Temporal pattern mining: beyond (simple) sequential patterns Fouille de motifs temporels : au-delà des motifs séquentiels (simples)

Dimension: px
Commencer à balayer dès la page:

Download "Temporal pattern mining: beyond (simple) sequential patterns Fouille de motifs temporels : au-delà des motifs séquentiels (simples)"

Transcription

1 Data Mining Temporal pattern mining: beyond (simple) sequential patterns Fouille de motifs temporels : au-delà des motifs séquentiels (simples) 1 Outline Classical sequential pattern-mining methods GSP PrefixSpan Extensions to sequential pattern-mining Delay between events Event duration Relations between events with duration 2

2 What Is Sequential Pattern Mining? Given a set of sequences (a long unique sequence), find the complete set of frequent subsequences A sequence : < (ef) (ab) (df) c b > SID sequence 10 <a(abc)(ac)d(cf)> 20 <(ad)c(bc)(ae)> 30 <(ef)(ab)(df)cb> 40 <eg(af)cbc> 3 Sequence Databases & Sequential Patterns Applications of sequential pattern mining Customer shopping sequences: First buy computer, then CD-ROM, and then digital camera, within 3 months. Medical treatments, natural disasters (e.g., earthquakes), science & eng. processes, stocks and markets, etc. Telephone calling patterns, Weblog click streams DNA sequences and gene structures Transaction databases, time-series databases vs. sequence databases Frequent patterns vs. (frequent) sequential patterns 4

3 Sequential Pattern Mining: definitions Transaction: items bought by some client at a specific date T=<id-client, id-date, itemset> (Data) sequence: list of a client s itemsets ordered by date S=<s 1 =itemset(t 1 ),, s n =itemset(t n )> Sequence inclusion: s 1 =<a 1 a 2 a n > is included in s 2 =<b 1 b 2 b m > (noted s 1 < s 2 ) iff there exist i 1 <i 2 < <i n such that a 1 b i1, a 2 b i2,, a n b in Support: A client supports a sequence s if s belongs to this client data sequence The support of a sequence is the ratio of clients that support this sequence 5 The Apriori Property of Sequential Patterns A basic property: Apriori (Agrawal & Sirkant 94) If a sequence S is not frequent Then none of the super-sequences of S is frequent E.g, <hb> is infrequent so do <hab> and <(ah)b> Seq. ID Sequence <(bd)cb(ac)> <(bf)(ce)b(fg)> <(ah)(bf)abf> <(be)(ce)d> <a(bd)bcb(ade)> 6

4 Challenges on Sequential Pattern Mining A huge number of possible sequential patterns are hidden in databases A mining algorithm should find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold be highly efficient, scalable, involving only a small number of database scans be able to incorporate various kinds of user-specific constraints 8 Sequential Pattern Mining Algorithms Concept introduction and an initial Apriori-like algorithm Agrawal & Srikant. Mining sequential patterns, ICDE 95 Apriori-based method: GSP (Generalized Sequential Patterns: Srikant & EDBT 96) Pattern-growth methods: FreeSpan & PrefixSpan (Han et 00; Pei, et 01) Vertical format-based mining: SPADE Leanining 00) Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, 99; Pei, Han, CIKM 02) Mining closed sequential patterns: CloSpan (Yan, Han & 03) 9

5 GSP Generalized Sequential Pattern Mining GSP (Generalized Sequential Pattern) mining algorithm proposed by Agrawal and Srikant, EDBT 96 Method generate frequent length-1 candidates from frequent items in DB generate frequent length-2 candidates by self-joining 2 frequent length-1 patterns: <(A) (A)>, <(A) (B)>, <(A B)> for each level (i.e., sequences of length-k) do scan database to collect support count for each candidate sequence generate candidate length-(k+1) sequences from length-k frequent sequences using Apriori (self-join) repeat until no frequent sequence or no candidate can be found Major strength: Candidate pruning by Apriori Self-join: < (A B) (C ) > < (A B) (C ) > < (B) (C D)> < (B) (C ) (E)> < (A B) (C D) > < (A B) (C ) (E) > 10 Finding Length-1 Sequential Patterns Examine GSP using an example Initial candidates: all singleton sequences <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h> Scan database once, count support for candidates Seq. ID Sequence 10 <(bd)cb(ac)> 20 <(bf)(ce)b(fg)> 30 <(ah)(bf)abf> 40 <(be)(ce)d> 50 <a(bd)bcb(ade)> Cand Sup <a> 3 <b> 5 <c> 4 <d> 3 <e> 3 <f> 2 <g> 1 <h> 1 11

6 GSP: Generating Length-2 Candidates <a> <b> <c> <d> <e> <f> 51 length-2 Candidates <a> <aa> <ab> <ac> <ad> <ae> <af> <b> <ba> <bb> <bc> <bd> <be> <bf> <c> <ca> <cb> <cc> <cd> <ce> <cf> <d> <da> <db> <dc> <dd> <de> <df> <e> <ea> <eb> <ec> <ed> <ee> <ef> <f> <fa> <fb> <fc> <fd> <fe> <ff> <a> <b> <c> <d> <e> <f> <a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)> <b> <(bc)> <(bd)> <(be)> <(bf)> <c> <(cd)> <(ce)> <(cf)> <d> <(de)> <(df)> <e> <(ef)> <f> Without Apriori property, 8*8+8*7/2=92 candidates Apriori prunes 44.57% candidates 12 The GSP Mining Process 5 th scan: 1 cand. 1 length-5 seq. pat. <(bd)cba> Cand. cannot pass sup. threshold 4 th scan: 8 cand. 6 length-4 seq. pat. 3 rd scan: 46 cand. 19 length-3 seq. pat. 20 cand. not in DB at all 2 nd scan: 51 cand. 19 length-2 seq. pat. 10 cand. not in DB at all 1 st scan: 8 cand. 6 length-1 seq. pat. <abba> <(bd)bc> <abb> <aab> <aba> <baa> <bab> <aa> <ab> <af> <ba> <bb> <ff> <(ab)> <(ef)> <a> <b> <c> <d> <e> <f> <g> <h> Seq. ID Sequence Cand. not in DB at all <(bd)cb(ac)> <(bf)(ce)b(fg)> <(ah)(bf)abf> <(be)(ce)d> <a(bd)bcb(ade)> 13

7 Candidate Generate-and-test: Drawbacks A huge set of candidate sequences generated. Especially 2-item candidate sequence. Multiple Scans of database needed. The length of each candidate grows by one at each database scan. Inefficient for mining long sequential patterns. A long pattern grow up from short patterns The number of short patterns is exponential to the length of mined patterns. 14 PrefixSpan: prefix-projected pattern growth Divide and conquer strategy Given a frequent prefix α (initially α=null), mine S α the projected database, to find frequent 1-pattern. Form the frequent pattern α =α.b. Then, mine S α, etc. Original DB is recursively projected by item prefixes to yield smaller databases Each projected database can be mined separately Prefix: the sequence s 2 =<e 1 e 2 b m > is a prefix of the sequence s 1 =<e 1 e 2 e n > (m<n) iff e i =e i for 1 i m-1 e m e m <e m e m+1 e n > is a suffix (postfix) of s 1 15

8 Prefix and Suffix (Projection) <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of sequence <a(abc)(ac)d(cf)> Given sequence <a(abc)(ac)d(cf)> Prefix <a> <aa> <a(ab)> Suffix (Prefix-Based Projection) <(abc)(ac)d(cf)> <(_bc)(ac)d(cf)> <(_c)(ac)d(cf)> 16 Mining Sequential Patterns by Prefix Projections Step 1: find length-1 sequential patterns <a>:4, <b>:4, <c>:4, <d>:3, <e>:3, <f>:3 Step 2: divide search space. 6 subsets according to the 6 prefixes a, b, c, d, e, f Step 3: Find subsets of sequential patterns by constructing corresponding projected databases and mine each recursively SID sequence 10 <a(abc)(ac)d(cf)> 20 <(ad)c(bc)(ae)> 30 <(ef)(ab)(df)cb> 40 <eg(af)cbc> 17

