INF4420: Sécurité Informatique

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "INF4420: Sécurité Informatique"

Transcription

1 : Cryptographie III José M. Fernandez M poste 5433

2 Aperçu Crypto III Cryptographie à clé publique (suite) RSA (suite) Problème du log discret Chiffre de El-Gamal Chiffrement à courbe elliptique Autres primitives cryptographiques Hachage cryptographique Signatures digitales Stéganographie Principes d'utilisation de la crypto Gestion de clés privés et publiques Standards cryptographiques Risques résiduels liés à l'utilisation de la crypto (récapitulation) 2

3 RSA Problématique d implantation Génération de clés Comment générer N = p*q Combien de premiers de taille n/2 existent-ils? (Théorème des nombres premiers) ~ O(2 n/2 / (n/2)) = O(2 n/2-1 /n) P.ex. pour n = 1024, nombre de premiers = choix de clés Comment vérifier si un entier aléatoire est premier? Algorithme temps polynomial (probabiliste et déterministe) Comment générer clé publique e t.q. pgcd(e, N) = 1 Algorithme d Euclides (temps polynomial) permet de calculer e mod N, donc de vérifier si pgcd(e, N) = 1 Il existe ϕ(n) = (p-1)(q-1) = N p q = O(2 n ) entier moins que N valable (presque tous!) Comment trouver d t.q. e*d = 1 mod ϕ(n) Algorithme d Euclide étendu (aussi temps polynomial) permet de trouver inverse multiplicatif, donc d, SEULEMENT SI ON CONNAÎT ϕ(n) Il est facile de générer autant de paire de clés qu on veut efficacement 3

4 RSA Problématique d implantation (suite) Comment coder? Alphabet de source Σ, Σ = M, log M = m recoder les symboles de sources en bits P.ex. sans compression : chaque σ Σ m bits construire des blocs de n bits Si n > m, regrouper n/m symboles dans un seul mot de code Si n < m, diviser en m/n blocs de n bits Mais attention à l entropie Et si le mode code construit x est t.q. pgcd(x,n)? Alors on est «fait» : le chiffreur (Alice) a découvert un facteur de N, donc p ou q Elle peut calculer la clé privée de Bob Quelles en sont les probabilités? Prob = N- ϕ(n)/n = (p+q)/ N = (p+q)/pq ~ 1 sur 2 n/2 (négligeable) 4

5 RSA Niveau de sécurité La seule méthode connue pour retrouver la clé privé d et cassé RSA est de connaître ϕ(n) On peut calculer ϕ(n) si on peut factoriser N Si on connaît ϕ(n) on peut calculer les facteurs Casser RSA par cette méthode est aussi difficile que factoriser Sécurité de RSA basée sur deux principes/hypothèses 1. Il n existe pas d algorithme efficace pour factoriser 2. Il n y pas moyen de casser RSA sans connaître ϕ(n) 5

6 Notion de groupe Notion de groupe (G, ) Un ensemble abstrait G sur lequel on a défini une opération abstraite " " avec certaines propriétés : élément identité : 1 G, t.q. a G, a 1 = a Associativité : a, b, c G, a (b c) = (a b) c, Tout éléments à un inverse : a G, a -1 t.q. a a -1 = 1 (Commutativité): a, b G, a b = b a on dit alors que le groupe est "abélien" ou "commutatif" Exponentiation: a n = a a a, n fois où n est un entier et (G, ) est un groupe abélien Note: On peut définir le problème de log discret sur n'importe quel groupe abélien! Exemples : Corps fini (corps de Galois) Courbe elliptique 6

7 Problème du log discret Propriétés mathématiques de Z p Tous les éléments de Z p ont des inverses multiplicatifs, sauf 0 Donc, Z p* = Z p - {0} Il existe des éléments g dit générateur ou racine primitive tel que : <g> = {g 0, g 1,, g p-1 } = Z p * Notes : Il est possible de vérifier en temps polynomial si un élément g est un générateur. Il existe un très grand nombre de générateurs dans Z p * Définition : Le logarithme discret en base g de a Z p est l'entier x tel que a = g x mod p Hypothèse calculatoire : Il n'est pas possible de calculer le log discret en temps polynomial sans connaître la factorisation de p-1. 7

8 Chiffre de El-Gamal Génération de clé 1. Trouver un grand entier premier p tel que p-1 a au moins un grand facteur premier (donc difficile à trouver). 2. Choisir au hasard un générateur g de Z p* et un entier d 3. Calculer la valeur e = g d mod p 4. Clé publique = (p, g, e), Clé privé = d Chiffrement/Déchiffrement : Pour un message x Z * p Choisir un entier k [0..p-1] au hasard E(k,x) = (y 1, y 2 ) = (g k mod p, xe k mod p) D(y 1, y 2 ) = y 2 / y 1d mod p Intuition: Le message x est "masqué" dans y 2 en le multipliant par e k par La partie y 1 fourni à qui connaît d, l'information nécessaire pour reconstruire x, en "divisant" par y d 1 (en réalité, calculer son inverse et multiplier) Notes importantes Il s'agit d'une méthode de chiffrement dite "probabiliste" car il n'existe pas de chiffrement unique pour un même x. Il n'est pas nécessaire de connaître k pour déchiffrer, mais il est très important de choisir un k différent à chaque fois. 8

9 Variantes de El-Gamal Corps de Galois GF(2 n ) Il s agit d un groupe avec 2 n éléments Se base sur l'arithmétique modulaire avec des polynômes Toutes les coefficients des polynômes sont binaires, et donc toute l'arithmétique est binaire Chiffrement et déchiffrement très efficaces Très utilisée sur des plateforme matériel GF(p k ) Il s agit d un groupe avec p k éléments Également basé sur l'arithmétique modulaire avec des polynômes Les coefficients sont modulo p, donc les opérations sont plus complexes (moins utilisés) 9

10 Courbe elliptique - Définition Courbe elliptique Définition : Une courbe elliptique C est l ensemble de points (x,y) dans un espace vectoriel de dimension 2, obéissant une équation cubique sur ses coordonnées. Exemple : Dans R 2, l ensemble C(a,b) des points P = (x,y) tel que y 2 = x 3 + ax + b où a, b R sont fixes Dans Z p2, l ensemble C(a,b) des points P = (x,y), x, y Z p tel y 2 = x 3 + ax + b mod p où a, b R sont fixes 10

