Initiation aux algorithmes des arbres binaires

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Initiation aux algorithmes des arbres binaires"

Transcription

1 Initiation aux algorithmes des arbres binaires

2 Plan I. Les arbres biniaires I. Définition II. Représentation graphique d un arbre III. Terminologie IV. Représentation en mémoire des arbres binaires V. Parcours d un arbre binaire I. Parcours en hauteur II. II. I. Parcours préfixé II. Parcours infixé III. Parcours postfixé Parcours en largeur Application: tri en tas I. Definition II. Principe du tri en tas

3 I. Les arbres binaires Definition: Un arbre binaire est un type d arbre ordonné (ordre des sous arbres est significatifs : arbre généalogique par exemple) tel que chaque nœud a au plus deux fils et quand il n y en a qu un, on précise s il s agit du fils droit ou du fils gauche. Représentation graphique:

4 I. Les arbres binaires Terminologie :

5 I. Les arbres binaires Terminologie : Arbre binaire équilibré : un arbre binaire est équilibré si pour chaque nœud les hauteurs des sous arbres gauches et droit différent au plus d un. Un arbre est dégénéré (filiforme) si tous ses nœuds ont exactement 0 ou 1 fils (à droite ou à gauche)

6 I. Les arbres binaires Terminologie : Arbre binaire complet : est un arbre binaire de taille 2 k -1 où k étant le niveau des feuilles. Arbre binaire parfaitement équilibré : un arbre binaire est parfaitement équilibré si pour chaque nœud, le nombre de nœuds des sous arbres gauche et droit différent au plus d un.

7 I. Les arbres binaires Représentation en mémoire des arbres binaires: Un arbre binaire est un ensemble fini de nœuds : Vide Constitué d une racine et de deux arbres disjoints : Sous arbre gauche et sous arbre droit Dont l un des deux est possiblement vide En python, on peut représenter un arbre vide par une liste vide et un arbre non vide par une liste comprenant trois éléments : [racine,fils_gauche, fils_droit]

8 I. Les arbres binaires Représentation en mémoire des arbres binaires: Exemple : [10,[6,[12,[13,[],[]], [5,[],[]]],[]], [7,[2,[],[]],[11,[],[]]]]

9 I. Les arbres binaires Parcours d un arbre binaire Un algorithme de parcours d arbre est un procédé permettant d accéder à chaque nœud de l arbre. On distingue deux catégories de parcours d arbres : les parcours en hauteur où on explore branche par branche et le parcours en largeur où on explore niveau par niveau. Parcours en hauteur (en profondeur) Il y a 6 types de parcours possibles, nous ne considérons dans la suite de ce chapitre que le parcours gauche-droit.

10 I. Les arbres binaires Préfixé Infixé Postfixé Gauche droit Père-sous arbre gauche-sous arbre droit sous arbre gauche- Père-sous arbre droit sous arbre gauche -sous arbre droit- Père Droit-gauche Père-sous arbre droit-sous arbre gauche sous arbre droit- Père-sous arbre gauche sous arbre droit - sous arbre gauche- Père

11 I. Les arbres binaires Parcours en hauteur (en profondeur) Parcours préfixé Le premier type de parcours consiste à traiter le nœud lors de première visite, puis explorer le sous arbre gauche, avant d explorer le sous arbre droit. Exemple: + a b - c d * - e

12 I. Les arbres binaires Parcours en hauteur (en profondeur) Parcours préfixé La fonction de parcours préfixé : def prefixe(arbre): if len(arbre)!=0: print(arbre[0],end=" ") prefixe(arbre[1]) prefixe(arbre[2]) Exemple d appel: arbre=['-',['*',['+',['a',[],[]],['b',[],[]]],['-',['c',[],[]],['d',[],[]]]],['e',[],[]]] prefixe(arbre)

13 I. Les arbres binaires Parcours en hauteur (en profondeur) Parcours préfixé La fonction de parcours préfixé : def prefixe(arbre): if len(arbre)!=0: print(arbre[0],end=" ") prefixe(arbre[1]) prefixe(arbre[2]) Exemple d appel: arbre=['-',['*',['+',['a',[],[]],['b',[],[]]],['-',['c',[],[]],['d',[],[]]]],['e',[],[]]] prefixe(arbre)

14 I. Les arbres binaires Parcours en hauteur (en profondeur) Parcours infixé Dans un parcours infixé, le nœud est traité lors de la deuxième visite, après avoir traité le sous-arbre gauche, mais avant de traiter le sous arbre droit. La procédure se schématise comme suit : Traitement du sous arbre gauche Traitement de la racine Traitement du sous arbre droit a + b * c - d - e