9 Finding Seq. Patterns with Prefix <a> Only need to consider projections w.r.t. <a> <a>-projected database: <(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>, <(_b) (df)cb>, <(_f)cbc> Find local frequent patterns in <a>-projected database: <a>:2, <b>:4, <(_b)>:2, <c>:4, <d>:2, <f>:2 Yields all the length-2 seq. pat. Having prefix <a>: <aa>, <ab>, <(ab)>, <ac>, <ad>, <af> Further partition into 6 subsets Having prefix <aa>; Having prefix <af> <aa>-projected database: <(_bc)(ac)d(cf)> and <(_e)> SID sequence 10 <a(abc)(ac)d(cf)> 20 <(ad)c(bc)(ae)> 30 <(ef)(ab)(df)cb> 40 <eg(af)cbc> 18 Completeness of PrefixSpan Having prefix <a> <a>-projected database <(abc)(ac)d(cf)> <(_d)c(bc)(ae)> <(_b)(df)cb> <(_f)cbc> SID SDB sequence 10 <a(abc)(ac)d(cf)> 20 <(ad)c(bc)(ae)> 30 <(ef)(ab)(df)cb> 40 <eg(af)cbc> Having prefix <b> Length-1 sequential patterns <a>, <b>, <c>, <d>, <e>, <f> Having prefix <c>,, <f> <b>-projected database Length-2 sequential patterns <aa>, <ab>, <(ab)>, <ac>, <ad>, <af> Having prefix <aa> Having prefix <af> <aa>-proj. db <af>-proj. db 22

10 PrefixSpan Algorithm PrefixSpan(α, i, S α) 1. Scan S α once, find the set of frequent items b such that b can be assembled to the last element of α to form a sequential pattern; or <b> can be appended to α to form a sequential pattern. 2. For each frequent item b, appended it to α to form a sequential pattern α, and output α ; 3. For each α, construct α -projected database S α, and call PrefixSpan(α, i+1,s α ). 23 Performance on Data Set C10T8S8I8 24

11 Performance on Data Set Gazelle 25 Extensions de la fouille de motifs séquentiels Objets temporels Événements temporels datés ou ordonnés dans le temps (liés par les relation {<, =}) Événements à base d intervalles datés ou ordonnés dans le temps (liés par relation d Allen) Données temporelles Base de séquences Séquence unique + fenêtres successives ou glissantes Motifs Séquence d événements : ensemble d itemsets ordonnés dans le temps Séquence d événements + caractérisation numérique ou catégorique des délais inter-événements Séquence d intervalles + relations d Allen Idem + caractérisation numérique de la durée des événements Idem + caractérisation des délais entre (bornes des) intervalles 28

12 Extensions de la fouille de motifs séquentiels Prise en compte explicite du temps Séquence d événements ponctuels datés S=<(a 0, t 0 ), (a 1, t 1 ),, (a n, t n )> Motifs série avec délais (IApriori, IPrefixSpan Chen, Chiang, Ko 03 ; Hirate, Yamana 06) P=<b 0, I 1, b 1, I 2,,, I n, b n > Motifs séries-parallèles e.g. chroniques (Face Dousson, Duong 99, Cram 09) Séquence d événements intervalles estampillés S=<(a 0, t 0, t 0 ), (a 1, t 1, t 1 ),, (a n, t n, t n )> Encodage des séquence d intervalles en séquence d événements ponctuels et méthode classique adaptée (IApriori, TPrefixSpan, Ti- Hprefixspan - Chen et al. 06, 07, 09) Relations d Allen (Kam 01, Papapetrou et al 05, Patel et 08) Événements persistants épisodes généralisés (Laxman 07) Motifs à base d intervalles avec durée numérique (Guyet, Quiniou 08, 10) 29 Chen, Chiang, Ko 2003 Discovering time-interval sequential patterns in sequence databases (Expert systems with applications) But : caractériser les délais entre items d un motif séquentiel Motivations : nombreuses applications pouvant utiliser de telles informations (business, e- commerce, police, médical, etc.) Contributions : insertion de pseudo items représentant les délais 30

13 Chen, Chiang, Ko 2003 Séquences : S=<(a 0, t 0 ), (a 1, t 1 ),, (a n, t n )> Délais obtenus par discrétisation du temps : TI={I 0, I 1,, I n } I 0 ={0}, I 1 =]0, T 1 ], I 2 =] T 1, T 2 ],, I r-1 =] T r-2, T r-1 ], I r-1 =]T r-1, ] Motifs : time interval sequences P=<b 0, & 1, b 1, & 2,,, & m, b m >, bi : E={Events}, & 2 : TI Inclusion: P est contenu dans S s il existe un mapping ordonné 1 < j1 < < jm entre les indices de P et ceux de S tel que b 1 =a j1, b 2 =a j2, b m =a jm tji-tji-1 in Ii-1 pour 1 < i < m Support : nombre de séquences de DB contenant le motif 31 Chen, Chiang, Ko 2003 Algorithmes : IApriori : extension de GSP Génération de candidats : jointure de motifs de longueur k-1 + association de tous les délais possibles (ensemble TI) pour former un motif de longueur k Modification de l arbre des candidats prenant en compte les délais IPrefixSpan : Définitions de projection, préfixe, suffixe Tenir compte du délai entre un événement fréquent de S et le préfixe Combinatoire augmentée Évaluations Comparaison avec GSP et PrefixSpan Datasets synthétiques GSP < Iapriori < PrefixSpan IPrefixSpan 32

14 Hirate, Yamana 2006 Generalized sequential pattern mining with item intervals (Journal of computers) But : pouvoir exprimer des contraintes sur les délais entre événements lors du processus de fouille Motivation : pouvoir distinguer entre A < 1jour B et A < 1an B Contributions: Deux mesures de délais : nombre d items (séquences génomiques), intervalle de temps (séquences temporelles) Séquences étendues par insertion de pseudo items (basés sur une fonction de discrétisation des intervalles) représentant les délais Quatre types de contraintes item-intervalle 33 Hirate, Yamana 2006 Séquences : interval extended sequence S=<(t 1,1, X 1 ), (t 1,2, X 2 ),, (t 1,m, X m )> t i,j est l intervalle (temporel ou indiciel) entre les items X i et X j Interval itemization function : permet de changer la granularité temporelle. Utilisée par test d occurrence et test de sous-séquence : S 1 =<(t 1,1, X 1 ), (t 1,2, X 2 ),, (t 1,m, X m )> est incluse dans S 1 =<(t 1,1, X 1 ), (t 1,2, X 2 ),, (t 1,m, X m ),, (t 1,n, X n )> ssi X i X i et I(t 1,i )=I(t 1,j ) Contraintes sur les intervalles (délais) : min_interval (anti-mon), max_interval, (anti-mon) min_whole_interval (mon), max_whole_interval (anti-mon) 34

15 Hirate, Yamana 2006 Algorithme : extension de PrefixSpan Définitions de préfixe, suffixe, inclusion Redéfinition de l opération de projection sur des interval extended sequences Adaptation pour l utilisation des contraintes Anti-monotones : test au moment de la projection Monotones : test après extraction Evaluation Dataset réel : tremblement de terre au Japon (dataset dense) Comparaison Qualité des motifs extraits : pouvoir prédictif Nombre de motifs extraits : évite une extraction exponentielle avec des supports faibles Effet des contraintes assez faible Temps d exécution : nettement meilleur que PrefixSpan pour des supports faibles 35 Dousson, Duong 1999 Discovering chronicles with numerical time constraints from alarm logs for monitoring dynamic systems, in IJCAI 99 But : Motivations : Applications en monitoring de réseaux de télécoms Temps important pour surveiller la propagation des alarmes Contributions : Extension du travail de Mannila, Toivonen (95) épisodes séries ou parallèles -> chroniques Caractérisation numérique du délai entre événements algorithme Apriori-like utilisant CRS : FACE 36