11 Opérations sur une courbe elliptique Somme sur une courbe elliptique C Interprétation géométrique Soit un point P, alors P est le point sur la courbe à l opposé de l axe x Soit deux points P et Q, P+Q = -R, où R est le point sur la courbe à l intersection de la ligne PQ Doublage si P = Q, alors P + Q = P + P = 2P = R, où R est l intersection de la droite tangente à la courbe au point P Interprétation algébrique Pour R 2, on peut déduire des formules explicites en fonction des coordonnées x et y des points de P et Q ainsi que des paramètres de la courbe C (c.à.d. a et b) Ces formules sont directement généralisables dans le cas Z p 2 Dans les deux cas (C, +) forme un groupe, si a et b sont bien choisis 11

12 Exemples de courbes elliptiques sur R 2 12

13 Cryptographie à courbe elliptique - ECC Si on rebaptise la somme comme «produit» on peut alors définir le problème de «log discret» sur C La cryptographie à courbe elliptique (ECC en anglais) consiste tout simplement à utiliser l algorithme de El- Gamal sur le groupe (C,+) où C est une courbe elliptique sur Z p Z p 13

14 Avantage des ECC Permet un niveau équivalent de sécurité avec des tailles de clés entre 6-10 fois plus petites => meilleur performance de chiffrement et déchiffrement ECC RSA Taille de clés (bits) Cryptanalyse (MIPS.année) 3.8x x x10 28 Taille de clés (bits) Cryptanalyse (MIPS.année) 3x10 4 2x10 8 3x x x x

15 Hachage cryptographique Objectif : Intégrité S'assurer qu'un message n'a pas été modifier de façon non autorisé une fois qu'il a été terminé par son auteur légitime Fonctions de hachage cryptographique h Une fonction h( ) est dite de hachage cryptographique si à partir d'un message x elle produit un "hachage" h(x), 1. (absence de collision faible) : il est très difficile de trouver un x' à partir de h(x) tel que h(x) = h(x'). 2. (absence de collision forte) : il est très difficile de trouver un deux message de notre choix x et x', tel que h(x) = h(x') 3. (à sens unique) : il est très difficile de trouver x à partir de h(x) = h(x') Notes : 2 implique 1 (trivial), 2 implique 3 (pas trivial) En anglais, h(x) est appelé "hash", MAC (pour Message Authentication Digest), "message digest" ou simplement "digest" Ne pas confondre avec les fonctions de hachage "universelles", utilisées par exemple dans la construction de compilateur, les structures de données et algorithmes aléatoires, etc. 15

16 Exemples de fonctions de hachage cryptographique MD4 Conçu par Rivest (de RSA) Ressemble un peu à DES Plusieurs rondes de coupage, transposition, permutation, et autre opérations binaires. Produit un hachage de 128 bits MD5 Version amélioré de MD4 Produit également un hachage de 128 Usage très répandu Utilisé par le programme linux md5sum SHA-1 Conçu par la NSA Produit un hachage de 160 bits Compatible avec le Digital Signature Standard (DSS) 16

17 Stéganographie 17

18 Signature Digitale Objectifs Authenticité : Pouvoir prouver qu'un document électronique a bel et bien composé et "signé" par son prétendu auteur. => Il ne doit pas être possible pour personne de falsifier la signature d'autrui. Intégrité : Pouvoir prouver que le document n'as pas été modifié depuis qu'il a été signé par son auteur légitime. => Il ne doit pas être possible pour une autre personne que l'auteur de changer le document après sa signature sans violer la condition d'authenticité. (Non-répudiabilité) Empêcher qu'un auteur légitime puisse a posteriori nier qu'il est l'auteur et signataire d'un document qu'il a bel et bien signé => Il ne doit pas être possible de "répudier" une signature faite par soi-même 18

19 Signature digitale par chiffrement à clé publique Signature Pour signer un x : 1. Ajouter au message un préambule T, p.ex. "Le document qui suit a été signé par José M. Fernandez, en date du " x' = T x 2. Utiliser la clé privé d pour produire la version signé y du document en utilisant la clé privé et l'algorithme de déchiffrement: y = D(x',d) p.ex. y = (x') d mod n avec RSA Vérification Pour vérifier un document y : 1. Utiliser l'algorithme de chiffrement avec la clé publique e du présumé auteur pour obtenir x' = E(y,e) 2. Vérifier si x' est bel et bien un message "légitime" (bien formaté, a un préambule, qui a du sens, etc.). Si oui, accepter la signature. Notes Pourquoi un préambule? Parce qu'il est possible pour un malfaiteur de falsifié une signature sur un message aléatoire ("garbage"), mais il ne lui est pas possible de le faire sur un message déterminé de son choix (p.ex. ayant un préambule raisonnable en français) Authenticité de la clé publique? Comment s'assurer que le vérificateur à la bonne clé publique e qui correspond vraiment à l'auteur? 19

20 Signature digitale avec hachage cryptographique Signature Pour signer un x : 1. Calculer le hachage h(x) du message avec une fonction de hachage cryptographique 2. Utiliser la clé privé d pour h(x) comme avant 3. Le document signé contient : (x, D(h(x),d) ) Vérification Pour vérifier un document (y, s) 1. Calculer le hachage h(y) de y 2. Obtenir la valeur h' en chiffrant la signature s avec la clé publique e, h' = E(s,e) 3. Accepter la signature si h' = h(y) Avantages Plus rapide La "signature" est indépendante du message lui-même 20

21 Principe de gestion de clés Générations de clés Nécessité de source de bit parfaitement aléatoire Méthode matériel vs. logiciel vs. "manuel" "Souveraineté" et contrôle sur la génération des clés Difficulté technique pour certains algorithmes RSA : p et q premier, etc. El-Gamal : p t.q. p-1a un grand facteur, etc. Gestion des clés et réduction de risque Possibilité de révocation Distribution au préalable Contrôle positif (détection de perte ou vol) Mécanisme de protection Contrôle d'accès Chiffrement des clés par mot de passe ou phrase de passe Principe de segmentation Clés de réseaux vs. clés point-à-point Durée de vie limitée des clés Distribution de clés Nécessite de canaux privés dédiés Distribution physique Utilisation de KEK (key-encryption keys) ou équivalent 21

