2-14

3. Dans chacun des cas suivants (voir Figure 3), déterminez : a) le diagramme des forces agissant sur l anneau en C (de masse négligeable); b) les équations algébriques (en x et ) qui décrivent l équilibre; c) la tension dans chacune des cordes. #1 #2 C 60 o 30 60 o o #1 #1 C #2 C #2 #3 #3 100N 100N 100N a) b) c) 60 o #1 C 30 o #3 #2 100N d) Figure 3 4. Un corps A (poids = 100 N) repose sur un plan, sans frottement, incliné à 37 avec l horizontale, tel qu illustré à la figure 4. Il est relié à un corps B par une corde passant par une poulie C. a) Faites le diagramme des forces (DCL) du corps A, puis celui du corps B; b) Calculez le poids du corps B si le sstème demeure en équilibre. A B 37 o Figure 4 2-15

5. Trouvez l angle θ et la tension T dans la corde supportant la poulie de la Figure 5. Suggestion : faites le diagramme de forces (DCL) de la poulie. θ T 35 o 1000 N Figure 5 6. Trois cordes sont attachées à un anneau. Des poids sont suspendus à deux de ces cordes, tel qu illustré à la figure 6. Déterminez la tension exercée dans la troisième corde. θ 15 100 N 300 N Figure 6 7. Déterminez les tensions T 1 et T 2 dans les cordes du montage suivant (voir Figure 7) : T 2 8 N T 1 3 N Figure 7 2-16

8. Quelle est la tension dans la corde du montage illustré à la figure 8? Figure 8 9. Déterminez l angle θ et la tension T dans la corde sur laquelle tire la poulie dans le montage illustré à la figure 9. 50 θ 30 N Figure 9 10. Considérez le montage présenté à la figure 10. a) Évaluez les tensions T 1, T 2 et T 3 dans les 3 cordes; b) Quelle force un individu doit-il exercer sur la corde pour soutenir le poids de 50 N? T 1 T 3 T 2 50 N Figure 10 2-17

11. Considérez le montage indiqué à la figure 11. Déterminez l angle θ et la tension T dans la corde sur laquelle tire la poulie. 50 40 T θ 100 N Figure 11 12. Considérez le montage illustré à la figure 12 : Évaluez les tensions T 1, T 2 et T 3 dans les 3 cordes. T 3 T 2 T 1 Figure 12 100 N 2-18

Réponses : 1. a) N = 28,75 N b) W x = 21,67 N c) F f = 21,67 N 2. a) W = 25,98 N b) N = 30 N 3. a) T 1 = 100 N b) T 1 = 115,5 N T 2 = 57,5 N T 3 = 100 N c) T 1 = 86,6 N T 2 = 50 N T 3 = 100 N d) T 1 = 173,2 N T 2 = 100 N T 3 = 100 N 4. W B = 60 N 5. θ = 62,5 (1 er quadrant) T = 1774 N 6. T = 291 N θ =4,4 (2 ème quadrant) 7. T 1 = 3 N T 2 = 11 N 8. T = 12,5 N 9. θ = 25 (1 er quadrant) T = 25,4 N 10. T 1 = T 2 = 50 N T 3 = 25 N 11. T = 224 N θ = 103 12. T 1 = 100 N T 2 = 33,3 N T 3 = 133,2 N 2-19

2-20