16 Dousson, Duong 1999 Séquences (logs) : S=<(a 0, t 0 ), (a 1, t 1 ),, (a n, t n )> Motifs : modèles de chronique chronique : (C A, T), T={a i [t ij-, t ij+ ] a j (a i, a j ) CxC} Instance de chronique : ensemble d événements d une séquence satisfaisant toutes les contraintes temporelles de la chronique Sous-chronique : C est une sous-chronique de C si de toute instance de C on peut extraire une instance de C Fréquence d une chronique : nombre d instances de la chronique reconnues dans la séquence Chronique fréquente : de fréquence supérieure à un seuil de fréquence minimal Anti-monotonie : une chronique est fréquente si toutes ses souschroniques sont fréquentes 37 Dousson, Duong 1999 Algorithme de type Apriori : extraction par niveau d itemsets fréquents avec répétition puis intégration de contraintes temporelles Génération de candidats sans contrainte : C k = C k-1 U {C 1 } Test de fréquence minimale des sous-chroniques (sans contraintes) Génération des chroniques avec contrainte Encadrement des délais observés pour les instances de chronique de taille 2 Propagation des contraintes pour obtenir le graphe temporel complet minimal Calcul de la fréquence par CRS puis élagage 38

17 Dousson, Duong 1999 Évaluation Données réseau télécommunications : motifs de propagation d alarmes Log de 2900 evts de 36 types différents (20h) Log ATM, 1 mois, 3800 types d evts Pas de comparaison avec d autres approches 39 Cram, Cordier, Mille 2009 An interactive algorithm for the complete discovery of chronicles. Rapport LIRIS. But : extraction interactive de motifs temporels Motivations : Améliorer les méthodes d extraction souvent incomplètes car pas de connaissances sur la pertinence des informations : intégrer l utilisateur dans la boucle d extraction de connaissances Extraire des chroniques présentant des ensembles d événements identiques mais des ensembles de contraintes différents Contributions : Hiérarchie de contraintes temporelles Génération de candidats par 2 types d opération : adjonction d événement et raffinement de contrainte 40

18 Cram, Cordier, Mille 2009 Base de contraintes : à chaque couple d événements est associé un graphe acyclique orienté définissant une hiérarchie de contraintes Opérateurs pour la génération de candidats : add_ : ajoute un événement de type à une chronique str_ i j : remplace une contrainte temporelle par une contrainte directement plus stricte (successeur dans la base de contraintes) 41 Cram, Cordier, Mille 2009 Algorithme HDA de type Apriori (FACE) 42

19 Cram, Cordier, Mille 2009 Élaboration de la base de contraintes Rechercher les occurrences fréquentes de couples d événements et extraire les délais Extraire les contraintes en déplaçant des fenêtres de de plus en plus grandes sur la liste des délais triés [ -1, 1, 3, 5 ] Évaluation Complexité importante (exponentielle en théorie) S adresse à de petites base de séquences 43 Kam, Fu 2000 Discovering temporal patterns for interval-based events (DAWAK 2000) But : prendre en compte des événements à base d intervalles, les utiliser pour contraindre la fouille de motifs temporels Motivations : événements ponctuels ne permettent pas la représentation de relations temporelles telles que overlaps, begins, during, Contributions: Motifs avec relations temporelles sur intervalles Algorithme adapté à la recherche de tels motifs 44

20 Kam, Fu 2000 Séquence : S=<(a 0, t s0, t e0 ), (a 1, t s1, t e1 ),, (a n, t sn, t en )> ordonnée par les dates de fin (!!!) Relations entre intervalles temporels Exprimés par relations d Allen reconstruites à partir des relations sur les bornes des intervalles 45 Kam, Fu 2000 Motif temporel Un type d événement seul est un motif temporel atomique si X et Y sont des motifs temporels alors (X rel Y) est un motif temporel composite (rel : relation d Allen) Représentation par relations temporelles n-aires Représentation ambigüe Ex. a b c d (((a overlaps b) before c) overlaps d) ((a overlaps b) before (c during d)) Inclusion d un motif temporel Contraintes : max_whole_pattern Support : % de séquences contenant le motif 46

21 Kam, Fu 2000 Algorithme : adaptation d Apriori Format vertical de la base de séquences Génération de candidats à partir de L k-1 et L 1 + relations temporelles Calcul du support et élagage Évaluation Dataset synthétique Étude des performances en variant Support Taille de la fenêtre max Nb de séquences Nb d événements par séquence Pas de comparaison avec d autres méthodes 47 Chen, Wu Wu, Chen 2007 Mining temporal patterns from sequence database of interval-based events (FSKD) Mining non-ambiguous temporal patterns for intervalbased events (IEEE trans. on knowledge and data engin.) But : étendre les algorithmes de fouille de motifs séquentiels aux événements à base d intervalles Motivations : pallier les défauts des représentations à base de points Contributions: Transformation d une séquence d événements à base d intervalles en une séquence d événements à base de points à partir des bornes des intervalles (évite l utilisation des relations d Allen) + contrainte de co-occurrence des deux bornes d un même intervalle dans un motif 48

22 Chen, Wu Wu, Chen 2007 Séquence : S=<(a 0, t + 0, t- 0 ), (a 1, t+ 1, t- 1 ),, (a n, t+ n, t- n )> Relations temporelles sur bornes d intervalle : <, = Arrangement d événements ponctuels traduction intervalles points u placé devant v si time(u) < time(v) u est début d intervalle, v une fin d intervalle u précède v dans l ordre lexicographique Séquence temporelle : arrangement + relations temporelles entre événements successifs (b + <a + =c + <a - <b - <c - ) (b + <a + =c + <d + <a - <b - <d - <c - ) 49 Chen, Wu Wu, Chen 2007 Inclusion : Opérateur small : calcule la relation temporelle entre deux points (application de la transitivité) rel(a +, b - ) = small((<,<,=,<)) = < P = (p 1 1 p 2 r-1 p r ) est contenue dans TS = (s 1 1 s 2 n-1 s n ) s il existe un mapping ordonné w des indices de P dans ceux de TS tel que p i = s w(i) et i = small(( w(i), w(i+1)-1 )) si l une des bornes de l intervalle est incluse l autre l est aussi Support : % de séquences contenant le motif 50

23 Chen, Wu Wu, Chen 2007 Algorithmes : T-Apriori (basé sur GSP) Candidats : c={pattern, {positions}} Génération de k-candidats : jointure de (k-1)-motifs ayant le même (k-2)-préfixe + jointure de leurs positions Test support : parcours des ensembles de positions T-PrefixSpan (basé sur PrefixSpan;-) Adaptation de l opération de projection : préfixes, suffixes Génération de candidats plus complexe : projection jusqu à la dernière borne inférieure du motif base de la projection (préfixe), insertion de la borne supérieure dans le suffixe des séquences projetées 51 Chen, Wu Wu, Chen 2007 Évaluation Pas d évaluation de T-Apriori! (Chen, Wu 2006) T-PrefixSpan Datasets synthétiques Dataset réel : données boursières Évaluation des motifs extraits par mesure de leur capacité de prédiction Comparaison avec PrefixSpan : Moins performant que PrefixSpan en temps d exécution Qualité des résultats meilleure pour T-PrefixSpan 52