22 Échange de clés Diffie-Hellman Objectifs Alice et Bob n'ayant pas échanger de clés auparavant désirent établir un canal privé Conditions et préalable Ils ont accès à un canal "public" (non sécurisé) Ils peuvent s'authentifier mutuellement Protocole de Diffie-Hellman Se base sur la difficulté du log discret Permet à Alice et Bob de générer une clé dans [0..p-1] connue de personne d'autre Vulnérable aux attaques "man-in-the-middle" en l'absence d'authentification 22

23 Gestion des clés publiques et ICP Infrastructure à clé publique Modèle décentralisé Web of trust Inventé par Phil Zimmerman, créateur de PGP Les réseaux sociaux Pas de politiques fermes d'authentification Modèle hiérarchique et certificats Chaîne de confiance Utilise les certificats de clé publique Date d'expiration Politique d'utilisation Format standard X.509 Concept d'autorité de certification Infrastructure matérielle et logicielle: LDAP et autres technologies 23

24 Standards cryptographiques PKICS (RSA) X

25 Risques résiduels à l utilisation de cryptographie Erreur de codage Erreur d implémentation Erreur de design cryptographiques Hypothèses calculatoires Gestion de clés 25

La signature électronique, les réseaux de confiance et l'espionnage du futur

La signature électronique, les réseaux de confiance et l'espionnage du futur La signature électronique, les réseaux de confiance et l'espionnage du futur Marc.Schaefer@he-arc.ch TechDays2015, Neuchâtel HE-Arc Ingénierie Filière informatique Plan la cryptographie en bref et sur

Plus en détail

Chiffrement à clef publique ou asymétrique

Chiffrement à clef publique ou asymétrique Université de Limoges, XLIM-DMI, 123, Av. Albert Thomas 87060 Limoges Cedex France 05.55.45.73.10 pierre-louis.cayrel@xlim.fr Licence professionnelle Administrateur de Réseaux et de Bases de Données IUT

Plus en détail

Audit et Sécurité Informatique

Audit et Sécurité Informatique 1 / 66 Audit et Sécurité Informatique Chap 4: Algorithmes à clé publique, Hachage, MAC, Signature Numérique Rhouma Rhouma https://sites.google.com/site/rhoouma Ecole superieure d Economie Numerique 3ème

Plus en détail

Chapitre II. Introduction à la cryptographie

Chapitre II. Introduction à la cryptographie Chapitre II Introduction à la cryptographie PLAN 1. Terminologie 2. Chiffrement symétrique 3. Chiffrement asymétrique 4. Fonction de hachage 5. Signature numérique 6. Scellement 7. Echange de clés 8. Principe

Plus en détail

Où la cryptographie symétrique intervient-elle? L'exemple d'une session https

Où la cryptographie symétrique intervient-elle? L'exemple d'une session https Cryptographie symétrique : introduction Yves Legrandgérard (ylg@pps.jussieu.fr) Paul Rozière (roziere@pps.jussieu.fr) Où la cryptographie symétrique intervient-elle? L'exemple d'une session https Un exemple

Plus en détail

Mathématiques et Cryptographie

Mathématiques et Cryptographie Paul Zimmermann INRIA Nancy - Grand Est et LORIA Colloque «Les mathématiques dans la société» Académie Lorraine des Sciences 20 novembre 2010 Chiffrement par décalage (César) A B C D E F G H I J K L M

Plus en détail

Chiffrement à clef publique, authentification et distribution des clefs. Plan

Chiffrement à clef publique, authentification et distribution des clefs. Plan Chiffrement à clef publique, authentification et distribution des clefs Sécurité des réseaux informatiques 1 Plan Les principes de l'authentification de message Les fonctions de hachage sécurisées SHA-1

Plus en détail

7 Cryptographie (RSA)

7 Cryptographie (RSA) 7 Cryptographie (RSA) Exponentiation modulaire On verra que le système de cryptage RSA nécessite d effectuer une exponentiation modulaire, c est-à-dire de calculer a n mod m, lorsque m et n sont très grands.

Plus en détail

Quelle sécurité? Cryptographie à clé publique. Fonction à sens unique. Clés publiques. ! Notion de trappe. Repose sur la sécurité calculatoire.

Quelle sécurité? Cryptographie à clé publique. Fonction à sens unique. Clés publiques. ! Notion de trappe. Repose sur la sécurité calculatoire. Quelle sécurité? Repose sur la sécurité calculatoire. Signification : cryptanalyste déploie plus d efforts de calcul pour retrouver le clair (ou la clé) à partir du chiffré que la durée de vie du clair.

Plus en détail

Fonction de hachage et signatures électroniques

Fonction de hachage et signatures électroniques Université de Limoges, XLIM-DMI, 123, Av. Albert Thomas 87060 Limoges Cedex France 05.55.45.73.10 pierre-louis.cayrel@xlim.fr Licence professionnelle Administrateur de Réseaux et de Bases de Données IUT

Plus en détail

Les Courbes. Elliptiques pour la Sécurité des Appareils. Mobiles. ACI Sécurité Informatique IRISA Rennes 11 12 Décembre 2003

Les Courbes. Elliptiques pour la Sécurité des Appareils. Mobiles. ACI Sécurité Informatique IRISA Rennes 11 12 Décembre 2003 Les Courbes Elliptiques pour la Sécurité des Appareils Mobiles LIENS CNRS Ecole normale supérieure TANC INRIA Ecole polytechnique ACI Sécurité Informatique IRISA Rennes 11 12 Décembre 2003 La cryptographie

Plus en détail

CRYPTOGRAPHIE. Chiffrement asymétrique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie

CRYPTOGRAPHIE. Chiffrement asymétrique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie CRYPTOGRAPHIE Chiffrement asymétrique E. Bresson SGDN/DCSSI Laboratoire de cryptographie Emmanuel.Bresson@sgdn.gouv.fr I. CHIFFREMENT ASYMÉTRIQUE I.1. CHIFFREMENT À CLÉ PUBLIQUE Organisation de la section

Plus en détail

15/10/2014. Plan. Cours sécurité informatique Chapitre 2: Notions de la Cryptologie. Introduction : un peu d histoire. 1. Introduction.