15 I. Les arbres binaires Parcours en hauteur (en profondeur) Parcours infixé La fonction de parcours infixé : def infixe(arbre): if len(arbre)!=0: infixe(arbre[1]) print(arbre[0],end=" ") infixe(arbre[2])

16 I. Les arbres binaires Parcours en hauteur (en profondeur) Parcours postfixé En parcours postfixé, le nœud est traité après le traitement du sous arbre gauche et du sous arbre droit. La procédure à suivre est donnée ci-dessous : Traitement du sous arbre gauche Traitement du sous arbre droit Traitement de la racine La fonction de parcours postfixé : def postfixe(arbre): if len(arbre)!=0: postfixe(arbre[1]) postfixe(arbre[2]) print(arbre[0],end=" ") a b + c d - * e -

17 I. Les arbres binaires Parcours en largeur Une autre méthode de parcours des arbres consiste à les visiter niveau par niveau. ainsi sur l arbre binaire de l expression arithmétique, le parcours en largeur est -*e+-abcd Ce parcours nécessite l utilisation d une file d attente contenant initialement la racine. On extrait l élément en tête de la file et on le remplace par ses successeurs à gauche et à droite jusqu à ce que la file soit vide. La fonction suivante effectue un parcours en largeur des nœuds de l arbre :

18 I. Les arbres binaires Parcours en largeur def largeur(arbre): file=[arbre] while (len(file)!=0): e=file[0] file=file[1:] #e=file.pop(0) print(e[0],end=" ") if len(e)>0: if len(e[1])!=0: file+=[e[1]] if len(e[2])!=0: file+=[e[2]]

19 II. Application : tri maximier ou tri en tas Définition Un arbre maximier est un arbre binaire homogène dans lequel l étiquette d un nœud interne est toujours supérieure ou égale aux étiquettes de chacun de ses fils. On appelle tas (heap en anglais) un arbre binaire homogène qui est un arbre maximier.

20 II. Application : tri maximier ou tri en tas Transformer un arbre maximier en un tableau On numérote les nœuds de haut en bas et de gauche à droite depuis 0 jusqu à n-1. Cette numérotation permet de stocker les éléments de l arbre dans un tableau de longueur n. les fils de l élément numéro i sont l élément numéroté 2*i+1 pour le fils gauche et 2*i+2 pour le fils droit. def trans_tas_tab(arbre): t=[] file=[arbre] while len(file)!=0: e=file.pop(0) t+=[e[0]] if len(e)>1: if len(e[1])!=0: file.append(e[1]) if len(e[2])!=0: file.append(e[2]) return(t)

21 II. Application : tri maximier ou tri en tas Le principe du tri par tas Deux étapes sont nécessaires : la construction du tas, puis le tri. Etape 1 : on construit un tas à partir du tableau à trier en commençant par un tas ne comportant qu un seul nombre : le premier nombre du tableau. Le tas initial est donc le tableau limité à son premier élément. On ajoute le deuxième nombre du tableau tel que le père soit supérieur à l élément ajouté.si ce n est pas le cas, on échange cet élément avec son père puis on ajoute le troisième pour former un tas et ainsi de suite jusqu à former un tas à partir de tous les éléments du tableau. Etape 2 : Pour effectuer le tri, on supprime le premier élément qui est le plus grand du tas en l échangeant avec le dernier élément du tas (le dernier). On a alors le plus grand élément en position n-1 et la partie d indice 0..n-2 du tableau subit une percolation de la racine pour créer de nouveau un tas. on répète l'opération sur le tas restreint jusqu'à l'avoir vidé et remplacé par un tableau trié. L'opération de base de ce tri est le tamisage, ou percolation, d'un élément, supposé le seul «mal placé» dans un arbre qui est presque un tas. Plus précisément, considérons un arbre dont les deux sousarbres sont des tas, tandis que la racine est éventuellement plus petite que ses fils. L'opération de tamisage consiste à échanger la racine avec le plus grand de ses fils, et ainsi de suite récursivement jusqu'à ce qu'elle soit à sa place.