24 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Discovering frequent arrangement of temporal intervals (IEEE ICDM) Mining frequent arrangements of temporal intervals (Knowledge and Information Systems) But : découverte d arrangements d intervalles temporels fréquents Motivations : Événements instantanés souvent insuffisants Traduction en événements ponctuels introduit une combinatoire supplémentaire Perte de la relation liant début et fin d intervalle Post-traitement nécessaire pour revenir aux intervalles Nombreuses applications Contributions: Définition formelle du problème et utilisation des relations d Allen Contraintes : fouille de motifs et extraction de règles Deux algorithmes efficaces (levelwise) + un algorithme (aka PrefixSpan) 53 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Pbs des relations d Allen en cas de bruit 54

25 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Séquence : S=<(a 0, t 0s, t 0e ), (a 1, t 1s, t 1e ),, (a n, t ns, t ne )> Relations temporelles : Relations d Allen + matching flexible des bornes (si proches) Meets(A,B) : A.t e = B.t s ± Matches(A,B) :A.t s = B.t s ±, A.t e = B.t e ± Overlaps(A,B) : A.t s < B.t s, A.t e > B.t s, A.t e < B.t e, B.t s - A.t s >, B.t e - A.t e > Contains(A,B) : A.t e < B.t e, A.t e > B.t s, B.t s - A.t s >, A.t e - B.t e > Left-Contains(A,B) : A.t s = B.t s ±, A.t e > B.t s, A.t e - B.t e > Right-Contains(A,B) : A.t e < B.t e, A.t e = B.t e ±, B.t s - A.t s > Follows(A,B) : A.t e < B.t s, B.t s - A.t e > Relation n-aire (n>2) : conjonction de relations binaires pour lever les ambiguïtés Événements instantanés modélisés par intervalles à bornes égales 55 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Relations temporelles : 56

26 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Arrangement (motif) : A={E, R}, E ensemble de k événements, R ensemble des relations temporelles d Allen entre tout couple d événements de E : R={r(ei,ej) r Rel, i<j k} Inclusion : l arrangement A={E, R} est inclus dans la séquence S si tous les événements de A sont dans S et satisfont les relations de R Support : nombre de séquences contenant le motif Règles d association séquentielle : A i,rij A j ; A i, A j arrangements, R ij relation temporelle entre les événements (intervalles) de A i et ceux de A j mesure d intérêt : confiance, lift, etc. Contraintes temporelles : Gap : entre intervalles liés par relation follow Overlap : pourcentage de chevauchement Contain : pourcentage d inclusion Durée : max-whole 57 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Algorithmes : BFS basé sur SPADE : levelwise, BD en format vertical H-DFS basé sur SPADE : parcours des deux premiers niveaux en largeur d abord, parcours des autres en profondeur d abord Basé sur PrefixSpan mais en s appuyant sur les intervalles (au contraire de Wu et Chen) 58

27 The Arrangement Enumeration Tree Let LEVEL 1 LEVEL 2 Intermediate LEVEL 3 Intermediate 59 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Algorithme BFS : Basé sur SPADE : levelwise, BD en format vertical Génération des niveaux 1 et 2 Élagage supplémentaire initial : recherche des paires d événements apparaissant dans minsup transactions au moins Génération des candidats (arrangements) au niveau k : jointure niveau k-1 et niveau 1 Génération des nœuds intermédiaires au niveau k (relations temporelles) IdLists en format bitmap pour accélérer le calcul du support (opérations booléennes) Vérification de la satisfaction des contraintes (anti-monotones) en même temps que vérification du support minimal 60

28 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Algorithme DFS : Basé sur algo de Tsoukatos et Gunopoulos 2001 Génération des candidats (arrangements) en suivant une stratégie profondeur d abord Ajoute tous les sous-arrangements d un arrangement fréquent à liste des arrangements fréquents Avantage : atteint les arrangements fréquents maximaux rapidement Inconvénient : nombreux scans de la base de données Algorithme Hybrid DFS (H-DFS) : BFS pour deux premiers niveaux DFS ensuite 61 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Algorithme Prefix-Based : Définitions de préfixe, suffixe et opération de projection ATTENTION : il faut effectuer les projections selon TOUTES les occurrences d un préfixe (pas seulement la projection selon la première) Augmente fortement la combinatoire 62

29 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Évaluation Datasets synthétiques et réels (american sign language, données réseau) Comparaison des trois algos avec SPAM (exécuté sur débuts et fins d intervalles + post-processing pour construire les arrangements) Résultats BFS meilleur que SPAM pour de grandes BD et des supports faibles Hybrid-DFS meilleur que SPAM et BFS Pour des faibles supports Hybrid-DFS est deux fois plus rapide que BFS Dans tous les cas l algorithme Prefix-based est le plus mauvais 63 Papapetrou, Kollios, Sclaroff, Gunopoulos 05, 09 Données ASL Données réseau 64

30 Patel, Hsu, Lee 2008 Mining relationships among interval-based events for classification (SIGMOD 08) But : fouille de relations temporelles complexes sur des événements à base d intervalles Motivations : Insuffisance de la simple notion de succession Nécessité de représenter des événements qui durent (intervalles) Contributions: Représentation «sans perte» de relations temporelles n-aires (n > 2) Algorithme de fouille d intervalles : IEMiner Classifieur utilisant des motifs temporels à base d intervalles 65 Patel, Hsu, Lee 2008 Séquences : S=<(a 0, t 0s, t 0e ), (a 1, t 1s, t 1e ),, (a n, t ns, t ne )> Liste d événements : Ensemble d événements où chaque événement a une relation temporelle (Allen) avec tous les autres Motif : Événement simple : (a 1, t 1s, t 1e ) Événement composite : E = (E 1 R E 2 ) avec E.start = min{e 1.start, E 2.start}, E.end= max{e 1.end, E 2.end} Support : BD : séquences issues d un découpage d une séquence unique en fenêtres de taille fixe Support : nombre de séquences incluant le motif 66

31 Patel, Hsu, Lee 2008 Motif : représentation canonique «sans perte» Canonique : événements ordonnés par instants de début, puis par instants de fin, puis par ordre alphabétique (représentation incomplète) Sans perte : structure [c,f,m,o,s] associant à la relation temporelle le nombre d inclusion (c), de fins communes (f), de liaisons (m), de chevauchements (o), de débuts communs (s) (A over[0,0,0,1,0] B) over[0,0,0,1,0] C) (A over[0,0,0,1,0] B) over[0,0,0,2,0] C) (A over[0,0,0,1,0] B) over[0,0,1,1,0] C) 67 Patel, Hsu, Lee 2008 Algorithme IEMiner Type Apriori Génération des k-candidats à partir d un (k-1)-motif fréquent et d un 2-motif dont le premier événement est identique à l événement dominant (ayant la date de fin la plus tardive) du (k-1)-motif Mise à jour de la liste des 2-motifs pouvant participer à la génération de candidats au niveau k+1 : doivent apparaître dans au moins k-1 k-motifs Calcul du support : un scan unique basé sur la notion d événements actifs et passif Optimisation : liste noire des séquences contenant moins de k événements : scan inutile Le nombre de séquences où le préfixe d un (k-1)-motif participant à la génération de candidats de niveau k apparaît deux fois au moins doit être supérieur à minsup 68

32 Patel, Hsu, Lee 2008 Génération de candidats 69 Patel, Hsu, Lee 2008 Évaluations : Comparaison des performances de IEMiner, TPrefixSpan, H-DFS et GenPrefixSpan (PrefixSpan + contraintes gap) qui n utilise que la relation before Datasets synthétiques Runtime : GenPrefixSpan <IEMiner <H-DFS <TPrefixSpan Datasets réels ASL : IEMiner GenPrefixSpan < H-DFS <TPrefixSpan Hepatitis : IEMiner <H-DFS < GenPrefixSpan <TPrefixSpan 70

33 Patel, Hsu, Lee Laxman, Sastry, Unnikrishnan 2007 Discovering frequent generalized episodes when event persist for different durations (IEEE Trans. on Knowledge and Data Engineering 2007) But : prendre en compte la durée des événements en fouille de données temporelles Motivations : Applications en diagnostic Temps (durée des événements) important pour discriminer plusieurs pannes possibles Contributions : Épisodes généralisés Algorithme pour la fouille de tels motifs 72