15/10/2014. Plan. Cours sécurité informatique Chapitre 2: Notions de la Cryptologie. Introduction : un peu d histoire. 1. Introduction. Faculté des Sciences de Bizerte Plan Cours sécurité informatique Chapitre 2: Notions de la Cryptologie Présenté par : Dr. Olfa DRIDI : dridi_olfa@yahoo.fr 1. Introduction 2. Science de la cryptologie:

Plus en détail

Cryptographie. Cours 3/8 - Chiffrement asymétrique

Cryptographie. Cours 3/8 - Chiffrement asymétrique Cryptographie Cours 3/8 - Chiffrement asymétrique Plan du cours Différents types de cryptographie Cryptographie à clé publique Motivation Applications, caractéristiques Exemples: ElGamal, RSA Faiblesses,

Plus en détail

CRYPTOGRAPHIE. Signature électronique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie

CRYPTOGRAPHIE. Signature électronique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie CRYPTOGRAPHIE Signature électronique E. Bresson SGDN/DCSSI Laboratoire de cryptographie Emmanuel.Bresson@sgdn.gouv.fr I. SIGNATURE ÉLECTRONIQUE I.1. GÉNÉRALITÉS Organisation de la section «GÉNÉRALITÉS»

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

Les fonctions de hachage, un domaine à la mode

Les fonctions de hachage, un domaine à la mode Les fonctions de hachage, un domaine à la mode JSSI 2009 Thomas Peyrin (Ingenico) 17 mars 2009 - Paris Outline Qu est-ce qu une fonction de hachage Comment construire une fonction de hachage? Les attaques

Plus en détail

Fonctions de hachage. Autres missions de la cryptologie contemporaine. Éric Wegrzynowski. dernière modif : 28. marts 2013

Fonctions de hachage. Autres missions de la cryptologie contemporaine. Éric Wegrzynowski. dernière modif : 28. marts 2013 Plan (MDC) Plan (MDC) Éric Wegrzynowski (MDC) dernière modif : 28. marts 2013 Plan (MDC) Plan (MDC) Autres missions de la cryptologie contemporaine Contrôle d intégrité Nécessité de contrôler l intégrité

Plus en détail

Codage - Cryptographie

Codage - Cryptographie Codage - Cryptographie Emmanuel Jeandel (emmanuel.jeandel@lif.univ-mrs.fr) http://www.lif.univ-mrs.fr/ ejeandel/enseignement.html 28 mars 2011 1 Partages de Secret Q 1) Trouver un protocole pour que Alice

Plus en détail

CH.5 SYSTÈMES À CLÉ PUBLIQUE

CH.5 SYSTÈMES À CLÉ PUBLIQUE CH.5 SYSTÈMES À CLÉ PUBLIQUE 5.1 Les clés publiques : RSA 5.2 Les clés publiques : le sac à dos 5.3 Les clés publiques : le logarithme discret 5.4 L'authentification et la signature électronique 5.5 Les

Plus en détail

Cryptographie et fonctions à sens unique

Cryptographie et fonctions à sens unique Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech pierre.rouchon@mines-paristech.fr Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions

Plus en détail

Cryptographie à clé publique

Cryptographie à clé publique Les systèmes à clé publique Cryptographie à clé publique Systèmes symétriques : même clé pour le chiffrement et le déchiffrement Problèmes : transmission de la clé 1 clé par destinataire Système asymétrique

Plus en détail

D.I.I.C. 3 - INC Module COMV - Contrôle 1

D.I.I.C. 3 - INC Module COMV - Contrôle 1 Université de Rennes 1 année 2009-2010 I.F.S.I.C. 11 Décembre 2009 D.I.I.C. 3 - INC Module COMV - Contrôle 1 cours d Olivier LE MEUR Durée : 2 heures Documents autorisés : documents des cours, TD et TP,

Plus en détail

Les Algorithmes Cryptographiques Asymétriques

Les Algorithmes Cryptographiques Asymétriques Les Algorithmes Cryptographiques Asymétriques Omar Cheikhrouhou Omar.cheikhrouhou@isetsf.rnu.tn ISET SFAX, 2009-2010 1 Plan Introduction Principe Description Performances Modes d'utilisation Algorithmes

Plus en détail

Chapitre 7. Sécurité des réseaux. Services, attaques et mécanismes cryptographiques. Hdhili M.H. Cours Administration et sécurité des réseaux

Chapitre 7. Sécurité des réseaux. Services, attaques et mécanismes cryptographiques. Hdhili M.H. Cours Administration et sécurité des réseaux Chapitre 7 Sécurité des réseaux Services, attaques et mécanismes cryptographiques Hdhili M.H Cours Administration et sécurité des réseaux 1 Partie 1: Introduction à la sécurité des réseaux Hdhili M.H Cours

Plus en détail

2011 Hakim Benameurlaine 1

2011 Hakim Benameurlaine 1 Sommaire 1 IPSEC... 2 1.1 Introduction... 2 1.2 Modes de fonctionnement d IPSec... 5 1.3 Protocoles... 7 1.3.1 AH (Authentification Header)... 7 1.3.2 Protocole ESP (Encapsulating Security Payload)...