22 tas Exemple : II. Application : tri maximier ou tri en Illustration de l étape 1 : les figures suivantes montrent la construction d un tas à partir du tableau [4,7,2,5,3]

23 tas Exemple : II. Application : tri maximier ou tri en La figure suivante montre le tri par tas sur le tableau [4,7,2,5,3]

24 tas Exemple : II. Application : tri maximier ou tri en La figure suivante montre le tri par tas sur le tableau [4,7,2,5,3]

25 II. Application : tri maximier ou tri en tas Nous rédigeons dans ce qui suit les fonctions nécessaires pour trier un tableau selon le principe du tri par tas. Construction du tas (insertion, rétablir la structure du tas) On représente le tas comme étant une liste T=[nb,Tas] où nb représente le nombre d éléments du tas et Tas le tableau contenant les éléments du tas. Nous rédigeons la fonction rétablis(t) qui permet de rétablir la structure du tas, la fonction insertion(t,e) où T est le tas et e l élément à insérer dans le tas enfin la fonction permettant de créer un tas à partir d un tableau.

26 tas def echange(t,i,j): T[i],T[j]=T[j],T[i] II. Application : tri maximier ou tri en def retablis(t): f=t[0]-1 #indice fils p=(f-1)//2 #indice père V=T[1]# V référence le tas T[1], les changements sont enregistrés dans T[1] while f>=1: if V[p]<V[f]:#si le père est inférieur au fils echange(v,p,f)#echange f=p # on remonte l'arbre le fils a l'indice du père p=(f-1)//2 # on calcule le père du nouveau fils def insertion(t,e): n=t[0]# le nombre des éléments du tas if n<=len(t[1]): T[1][n]=e #insertion de l'elt e à la fin du tas T[0]+=1 #mettre à jour le nombre des éléments du tas retablis(t) #rétablir le tas

27 II. Application : tri maximier ou tri en tas def trans_tab_tas(tab): T=[0,[0]*len(tab)] for e in tab: insertion(t,e) return (T) Suppression de la racine La suppression de la racine dans un tas se déroule en deux étapes : Echanger la racine avec le nœud terminal, puis supprimer ce dernier Effectuer une percolation On rappelle que la percolation consiste à faire redescendre la nouvelle racine tout au long du tas en l échangeant récursivement avec le plus grand de ses fils. Nous développerons la procédure percole(i,t) qui va rétablir la structure de tas à partir de la racine d indice i, T est le tableau contenant le nombre d éléments du tas et le tas. La fonction supprimer_racine(t) qui supprime la racine du tas et la renvoie. T est un tableau contenant le nombre d éléments du tas et le tas.

28 II. Application : tri maximier ou tri en tas def percole(i,t): j=2*i+1 V=T[1] f=j if j<t[0]:#le fils gauche existe? if j+1<t[0]:#le fils droit existe? if V[j]<V[j+1]:f=j+1 #f reçoit l'indice du fils le plus grand if V[f]>V[i]: #comparaison entre le père et le fils le plus grand sinon le fils gauche echange(v,i,f) #échange entre le père et le fils le plus grand percole(f,t)#percolation à partir de f. def supprime(t): if T[0]>0: V=T[1] racine=v[0] V[0]=V[T[0]-1] T[0]=T[0]-1 percole(0,t) return(racine)

29 II. Application : tri maximier ou tri en tas Tri en tas en recourant à un tableau auxiliaire on insère les éléments du tableau tab successivement dans un tas, puis on extrait itérativement la racine du tas qui en est toujours le plus grand élément jusqu à ce que le tas soit vide. def tri_tas(tab): T=trans_tab_tas(tab) for i in range(t[0]-1,-1,-1): tab[i]=supprime(t) Tri en tas en place Pour le tri en tas en place, la construction du tas se fera différemment, La technique d insertion dans un tas, consistera à placer le nouvel élément à la racine, ensuite rétablir la structure du tas en redescendant l élément de proche en proche en l échangeant avec l étiquette de son plus grand fils tant que cette étiquette est supérieure. Pour se faire nous réécrirons la procédure percole qui aura comme prototype : def percole(tab,taille,racine,i) où i est la position où sera placée la racine, tab est la tableau qui sera transformé en tas, taille est la taille du tableau.

30 II. Application : tri maximier ou tri en tas Tri en tas en place def percole1(tab, taille,racine, i): if 2*i+1<taille: j=2*i+1 f=j if j+1<taille: if tab[j]<tab[j+1]: f=j+1 if racine<tab[f]: echange(tab,i,f) percole1(tab,taille,racine,f) else: tab[i]=racine else: tab[i]=racine Nous réécrivons la procédure qui permet de transformer un tableau en tas en utilisons la procédure précédente :

31 II. Application : tri maximier ou tri en tas def trans_tab_tas_place(tab): for i in range((len(tab)-1)//2,-1,-1): percole1(tab,len(tab),tab[i],i) la procédure du tri par tas en place: def tri_tas1(tab): n=len(tab) trans_tab_tas_place(tab) for i in range(n-1,0,-1): tab[i],tab[0]=tab[0],tab[i] percole1(tab,i,tab[0],0)