34 Laxman, Sastry, Unnikrishnan 2007 Séquences : S=<(a 0, t 0s, t 0e ), (a 1, t 1s, t 1e ),, (a n, t ns, t ne )> Épisodes généralisés : I={I 1,I 2,, I n } l ensemble des durées possibles, intervalles temporels disjoints (discrétisation) = (V, <, g, d ) : V ensemble de nœuds, < ordre partiel sur V, g : V donne le type d un nœud, d : V 2 I donne la durée d un nœud Si < total : épisode série généralisé Si < vide : épisode parallèle généralisé Inclusion d un épisode généralisé dans une séquence S Il existe un mapping h : V {1,, n} tel que pour tout v, w V E h (v) =g (v) (même type) La durée de h (v) b, l une des durées spécifiées par d Si v précède w dans le motif V alors leurs événements appariés sont dans le même ordre dans la séquence 73 Laxman, Sastry, Unnikrishnan 2007 Sous-épisodes : un épisode est un sous-épisode de,, s il existe un mapping ordonné, tel que le type des événements correspondants sont identiques et la durée des événements de contient les durées des événements correspondants de Soit. Si inclus dans S alors inclus dans S Support : Nombre de fenêtres glissantes contenant le motif Nombre d occurrences minimales Occurrences non chevauchantes b 1 b 2 b 3 Occurrences non entrelacées b' 1 b' 2 b' 3 b 1 b 2 b 3 b' 1 b' 2 b' 3 74

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents Master ISI 2010-2011 Data Mining Recherche des sous-ensembles fréquents Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr 1 Processus Data Mining Phase A : Entrepôt de données Entrepôt

Plus en détail

Fouille de données, analyse d évènements. Christophe Cérin. cerin@laria.u-picardie.fr

Fouille de données, analyse d évènements. Christophe Cérin. cerin@laria.u-picardie.fr ACI-GRID (7 novembre 2002) 1/21 Fouille de données, analyse d évènements Christophe Cérin cerin@laria.u-picardie.fr Plan 2/21 placement, ordonnancement ; Plan 3/21 Placement, ordonnancement ; Représentation

Plus en détail

Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2

Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2 Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2 Lhouari Nourine 1 1 Université Blaise Pascal, CNRS, LIMOS, France SeqBio 2012 Marne la vallée, France 2.

Plus en détail

Etude d Algorithmes Parallèles de Data Mining

Etude d Algorithmes Parallèles de Data Mining REPUBLIQUE TUNISIENNE MINISTERE DE L ENSEIGNEMENT SUPERIEUR, DE LA TECHNOLOGIE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE TUNIS ELMANAR FACULTE DES SCIENCES DE TUNIS DEPARTEMENT DES SCIENCES DE L INFORMATIQUE

Plus en détail

Clermont Ferrand - Janvier 2003

Clermont Ferrand - Janvier 2003 DISDAMIN: Algorithmes de Data Mining Distribués Valerie FIOLET (1,2) - Bernard TOURSEL (1) 1 Equipe PALOMA - LIFL - USTL - LILLE (FRANCE) 2 Service Informatique - UMH - MONS (BELGIUM) Clermont Ferrand

Plus en détail

Extension des bases de données inductives pour la découverte de chroniques

Extension des bases de données inductives pour la découverte de chroniques Extension des bases de données inductives pour la découverte de chroniques lexandre Vautier, Marie-Odile Cordier, René Quiniou Irisa - Projet DREM Campus de eaulieu 35042 RENNES Cedex, France {lexandre.vautier,marie-odile.cordier,rene.quiniou}@irisa.fr

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Extraction de règles d association pour la prédiction de valeurs manquantes

Extraction de règles d association pour la prédiction de valeurs manquantes Cari 2004 7/10/04 12:00 Page 487 Extraction de règles d association pour la prédiction de valeurs manquantes Sylvie Jami 1, Tao-Yan Jen 2, Dominique Laurent 3, George Loizou 1, Oumar Sy 3,4 1. Birkbeck

Plus en détail

LOGO. Module «Big Data» Extraction de Connaissances à partir de Données. Claudia MARINICA MCF, ETIS UCP/ENSEA/CNRS Claudia.Marinica@u-cergy.

LOGO. Module «Big Data» Extraction de Connaissances à partir de Données. Claudia MARINICA MCF, ETIS UCP/ENSEA/CNRS Claudia.Marinica@u-cergy. Module «Big Data» Extraction de Connaissances à partir de Données Claudia MARINICA MCF, ETIS UCP/ENSEA/CNRS Claudia.Marinica@u-cergy.fr 14 Janvier 2015 Pourquoi l extraction de connaissances à partir de

Plus en détail

Confiance,c(X Y) = minsup = 50%. {Biere, Couche, Lait} :

Confiance,c(X Y) = minsup = 50%. {Biere, Couche, Lait} : Chapitre 5 Règles d'association 5.1 Introduction De nombreuses entreprises commerciales accumulent d'importantes quantités de données lors de leurs opérations quotidiennes. Par exemple, les grands magasins

Plus en détail

Fouille de données dans les systèmes Pair-à-Pair pour améliorer la recherche de ressources

Fouille de données dans les systèmes Pair-à-Pair pour améliorer la recherche de ressources Fouille de données dans les systèmes Pair-à-Pair pour améliorer la recherche de ressources F. Masseglia, P. Poncelet, M. Teisseire INRIA Sophia Antipolis, Axis Project-Team, BP93 06802 Sophia Antipolis

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Extraction de motifs : Règles d association et motifs séquentiels. Pascal Poncelet LIRMM Pascal.Poncelet@lirmm.fr http://www.lirmm.

Extraction de motifs : Règles d association et motifs séquentiels. Pascal Poncelet LIRMM Pascal.Poncelet@lirmm.fr http://www.lirmm. 1 Extraction de motifs : Règles d association et motifs séquentiels Pascal Poncelet LIRMM Pascal.Poncelet@lirmm.fr http://www.lirmm. fr/~poncelet Plan Règles d association Motifs séquentiels Applications

Plus en détail

2003 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2003

2003 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2003 200 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 200 1. When a father distributes a number of candies among his children, each child receives 15 candies and there is one left

Plus en détail

Fouille de données: des bases binaires aux bases évidentielles

Fouille de données: des bases binaires aux bases évidentielles Fouille de données: des bases binaires aux bases évidentielles Ahmed Samet Faculté des sciences de Tunis Présenté le : 16 janvier 2013 Ahmed Samet Fouille de données: des bases binaires aux bases évidentielles

Plus en détail

Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype

Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype Anne Tchounikine, Maryvonne Miquel, Usman Ahmed LIRIS CNRS UMR 5205, INSA-Université de Lyon, France 1 Motivations Motivé

Plus en détail

Les arbres Florent Hivert

Les arbres Florent Hivert 1 de 1 Algorithmique Les arbres Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 1 Algorithmes et structures de données La plupart des bons algorithmes fonctionnent

Plus en détail

Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00

Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00 Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00 HFFv2 1. OBJET L accroissement de la taille de code sur la version 2.0.00 a nécessité une évolution du mapping de la flash. La conséquence de ce

Plus en détail

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien)

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Alain Bretto & Joël Priolon - 25 mars 2013 Question Dans un équilibre

Plus en détail

PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF. Ianis Lallemand, 21 janvier 2013

PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF. Ianis Lallemand, 21 janvier 2013 PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF Ianis Lallemand, 21 janvier 2013 APPRENTISSAGE INTERACTIF definition Contours encore assez flous dans le champ de l apprentissage automatique. Néanmoins,

Plus en détail

Datamining. Glossaire. Xavier Dubuc (xavier.dubuc@umons.ac.be)