Plus en détail

Introduction à la cryptographie à clef publique

Introduction à la cryptographie à clef publique {Franck.Leprevost,Sebastien.Varrette,Nicolas.Bernard}@uni.lu Université du Luxembourg, CESI-LACS, Luxembourg Laboratoire ID-IMAG, Grenoble, France Master CSCI - 2005-2006 Outlines 1 Génération de nombres

Plus en détail

Cryptologie. Algorithmes à clé publique. Jean-Marc Robert. Génie logiciel et des TI

Cryptologie. Algorithmes à clé publique. Jean-Marc Robert. Génie logiciel et des TI Cryptologie Algorithmes à clé publique Jean-Marc Robert Génie logiciel et des TI Plan de la présentation Introduction Cryptographie à clé publique Les principes essentiels La signature électronique Infrastructures

Plus en détail

INF4420: Sécurité Informatique Cryptographie I

INF4420: Sécurité Informatique Cryptographie I INF4420: Cryptographie I José M. Fernandez M-3109 340-4711 poste 5433 Aperçu du module Cryptographie (3 sem.) Définitions et histoire Notions de base (théorie de l'information) Chiffrement Méthodes "classiques"

Plus en détail

CHAPITRE 6 : Signature, identi cation.

CHAPITRE 6 : Signature, identi cation. CHAPITRE 6 : Signature, identi cation. La cryptographie ne se limite plus à l art de chi rer des messages, on va considérer dans ce chapitre de nouvelles tâches qu il est possible de réaliser. La signature

Plus en détail

Les Courbes Elliptiques pour la Sécurité des Appareils Mobiles ACI Sécurité Informatique LaBRI, Bordeaux, 23/11/05

Les Courbes Elliptiques pour la Sécurité des Appareils Mobiles ACI Sécurité Informatique LaBRI, Bordeaux, 23/11/05 Les Courbes Elliptiques pour la Sécurité des Appareils Mobiles ACI Sécurité Informatique LaBRI, Bordeaux, 23/11/05 LIENS CNRS École Normale Supérieure TANC - INRIA École Polytechnique CESAM : objectifs

Plus en détail

Panorama de la cryptographie des courbes elliptiques

Panorama de la cryptographie des courbes elliptiques Panorama de la cryptographie des courbes elliptiques Damien Robert 09/02/2012 (Conseil régional de Lorraine) La cryptographie, qu est-ce que c est? Définition La cryptographie est la science des messages

Plus en détail

La signature électronique et les réseaux de confiance

La signature électronique et les réseaux de confiance La signature électronique et les réseaux de confiance Marc.Schaefer@he-arc.ch HE-Arc Ingénierie Institut des systèmes d'information et de communication (ISIC) Laboratoire de téléinformatique (TINF) Plan

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

CH.2 CODES CORRECTEURS

CH.2 CODES CORRECTEURS CH.2 CODES CORRECTEURS 2.1 Le canal bruité 2.2 La distance de Hamming 2.3 Les codes linéaires 2.4 Les codes de Reed-Muller 2.5 Les codes circulaires 2.6 Le câblage des codes circulaires 2.7 Les performances

Plus en détail

Problèmes arithmétiques issus de la cryptographie reposant sur les réseaux

Problèmes arithmétiques issus de la cryptographie reposant sur les réseaux Problèmes arithmétiques issus de la cryptographie reposant sur les réseaux Damien Stehlé LIP CNRS/ENSL/INRIA/UCBL/U. Lyon Perpignan, Février 2011 Damien Stehlé Problèmes arithmétiques issus de la cryptographie

Plus en détail

Découverte de la cryptographie

Découverte de la cryptographie Maxime Arthaud et Korantin Auguste net7 Jeudi 14 novembre 2013 Syllabus Introduction 1 Introduction 2 La cryptographie, Qu est-ce que c est? Chiffrement ou signature de messages par des clés La cryptographie,

Plus en détail

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Les Fonctions de Hachage Temps de préparation :.. 2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury :..10 minutes GUIDE

Plus en détail

Fonctions de Hachage et Signatures Electroniques

Fonctions de Hachage et Signatures Electroniques Université du Luxembourg - Laboratoire LACS, LUXEMBOURG CNRS/INPG/INRIA/UJF - Laboratoire LIG-IMAG Sebastien.Varrette@imag.fr http://www-id.imag.fr/~svarrett/ Cours Cryptographie & Securité Réseau Master

Plus en détail

Sécurisation des données : Cryptographie et stéganographie

Sécurisation des données : Cryptographie et stéganographie Licence 2ème Année V. Pagé (google vpage) Sécurisation des données : Cryptographie et stéganographie Objectifs du cours Introduction à la Cryptographie : Notions de Stéganographie : Image Cachée Premiere

Plus en détail

M1 Informatique 2015/16. E. Godard. (Notions de) Sécurité Réseaux

M1 Informatique 2015/16. E. Godard. (Notions de) Sécurité Réseaux Réseaux M1 Informatique 2015/16 E. Godard Aix-Marseille Université (Notions de) Sécurité Réseaux Introduction Vous êtes Ici Vous êtes Ici 7 OSI Application TCP/IP Application 6 5 Presentation Session Not

Plus en détail

PROJET DE VEILLE TECHNOLOGIQUE

PROJET DE VEILLE TECHNOLOGIQUE ECOLE CENTRALE DE NANTES PROJET DE VEILLE TECHNOLOGIQUE Panorama des algorithmes de cryptage d information Henri DER SARKISSIAN, Pierre BELLOUARD Sommaire Introduction 3 Cadre de l étude 3 Cryptographie

Plus en détail

Analyse de la complexité algorithmique (1)

Analyse de la complexité algorithmique (1) Analyse de la complexité algorithmique (1) L analyse de la complexité telle que nous l avons vue jusqu à présent nous a essentiellement servi à déterminer si un problème est ou non facile (i.e. soluble

Plus en détail

Projet de Veille Technologique : la sécurité informatique - Chaînes de Confiance sur Internet -

Projet de Veille Technologique : la sécurité informatique - Chaînes de Confiance sur Internet - Projet de Veille Technologique : la sécurité informatique - Chaînes de Confiance sur Internet - Marc Tremsal Alexandre Languillat Table des matières INTRODUCTION... 3 DEFI-REPONSE... 4 CRYPTOGRAPHIE SYMETRIQUE...

Plus en détail

Cryptographie et fonctions à sens unique

Cryptographie et fonctions à sens unique Cryptographie et fonctions à sens unique P. Rouchon Ecole des Mines de Paris Centre Automatique et Systèmes Novembre 2007 Plan 1 Fonction à Sens unique Notion intuitive Stockage des mots de passe 2 Exponentielle

Plus en détail

Algorithmique - Correction du TD2

Algorithmique - Correction du TD2 Algorithmique - Correction du TD2 IUT 1ère Année 5 octobre 2012 1 Les tests Exercice 1. Construire un arbre de décision et l algorithme correspondant permettant de déterminer la catégorie sportive d un

Plus en détail

Cryptographie et réseau PHILIP ZIMMERMANN

Cryptographie et réseau PHILIP ZIMMERMANN Cryptographie et réseau PHILIP ZIMMERMANN Les courriers électroniques et les diverses informations numériques envoyées sur le réseau Internet sont comme des cartes postales numériques : leur contenu n

Plus en détail

Codage affine, algorithmes d Euclide et Bézout. 4.1 Le codage affine (début) Introduction:

Codage affine, algorithmes d Euclide et Bézout. 4.1 Le codage affine (début) Introduction: Codage affine, algorithmes d Euclide et Bézout 4 4.1 Le codage affine (début) Introduction: On peut généraliser le codage vu dans le chapitre précédent en considérant la fonction : M 1 a M ` b pmod 26q

Plus en détail

Les Tables de Hachage

Les Tables de Hachage NICOD JEAN-MARC Licence 3 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2007 NICOD JEAN-MARC 1 / 34 Référence Tables à adressage directe Thomas H. Cormen, Charles E.

Plus en détail

1 ère année de Master d Informatique PRENOM : Spécialité Réseaux Lundi 14 mars 2011 EXAMEN REPARTI INTERNET NOUVELLE GENERATION

1 ère année de Master d Informatique PRENOM : Spécialité Réseaux Lundi 14 mars 2011 EXAMEN REPARTI INTERNET NOUVELLE GENERATION Année Universitaire 2010-2011 NOM : 1 ère année de Master d Informatique PRENOM : Spécialité Réseaux Lundi 14 mars 2011 PARTIE 2 EXAMEN REPARTI INTERNET NOUVELLE GENERATION Durée : 2 heures Document autorisé

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Sécurité informatique

Sécurité informatique Sécurité informatique Université Kasdi Merbah Ouargla Master RCS Octobre 2014 Département Informatique 1 Master RCS 1 Sécurité informatique Organisation du cours Ce cours a pour but de présenter les fondements

Plus en détail

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM TD TECHNIQUES DE CODAGE ET DE COMPRESSION. LANGAGE / CODAGE / VALENCE.. Rappels Toute fraction intelligible d un message est constituée de symboles. Le langage est l ensemble de ces symboles. Un codage

Plus en détail

Théorie des nombres et cryptographie

Théorie des nombres et cryptographie Théorie des nombres et cryptographie David Kohel et Igor Shparlinski Aix-Marseille Université 20 juin 2014 Théorie des nombres et cryptographie La théorie des nombres est un domaine des mathématiques qui

Plus en détail

Tracé de lignes et de courbes planes

Tracé de lignes et de courbes planes Département d informatique Université de Toulon et du Var Plan 1 Introduction 2 Tracé de segments 3 Tracé de cercles 4 Tracé de courbes Définition Le processus de représentation d objets graphiques continus

Plus en détail

Algorithmes de chiffrement symétrique par bloc (DES et AES) Pierre-Alain Fouque Equipe de Cryptographie Ecole normale supérieure

Algorithmes de chiffrement symétrique par bloc (DES et AES) Pierre-Alain Fouque Equipe de Cryptographie Ecole normale supérieure Algorithmes de chiffrement symétrique par bloc (DES et AES) Pierre-Alain Fouque Equipe de Cryptographie Ecole normale supérieure 1 Chiffrement symétrique Définition : Un algorithme de chiffrement symétrique

Plus en détail

Sommaire Introduction Les bases de la cryptographie Introduction aux concepts d infrastructure à clés publiques Conclusions Références

Sommaire Introduction Les bases de la cryptographie Introduction aux concepts d infrastructure à clés publiques Conclusions Références Sommaire Introduction Les bases de la cryptographie Introduction aux concepts d infrastructure à clés publiques Conclusions Références 2 http://securit.free.fr Introduction aux concepts de PKI Page 1/20

Plus en détail

Différents problèmes Procédés de chiffrement symétriques Le chiffrement asymétrique Un peu d arithmétique. Cryptographie

Différents problèmes Procédés de chiffrement symétriques Le chiffrement asymétrique Un peu d arithmétique. Cryptographie Cryptographie François Ducrot http://math.univ-angers.fr Décembre 2012 Terminologie Cryptographie Étude des méthodes permettant de transmettre des données de façon confidentielle. Cryptanalyse Étude des

Plus en détail

CODES CORRECTEURS D'ERREURS

CODES CORRECTEURS D'ERREURS CODES CORRECTEURS D'ERREURS Marc URO TABLE DES MATIÈRES DÉTECTION ET CORRECTION D'ERREURS... 6 CAS D'UN CANAL SANS SYMBOLE D'EFFACEMENT...6 CAS D'UN CANAL AVEC SYMBOLE D'EFFACEMENT...7 GÉNÉRATION ET DÉTECTION

Plus en détail

Sécurité 2. Université Kasdi Merbah Ouargla. PKI- Public Key Infrastructure (IGC Infrastructure de Gestion de Clés) M2-RCS.

Sécurité 2. Université Kasdi Merbah Ouargla. PKI- Public Key Infrastructure (IGC Infrastructure de Gestion de Clés) M2-RCS. Sécurité 2 Université Kasdi Merbah Ouargla Département Informatique PKI- Public Key Infrastructure (IGC Infrastructure de Gestion de Clés) M2-RCS Janvier 2014 Master RCS Sécurité informatique 1 Sommaire

Plus en détail

1.1. Données. Jean-Charles Régin. Licence Informatique 2ème année. JC Régin - ASD - L2I - 2010

1.1. Données. Jean-Charles Régin. Licence Informatique 2ème année. JC Régin - ASD - L2I - 2010 1.1 Algorithmique i et Structures t de Données Jean-Charles Régin Licence Informatique 2ème année 1.2 Table de hachage Jean-Charles Régin Licence Informatique 2ème année Table de hachage 3 Une table de

Plus en détail

ACCQ204 4 Jan. 2016. Cours 3. Définition 1 Pour tout entier r 2 un code de Hamming (binaire) a pour matrice de parité H r telle que : 1 0 1 0 1.