Datamining. Glossaire. Xavier Dubuc (xavier.dubuc@umons.ac.be) Datamining Glossaire Xavier Dubuc (xavier.dubuc@umons.ac.be) 3 juin 2011 1 Table des matières 1 Classification 3 2 Règles d association 3 2.1 Introduction............................................ 3

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 11 : Arbre couvrant Prétraitement Benjamin Wack 2015-2016 1 / 32 La dernière fois Rappels sur les graphes Problèmes classiques Algorithmes d optimisation

Plus en détail

Règles d'association. Définition. Processus

Règles d'association. Définition. Processus Data Mining «Extraction de connaissances valides et exploitables à partir de grands volumes de données hétérogènes provenant de sources et de bases diverses» Règles d'association Définition Extraction

Plus en détail

Date: 09/11/15 www.crmconsult.com Version: 2.0

Date: 09/11/15 www.crmconsult.com Version: 2.0 Date: 9/11/2015 contact@crmconsult.fr Page 1 / 10 Table des matières 1 SUGARPSHOP : SCHEMA... 3 2 PRESENTATION... 4 3 SHOPFORCE WITH SCREENSHOTS... 5 3.1 CLIENTS... 5 3.2 ORDERS... 6 4 INSTALLATION...

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

Recherche des modèles fréquents, corrélations et associations

Recherche des modèles fréquents, corrélations et associations Chapitre 2 Recherche des modèles fréquents, corrélations et associations Les motifs fréquents sont des motifs ou patterns (tel que les ensembles d items, les sous séquences, ou les sous structures) qui

Plus en détail

BI = Business Intelligence Master Data-Science Cours 6 - Data Mining

BI = Business Intelligence Master Data-Science Cours 6 - Data Mining BI = Business Intelligence Master Data-Science Cours 6 - Data Mining Ludovic DENOYER - D après Elisa Fromont UPMC 23 mars 2015 Ludovic DENOYER - D après Elisa Fromont Le Data Mining De plus en plus de

Plus en détail

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA Découverte de Règles Associatives Hiérarchiques entre termes Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA 1 Plan Problématique et État de l art Nouvelle approche Approche Conceptuelle

Plus en détail

Objectif du groupe GT1.1 Fusion de Données

Objectif du groupe GT1.1 Fusion de Données Objectif du groupe GT1.1 Fusion de Données Le groupe travaille dans trois directions Le vocabulaire (piloté par ADVITAM et l aide de SITE) L état de l art (piloté par SYROKKO) Deux applications illustratives

Plus en détail

Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG)

Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) Surveillance et maintenance prédictive : évaluation de la latence de fautes Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) SURVEILLANCE Analyser une situation et fournir des indicateurs! Détection de symptômes!

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET Phase 4 : Modélisation non-supervisée - 5 : Règles d association

Plus en détail

Quels apprentissages les jeux vidéo apportent-ils aux jeunes enfants en sciences expérimentales et technologiques?

Quels apprentissages les jeux vidéo apportent-ils aux jeunes enfants en sciences expérimentales et technologiques? Quels apprentissages les jeux vidéo apportent-ils aux jeunes enfants en sciences expérimentales et technologiques? Catherine Seang To cite this version: Catherine Seang. Quels apprentissages les jeux vidéo

Plus en détail

Algorithmes de recherche locale

Algorithmes de recherche locale Algorithmes de recherche locale Recherche Opérationnelle et Optimisation Master 1 Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale

Plus en détail

Classification de Données Multidimensionnelles Techniques de Projection des Données dans des Espaces de Dimension Réduite

Classification de Données Multidimensionnelles Techniques de Projection des Données dans des Espaces de Dimension Réduite Classification de Données Multidimensionnelles Techniques de Projection des Données dans des Espaces de Dimension Réduite Denis HAMAD ULCO LASL Denis.Hamad@laslIuniv-littoral.fr Présenté dans la journée

Plus en détail

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout)

Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) 1 Regroupement (clustering) Bruno Pinaud (basé sur le support de Sofian Maabout) C est quoi? Regroupement (Clustering): construire une collection d objets Similaires au sein d un même groupe Dissimilaires

Plus en détail

Polytechnique. Épreuve d Informatique 1998

Polytechnique. Épreuve d Informatique 1998 Polytechnique Épreuve d Informatique 1998 Corrigé rédigé par Martine Lannaud, Lycée Chaptal, Paris Pour toute remarque ou correction martine.lannaud@prepas.org Motifs et automates Question 1. Quelques

Plus en détail

Web Usage Mining : extraction de périodes denses à partir des logs

Web Usage Mining : extraction de périodes denses à partir des logs Web Usage Mining : extraction de périodes denses à partir des logs F. Masseglia, P. Poncelet, M. Teisseire, A. Marascu INRIA Sophia Antipolis, 2004 route des Lucioles - BP 93, 06902 Sophia Antipolis, France

Plus en détail

Kolakoski/Oldenburger word. κ =

Kolakoski/Oldenburger word. κ = Kolakoski/Oldenburger word κ =... Kolakoski/Oldenburger word κ =... Kolakoski/Oldenburger word κ =......... Kolakoski/Oldenburger word κ =............ Kolakoski/Oldenburger word κ =............ Let W k

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Pré-traitements & indexation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques

Plus en détail

1 3Enseigner les sciences l cole maternelle : les cinq sens

1 3Enseigner les sciences l cole maternelle : les cinq sens 1 3Enseigner les sciences l cole maternelle : les cinq sens Lindsey Contardo To cite this version: Lindsey Contardo. Enseigner les sciences l cole maternelle : les cinq sens. 0 7ducation.

Plus en détail

Prise en compte des hiérarchies dans l extraction de motifs séquentiels multidimensionnels

Prise en compte des hiérarchies dans l extraction de motifs séquentiels multidimensionnels Prise en compte des hiérarchies dans l extraction de motifs séquentiels multidimensionnels MARC PLANTEVIT, ANNE LAURENT, MAGUELONNE TEISSEIRE LIRMM, UNIVERSITÉ MONTPELLIER II, FRANCE EDA06, Versailles,

Plus en détail

Classification de texte enrichie à l aide de motifs séquentiels

Classification de texte enrichie à l aide de motifs séquentiels 22 ème Traitement Automatique des Langues Naturelles, Caen, 2015 Classification de texte enrichie à l aide de motifs séquentiels Résumé. Pierre Holat Nadi Tomeh Thierry Charnois Université Paris 13, Sorbonne

Plus en détail

vs Christia 1 n Poisson

vs Christia 1 n Poisson vs Christian 1 Poisson Cet ouvrage contient une sélection d'études d'echecs composées par ordinateur, plus précisément par l'analyse de tables de finales, en l'occurrence ici la table, à l'aide de WinChloe

Plus en détail

Une approche centroïde pour la classification de séquences dans les data streams

Une approche centroïde pour la classification de séquences dans les data streams Une approche centroïde pour la classification de séquences dans les data streams Alice Marascu, Florent Masseglia INRIA Sophia Antipolis, 2004 route des Lucioles - BP 93 06902 Sophia Antipolis, France

Plus en détail

Product Platform Development: A Functional Approach Considering Customer Preferences

Product Platform Development: A Functional Approach Considering Customer Preferences Product Platform Development: A Functional Approach Considering Customer Preferences THÈSE N O 4536 (2009) PRÉSENTÉE le 4 décembre 2009 À LA FACULTé SCIENCES ET TECHNIQUES DE L'INGÉNIEUR LABORATOIRE DES

Plus en détail

Chap. VII : arbres binaires

Chap. VII : arbres binaires Chap. VII : arbres binaires 1. Introduction Arbre : collection d objets avec une structure hiérarchique Structure intrinsèque descendants d une personne (elle incluse) A ascendant connus d une personne

Plus en détail

(Programme de formation pour les parents ~ Training program for parents)

(Programme de formation pour les parents ~ Training program for parents) PODUM-INFO-ACTION (PIA) La «carte routière» pour les parents, sur l éducation en langue française en Ontario A «road map» for parents, on French-language education in Ontario (Programme de formation pour

Plus en détail

le canif suisse de la science Présentation par Mathieu Beaudoin dans le cours IFT615 15 juillet 2010 http://planiart.usherbrooke.

le canif suisse de la science Présentation par Mathieu Beaudoin dans le cours IFT615 15 juillet 2010 http://planiart.usherbrooke. L informatique : le canif suisse de la science Présentation par Mathieu Beaudoin dans le cours IFT615 15 juillet 2010 http://planiart.usherbrooke.ca/~mathieu Aujourd hui hui 2 L informatique au service

Plus en détail

Fouille de données de mobilité

Fouille de données de mobilité Fouille de données de mobilité Thomas Devogele Université François Rabelais (Tours) thomas.devogele@univ-tours.fr Laurent Etienne Ecole Navale (Brest) Laurent.etienne@ecole-navale.fr La fouille de donnée

Plus en détail

Épreuve d informatique 2011

Épreuve d informatique 2011 A 2011 INFO. MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

Claire Houlé. To cite this version: HAL Id: dumas-00845751 http://dumas.ccsd.cnrs.fr/dumas-00845751

Claire Houlé. To cite this version: HAL Id: dumas-00845751 http://dumas.ccsd.cnrs.fr/dumas-00845751 Suivi de la grossesse : critères de choix du professionnel par les patientes et place faite au médecin généraliste : enquête auprès de patientes de la région dieppoise Claire Houlé To cite this version:

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

Statique / Dynamique

Statique / Dynamique Statique / Dynamique Analyse dynamique : nécessite l exécution du code binaire Principe : à partir du code source (ou d un modèle) et spécification, produire des DT qui exécuteront un ensemble de comportements,

Plus en détail

Extraction d'informations synthétiques à partir de données séquentielles. Application à l'évaluation de la qualité des rivières

Extraction d'informations synthétiques à partir de données séquentielles. Application à l'évaluation de la qualité des rivières Extraction d'informations synthétiques à partir de données séquentielles Application à l'évaluation de la qualité des rivières Mickaël FABRÈGUE Le 23 mars 2015 AMIA Présentation 2011 stage Master 2 1 Plan

Plus en détail

MANUEL SUR L INFORMATION ET LA DOCUMENTATION EN MATIÈRE DE PROPRIÉTÉ INDUSTRIELLE. Réf. : Normes ST.17 page : 3.17.1 NORME ST.17

MANUEL SUR L INFORMATION ET LA DOCUMENTATION EN MATIÈRE DE PROPRIÉTÉ INDUSTRIELLE. Réf. : Normes ST.17 page : 3.17.1 NORME ST.17 Réf. : Normes ST.17 page : 3.17.1 NORME ST.17 RECOMMANDATION EN VUE DE CODER LES RUBRIQUES PUBLIÉES DANS LES BULLETINS OFFICIELS INTRODUCTION 1. La présente recommandation est destinée à renforcer le contenu

Plus en détail

Vpsp : extraction de motifs séquentiels dans Weka

Vpsp : extraction de motifs séquentiels dans Weka Vpsp : extraction de motifs séquentiels dans Weka D. Kraemer, L. Di Jorio, D. Jouve, A. Serra, C. Raïssi,, A. Laurent, M. Teisseire, P. Poncelet Université Montpellier II, Place Eugène Bataillon, 34000

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

Théorie de la Normalisation 1/44

Théorie de la Normalisation 1/44 Théorie de la Normalisation 1/44 La phase de design d une BD q Analyse des besoins q Design conceptuel q Modèle EA, UML q Design logique q EA vers relations q raffinement de schéma: normalisation q Design

Plus en détail

Publication IEC 61000-4-3 (Edition 3.0 2008) I-SH 01

Publication IEC 61000-4-3 (Edition 3.0 2008) I-SH 01 Publication IEC 61000-4-3 (Edition 3.0 2008) I-SH 01 Electromagnetic compatibility (EMC) Part 4-3: Testing and measurement techniques Radiated, radio-frequency, electromagnetic field immunity test INTERPRETATION

Plus en détail

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes Optimisation de requêtes I3009 Licence d informatique 2015/2016 Cours 5 - Optimisation de requêtes Stéphane.Gançarski Stephane.Gancarski@lip6.fr Traitement et exécution de requêtes Implémentation des opérateurs

Plus en détail

ENSE3 - API/CSPI et Master Automatique - 2008/2009

ENSE3 - API/CSPI et Master Automatique - 2008/2009 ENSE3 - API/CSPI et Master Automatique - 28/29 DS Commande robuste - - 19 janvier 29 Nom Prénom Signature ATTENTION: Mettre votre nom et répondre directement sur les feuilles de l énoncé. Justifiez vos

Plus en détail

Mélanie Fréhaut. Construction du concept de cardinalité à l école maternelle.

Mélanie Fréhaut. Construction du concept de cardinalité à l école maternelle. Construction du concept de cardinalité à l école maternelle Mélanie Fréhaut To cite this version: Mélanie Fréhaut. Construction du concept de cardinalité à l école maternelle. Éducation.

Plus en détail

Politique d Horodatage achatpublic.com. achatpublic.com

Politique d Horodatage achatpublic.com. achatpublic.com Politique d Horodatage achatpublic.com Version 1.0 1 Préambule 2 1.1 Glossaire et bibliographie 2 1.2 Objet du présent document 2 1.3 Les services d achatpublic.com achatpublic.com 2 1.4 Les marchés publics

Plus en détail

Multiplication par une constante entière

Multiplication par une constante entière Multiplication par une constante entière Vincent Lefèvre Juin 2001 Introduction But : générer du code optimal à l aide d opérations élémentaires (décalages vers la gauche, additions, soustractions). Utile

Plus en détail

Web Data Mining Fouille des données de la toile

Web Data Mining Fouille des données de la toile Web Data Mining p. 1/2 Web Data Mining Fouille des données de la toile Maria Malek Options GL, ISICO & IdSI EISTI Web Data Mining p. 2/2 Vous avez dit? World Wide Web Web Data Mining p. 2/2 Vous avez dit?

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

arxiv:0902.1258v1 [cs.lg] 7 Feb 2009

arxiv:0902.1258v1 [cs.lg] 7 Feb 2009 Extraction de concepts sous contraintes dans des données d expression de gènes Baptiste Jeudy 1, François Rioult 2 arxiv:0902.1258v1 [cs.lg] 7 Feb 2009 1 Équipe Universitaire de Recherche en Informatique

Plus en détail

Motifs séquentiels. Crédits. Fouille de Données et Apprentissage. Plan. C5 - Fouille de données complexes

Motifs séquentiels. Crédits. Fouille de Données et Apprentissage. Plan. C5 - Fouille de données complexes C5 - Fouille de données complexes Université de Rouen LITIS - Équipe TIBS-CISMeF lina.soualmia@chu-rouen.fr Crédits P.Poncelet (Montpellier) S.Ullman (Stanford) R.Rakotomalala (Lyon) N.Pasquier (Nice)

Plus en détail

Romans allemands pour enfants durant la Première Guerre mondiale ( ): comment les enfants ont été traumatisés par la guerre

Romans allemands pour enfants durant la Première Guerre mondiale ( ): comment les enfants ont été traumatisés par la guerre Romans allemands pour enfants durant la Première Guerre mondiale (1915-1918): comment les enfants ont été traumatisés par la guerre Hans-Eino Ewers To cite this version: Hans-Eino Ewers. Romans allemands

Plus en détail

Ce qu est le Data Mining

Ce qu est le Data Mining Data Mining 1 Ce qu est le Data Mining Extraction d informations intéressantes non triviales, implicites, préalablement inconnues et potentiellement utiles à partir de données. Autres appellations: ECD