ACCQ204 4 Jan. 2016. Cours 3. Définition 1 Pour tout entier r 2 un code de Hamming (binaire) a pour matrice de parité H r telle que : 1 0 1 0 1. ACCQ4 4 Jan 6 Cours 3 Enseignant: Aslan Tchamkerten Crédit: Pierre de Sainte Agathe Code de Hamming Définition Pour tout entier r un code de Hamming (binaire) a pour matrice de parité H r telle que : H

Plus en détail

Chapitre 3 INTÉGRITÉ ET AUTHENTIFICATION

Chapitre 3 INTÉGRITÉ ET AUTHENTIFICATION Chapitre 3 INTÉGRITÉ ET AUTHENTIFICATION 32 Services souhaités par la cryptographie Confidentialité : Rendre le message secret entre deux tiers Authentification : Le message émane t-il de l expéditeur

Plus en détail

Expressions, types et variables en Python

Expressions, types et variables en Python Expressions, types et variables en Python 2015-08-26 1 Expressions Les valeurs désignent les données manipulées par un algorithme ou une fonction. Une valeur peut ainsi être : un nombre, un caractère,

Plus en détail

Transmission de données

Transmission de données Transmission de données Réseaux Privés Virtuels (RPV ou VPN) Introduction Un VPN (Virtual Private Network) est une liaison sécurisée entre 2 parties via un réseau public, en général Internet. Cette technique

Plus en détail

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars

Plus en détail

Technologies de l Internet. Partie 6 : Introduction à la sécurité dans le web Iulian Ober iulian.ober@irit.fr

Technologies de l Internet. Partie 6 : Introduction à la sécurité dans le web Iulian Ober iulian.ober@irit.fr Technologies de l Internet Partie 6 : Introduction à la sécurité dans le web Iulian Ober iulian.ober@irit.fr Cryptage avec clé secrète même clé I think it is good that books still exist, but they do make

Plus en détail

Cryptographie et utilisation. Utilisation de la cryptographie. Rappel des propriétés à assurer. Assurer le secret :stockage.

Cryptographie et utilisation. Utilisation de la cryptographie. Rappel des propriétés à assurer. Assurer le secret :stockage. Rappel des propriétés à assurer Cryptographie et utilisation Secret lgorithmes symétriques : efficace mais gestion des clés difficiles lgorithmes asymétriques : peu efficace mais possibilité de diffuser

Plus en détail

Langage C et aléa, séance 4

Langage C et aléa, séance 4 Langage C et aléa, séance 4 École des Mines de Nancy, séminaire d option Ingénierie Mathématique Frédéric Sur http://www.loria.fr/ sur/enseignement/courscalea/ 1 La bibliothèque GMP Nous allons utiliser

Plus en détail

Expérimentation 2007

Expérimentation 2007 Mathématiques série S Épreuve pratique au baccalauréat Expérimentation 2007 - Banque de sujets - Ce document peut être utilisé librement dans le cadre des activités de l'enseignement scolaire, de la formation

Plus en détail

Introduction à l informatique

Introduction à l informatique Introduction à l informatique Julien Tesson Université Paris-Est Créteil UFR Droit 2012 J. Tesson, Informatique - UFR Droit. 2012 1 / 25 Présentation Julien Tesson Maitre de conférence (Informatique) Mail

Plus en détail

Cryptosystème de Chebychev

Cryptosystème de Chebychev Préparation à l agrégation de Mathématiques 2009 ENS Cachan Ker Lann Epreuve de modélisation, option C : algèbre et calcul formel richard.leroy@univ-rennes1.fr http://perso.univ-rennes1.fr/richard.leroy/

Plus en détail

Projet de Mathématiques pour l Informatique N 1

Projet de Mathématiques pour l Informatique N 1 DESTREE Lucile MARCHAL Mickaël P2 Groupe B Mini-RSA Programme d initiation au chiffrement RSA Projet de Mathématiques pour l Informatique N 1 Sommaire Introduction... 3 Présentation du cryptage RSA...

Plus en détail

CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS. 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS

CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS. 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS On peut effectuer les quatre opérations de base sur des fonctions, c est-à-dire les additionner, les soustraire,

Plus en détail

TELEVISION NUMERIQUE

TELEVISION NUMERIQUE REPUBLIQUE DU CAMEROUN Paix - Travail Patrie --------------------- UNIVERSITE DE YAOUNDE I ---------------------- ECOLE NATIONALE SUPERIEURE POLYTECHNIQUE ---------------------- REPUBLIC OF CAMEROUN Peace

Plus en détail

Sécurité des réseaux Certificats X509 et clés PGP

Sécurité des réseaux Certificats X509 et clés PGP Sécurité des réseaux Certificats X509 et clés PGP A. Guermouche A. Guermouche Cours 5 : X509 et PGP 1 Plan 1. Certificats X509 2. Clés PGP A. Guermouche Cours 5 : X509 et PGP 2 Plan Certificats X509 1.

Plus en détail

Mathématiques pour. l informatique

Mathématiques pour. l informatique Xavier Chanet Patrick Vert Mathématiques pour l informatique Pour le BTS SIO Toutes les marques citées dans cet ouvrage sont des marques déposées par leurs propriétaires respectifs. Illustration de couverture

Plus en détail

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016 Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.

Plus en détail

Séquence crypto. 1 Chiffre de César (20-30 minutes)

Séquence crypto. 1 Chiffre de César (20-30 minutes) Séquence crypto 1 Chiffre de César (20-30 minutes) 1. Introduction par des questions : Savez-vous ce qu est la cryptologie / cryptographie / cryptanalyse ( / stéganographie)? A quoi ça sert? De quand ça

Plus en détail

Le problème. Éric Wegrzynowski. 29 avril Introduction. Principe RSA. Comment Alice et Bob peuvent-ils faire pour partager une clé

Le problème. Éric Wegrzynowski. 29 avril Introduction. Principe RSA. Comment Alice et Bob peuvent-ils faire pour partager une clé Éric Wegrzynowski 29 avril 2010 Le problème Comment Alice et Bob peuvent-ils faire pour partager une clé secrète? Réponses : Impraticable se rencontrer physiquement pour échanger une clé secrète ; Praticable

Plus en détail

Cryptographie. Master de cryptographie Chirement par ot. 26 janvier 2015. Université Rennes 1

Cryptographie. Master de cryptographie Chirement par ot. 26 janvier 2015. Université Rennes 1 Cryptographie Master de cryptographie Chirement par ot 26 janvier 2015 Université Rennes 1 Master Crypto (2014-2015) Cryptographie 26 janvier 2015 1 / 25 Qu'est ce que la cryptographie par ot? Rappel :

Plus en détail

La Grille, moyen fondamental de l analyse

La Grille, moyen fondamental de l analyse Fiche méthodologie #1 La Grille, moyen fondamental de l analyse Cette rubrique présente des notes et documents publiés par Philippe Latour, enseignant au Master Géomarketing et stratégies territoriales

Plus en détail

1 La cryptographie affine

1 La cryptographie affine 1 La cryptographie affine a/ Présentation On associe à chaque lettre de l alphabet numérotée par le nombre x de l intervalle [ 0 ; 25 ], le nombre y défini par y = ax + b où a et b sont deux nombres connus

Plus en détail

Cryptographie. Cours 6/8 - Gestion de clés

Cryptographie. Cours 6/8 - Gestion de clés Cryptographie Cours 6/8 - Gestion de clés Plan du cours Importance de la gestion des clés Clés secrètes, clés publiques Certificats Infrastructure à clé publique (Public Key Infrastructure, PKI) Dans le

Plus en détail

CHARTE POUR LA SÉCURITÉ DES SERVICES DE COURRIERS ÉLECTRONIQUES

CHARTE POUR LA SÉCURITÉ DES SERVICES DE COURRIERS ÉLECTRONIQUES CHARTE POUR LA SÉCURITÉ DES SERVICES DE COURRIERS ÉLECTRONIQUES élaborée dans le cadre d une coopération entre l agence nationale de la sécurité des systèmes d information et des fournisseurs de services

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Journée ISN, 13 juin 2012.

Journée ISN, 13 juin 2012. Journée ISN, 13 juin 2012. Comment est construite notre licence d informatique? 1/6 L enseignement de la programmation et de l algorithmique en L1. 2/6 L enseignement de la programmation et de l algorithmique

Plus en détail

Sécurité et systèmes embarqués

Sécurité et systèmes embarqués Sécurité et systèmes embarqués Pablo Rauzy pablo rauzy @ univ-paris8 fr pablo.rauzy.name/teaching/sese UFR MITSIC / M1 informatique Séance 2 La cryptographie asymétrique Pablo Rauzy (Paris 8 / LIASD) Sécurité

Plus en détail

Attaques par perturbation sur ECC

Attaques par perturbation sur ECC Attaques par perturbation sur ECC Martin Gendreau Gabriel Mattos Langeloh ENSIMAG 11 juin 2015 Martin Gendreau, Gabriel Mattos Langeloh Attaques par perturbation sur ECC 1 / 14 Sommaire 1 Courbes elliptiques

Plus en détail

PRESENTATION D INTEROPS

PRESENTATION D INTEROPS PRESENTATION D INTEROPS Nom Organisme Date Rédaction GT Technique Interops Validation Approbation Document applicable à compter du Identification du document Direction Objet Domaine Nature N d ordre Version

Plus en détail

Cryptographie : Comment l arithmétique est devenue science appliquée

Cryptographie : Comment l arithmétique est devenue science appliquée Cryptographie : Comment l arithmétique est devenue science appliquée Marc Deléglise Université Ouverte Lyon 1 Des mathématiques tout autour de nous 18 octobre 2012 Bibliothèque Marie Curie, INSA de Lyon

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

Plan. Cryptographie à clé publique II. Exemple. Un autre problème di. Bruno MARTIN, Université Nice Sophia Antipolis. par RSA par El Gamal

Plan. Cryptographie à clé publique II. Exemple. Un autre problème di. Bruno MARTIN, Université Nice Sophia Antipolis. par RSA par El Gamal Plan Cryptographie à clé publique II 1 Bruno MARTIN, Université Nice Sophia Antipolis 2 3 Bruno MARTIN, Université Nice Sophia Antipolis Cryptographie à clé publique II 1 Un autre problème di cile Bruno

Plus en détail

Gestion des Clés Publiques (PKI)

Gestion des Clés Publiques (PKI) Chapitre 3 Gestion des Clés Publiques (PKI) L infrastructure de gestion de clés publiques (PKI : Public Key Infrastructure) représente l ensemble des moyens matériels et logiciels assurant la gestion des

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

Chapitre 9: Les réseaux privés virtuels (VPN).

Chapitre 9: Les réseaux privés virtuels (VPN). Chapitre 9: Les réseaux privés virtuels (VPN). 1 Définition: Les VPN s (Virtual Private Networks) sont des connexions sécurisées reliant deux réseaux privés (ou deux end-users) via un réseau public (typiquement

Plus en détail

Gestion des Clés. Pr Belkhir Abdelkader. 10/04/2013 Pr BELKHIR Abdelkader

Gestion des Clés. Pr Belkhir Abdelkader. 10/04/2013 Pr BELKHIR Abdelkader Gestion des Clés Pr Belkhir Abdelkader Gestion des clés cryptographiques 1. La génération des clés: attention aux clés faibles,... et veiller à utiliser des générateurs fiables 2. Le transfert de la clé:

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Cryptographie. Lycée Jean de Pange Sarreguemines 10 février 2012. Paul Zimmermann INRIA Nancy - Grand Est

Cryptographie. Lycée Jean de Pange Sarreguemines 10 février 2012. Paul Zimmermann INRIA Nancy - Grand Est Paul Zimmermann INRIA Nancy - Grand Est Lycée Jean de Pange Sarreguemines 10 février 2012 cryptographie : construction de codes secrets cryptanalyse : «cassage» de codes secrets cryptologie = cryptographie

Plus en détail