Plus en détail

II. LES SYSTÈMES HIÉRARCHIQUES

II. LES SYSTÈMES HIÉRARCHIQUES II. LES SYSTÈMES HIÉRARCHIQUES Le modèle hiérarchique est assez bien adapté au monde réel, qui nous apparaît souvent au travers de hiérarchies. Beaucoup de systèmes sont encore basés sur ce modèle. Cependant,

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

Fabrication des housses pour pianos droits et à queue d après les cotes ou suivant modèle

Fabrication des housses pour pianos droits et à queue d après les cotes ou suivant modèle B.& K. BAUMGÄRTEL GmbH Zeitzer Str. 60/64, D-07552 Gera Tel. +49(0)365 5512590 Fax +49(0)365 4200135 Email :baumgartel@t-online.de Online-Shop: www.pianoteile -baumgaertel.de Fabrication des housses pour

Plus en détail

Détermination des fréquences propres d une structure avec paramètres incertains

Détermination des fréquences propres d une structure avec paramètres incertains Détermination des fréquences propres d une structure avec paramètres incertains Etienne ARNOULT Abdelhamid TOUACHE Pascal LARDEUR Université de Technologie de Compiègne Laboratoire Roberval BP 20 529 60

Plus en détail

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires.

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires. 3 ème A IE3 théorème de Thalès 2015-2016 S1 Utiliser la figure suivante pour démontrer que les droites (TU) et (RS) sont parallèles. Calculer ensuite RS. UT = 3,5 cm OT = 3 cm OU = 2,7 cm OR = 7,2 cm OS

Plus en détail

Fouille de données spatiales Mr Dib Abderrahim & Dr Mohamed-Khireddine KHOLLADI

Fouille de données spatiales Mr Dib Abderrahim & Dr Mohamed-Khireddine KHOLLADI Fouille de données spatiales Mr Dib Abderrahim & Dr Mohamed-Khireddine KHOLLADI Introduction On assiste de plus en plus à la création d entrepôts de données. Les raisons sont multiples : 1. le tout numérique

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Stéphanie Demonchaux To cite this version: Stéphanie Demonchaux. Étude des formes de pratiques de la gymnastique

Plus en détail

CHAPITRE III VECTEURS

CHAPITRE III VECTEURS CHAPITRE III VECTEURS EXERCICES 1) Recopiez le point A et le vecteur u sur le quadrillage de votre feuille : 4 e Chapitre III Vecteurs a) Construisez le point B tel que AB = u. b) Construisez le point

Plus en détail

Analysing chip- seq data using Galaxy

Analysing chip- seq data using Galaxy Analysing chip- seq data using Galaxy PhD programme 2013 Stéphanie Le Gras Overview Top menu Analyze your data Log in/out HISTORY PANEL keep track of each jobs that have been run Grey: job is waikng to

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

Identification de nouveaux membres dans des familles d'interleukines

Identification de nouveaux membres dans des familles d'interleukines Identification de nouveaux membres dans des familles d'interleukines Nicolas Beaume Jérôme Mickolajczak Gérard Ramstein Yannick Jacques 1ère partie : Définition de la problématique Les familles de gènes

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 7 - Data

BI = Business Intelligence Master Data-ScienceCours 7 - Data BI = Business Intelligence Master Data-Science Cours 7 - Data Mining Ludovic DENOYER - UPMC 30 mars 2015 Ludovic DENOYER - Typologie des méthodes de Data Mining Différents types de méthodes : Méthodes

Plus en détail

Un automate à états fini

Un automate à états fini Automates à états et langages Notion d automate Langage reconnu par un automate Automates non déterministes Expressions régulières et automates Limites des automates Notion d automate Objectif : définir

Plus en détail

I.2: Le test fonctionnel I.2.2 : Le test fonctionnel de logiciel

I.2: Le test fonctionnel I.2.2 : Le test fonctionnel de logiciel I.2: Le test fonctionnel I.2.2 : Le test fonctionnel de logiciel Introduction Notre contexte : pas possible d exprimer toutes les combinaisons de DT. Le test fonctionnel est basé sur la spécification/interface

Plus en détail

Résolution générique à la volée de systèmes d équations booléennes et applications

Résolution générique à la volée de systèmes d équations booléennes et applications Résolution générique à la volée de systèmes d équations booléennes et applications Radu Mateescu INRIA Rhône-Alpes / VASY Plan Introduction Systèmes d équations booléennes d alternance 1 Algorithmes de

Plus en détail

Apprentissage par exploration

Apprentissage par exploration Apprentissage par exploration 1/32 Introduction Méthode particulière d acquisition de connaissance : apprentissage artificiel, à partir d induction. obtention des connaissances à partir d exemples. On

Plus en détail

5.NORMALISATION. 1.Dependance fonctionnelle (DF) 2. Calcul des identifiants 3. Décomposition d une relation 4.Normalisation d une relation

5.NORMALISATION. 1.Dependance fonctionnelle (DF) 2. Calcul des identifiants 3. Décomposition d une relation 4.Normalisation d une relation 103 5.NORMALISATION 1.Dependance fonctionnelle (DF) 2. Calcul des identifiants 3. Décomposition d une relation 4.Normalisation d une relation 104 DF et Clé problème Mélanger dans une même relation des

Plus en détail

2 players Ages 8+ Note: Please keep these instructions for future reference. WARNING. CHOKING HAZARD. Small parts. Not for children under 3 years.

2 players Ages 8+ Note: Please keep these instructions for future reference. WARNING. CHOKING HAZARD. Small parts. Not for children under 3 years. Linja Game Rules 2 players Ages 8+ Published under license from FoxMind Games NV, by: FoxMind Games BV Stadhouderskade 125hs Amsterdam, The Netherlands Distribution in North America: FoxMind USA 2710 Thomes

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002

2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002 2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002 Instructions: Directives : 1 Provide the information requested below Veuillez fournir les renseignements demandés ci-dessous

Plus en détail

MODIFIER LES CARACTÈRES D'UN PC POUR AFFICHER RUSSE, ARABE, GREC, ETC. (*)

MODIFIER LES CARACTÈRES D'UN PC POUR AFFICHER RUSSE, ARABE, GREC, ETC. (*) 229 COMMENT MODIFIER LES CARACTERES D'UN PC POUR AFFICHER RUSSE, ARABE, GREC, ETC. (*) Si la forme des caractères qui s'affichent sur l'écran de votre PC ne vous convient pas, si vous souhaitez en créer

Plus en détail

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme Distance et classification Cours 4: Traitement du signal et reconnaissance de forme Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification

Plus en détail

Laboratoire 4 Développement d un système intelligent

Laboratoire 4 Développement d un système intelligent DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercice Exercices sur les vecteurs ABCD est un parallélogramme et ses diagonales se coupent en O () Compléter par un vecteur égal : a) AB = b) BC = c) DO = d) OA = e) CD = () Dire si les affirmations

Plus en détail

Le don/contribution, une nouvelle culture des réseaux numériques dans le e-recrutement

Le don/contribution, une nouvelle culture des réseaux numériques dans le e-recrutement Le don/contribution, une nouvelle culture des réseaux numériques dans le e-recrutement Wassim Mimeche, Bernard Fallery, Florence Rodhain To cite this version: Wassim Mimeche, Bernard Fallery, Florence

Plus en détail

Relation binaire. 2. Relations, fonctions et ordres. Exemples. Représentation d une relation binaire. Un couple est une paire ordonnée d éléments.

Relation binaire. 2. Relations, fonctions et ordres. Exemples. Représentation d une relation binaire. Un couple est une paire ordonnée d éléments. Relation binaire Un couple est une paire ordonnée d éléments. ex: les points (x,y) du plan de IN 2 ou de IR 2, les nom et prix d un produit, les instances d un objet en Java (à 2 attributs). 2. Relations,

Plus en détail