32 TD 7

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr)

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr) Partie 3 Gilles Lebrun (gilles.lebrun@unicaen.fr) Les arbres binaires Définition : C est une structure arborescente ou hiérarchique ou récursive Chaque élément (nœud) constituant la structure de l arbre

Plus en détail

Arbres binaires de recherche (ABR) Binary Search Trees (BST)

Arbres binaires de recherche (ABR) Binary Search Trees (BST) LSVIII-BIM Algorithmie, 2015 Arbres binaires de recherche (ABR) Binary Search Trees (BST) I. Arbres binaires 1. Structure 2. Parcours II. Arbres binaires de recherche 1. Définition 2. Opérations sur les

Plus en détail

Série d exercices N 9 Arbres

Série d exercices N 9 Arbres Série d exercices N 9 Arbres Exercice 1 a) Ecrire une fonction ARBIN creerarbreentiers() qui permet de créer et de renvoyer l arbre d entiers suivant : b) Ecrire une fonction int feuilles(arbin a) qui

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

C12. Les structures arborescentes. Août 2006

C12. Les structures arborescentes. Août 2006 Les structures arborescentes Août 2006 Objectifs du C12 Connaître le principe de la structure d arbre binaire Connaître les détails d implémentation de la structure d arbre binaire de recherche Les structures

Plus en détail

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak Arbres Binaire PSI DAKHLA Prof Youssef El marzak 1 Prof Youssef Elmarzak 1.introduction: Les arbre sont très utilisées en informatique, d une part parce que les informations sont souvent hiérarchisées,

Plus en détail

Chap. VII : arbres binaires

Chap. VII : arbres binaires Chap. VII : arbres binaires 1. Introduction Arbre : collection d objets avec une structure hiérarchique Structure intrinsèque descendants d une personne (elle incluse) A ascendant connus d une personne

Plus en détail

Structures de données, IMA S6

Structures de données, IMA S6 Structures de données, IMA S6 Arbres Binaires d après un cours de N. Devésa, Polytech Lille. Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech

Plus en détail

Arbres Binaires de Recherche : Introduction

Arbres Binaires de Recherche : Introduction Arbres Binaires de Recherche : Introduction I. Guessarian cours ISN 11 janvier 2012 LIAFA, CNRS and University Paris Diderot 1/13 Arbre Binaire de Recherche Un Arbre Binaire de Recherche (ABR) est un arbre

Plus en détail

Exercice sur les arbres binaires de recherche

Exercice sur les arbres binaires de recherche Exercice sur les arbres binaires de recherche Voici une liste aléatoire de 1 éléments. Notez que vous pouvez faire cet exercice en prenant une autre liste aléatoire ; évidemment, il y a peu de chances

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 1 Arbres binaires de recherche 1 Les arbre sont très utilisés en informatique, d une part parce que les informations sont souvent hiérarchisées, et peuvent être représentées naturellement sous

Plus en détail

Algorithmique et Programmation Impérative 2 Les arbres binaires de recherche

Algorithmique et Programmation Impérative 2 Les arbres binaires de recherche Algorithmique et Programmation Impérative 2 Les arbres binaires de recherche N.E. Oussous oussous@lifl.fr FIL USTL SDC - Licence p.1/16 Arbres binaires de recherche Un arbre binaire T est un arbre binaire

Plus en détail

Cours Algorithmique, 2ème partie AS IUT

Cours Algorithmique, 2ème partie AS IUT Cours Algorithmique, 2ème partie AS IUT Cours 2 : Arbres Binaires Anne Vilnat http://www.limsi.fr/individu/anne/coursalgo Plan 1 Représentations arborescentes 2 Définition d un arbre binaire récursive

Plus en détail

alg - Arbres binaires de recherche [br] Algorithmique

alg - Arbres binaires de recherche [br] Algorithmique alg - Arbres binaires de recherche [br] Algorithmique Karine Zampieri, Stéphane Rivière, Béatrice Amerein-Soltner Unisciel algoprog Version 25 avril 2015 Table des matières 1 Définition, Parcours, Représentation

Plus en détail

Tri en Python. # on cherche k tel que a k = min(a j ) ji

Tri en Python. # on cherche k tel que a k = min(a j ) ji Tri en Python On considère ici des tableaux ou listes d entiers ou de ottants. En Python, on peut trier une liste à l aide de la méthode sort : si a est une liste d entiers ou de ottants, a.sort() modi

Plus en détail

Option Informatique Arbres binaires équilibrés

Option Informatique Arbres binaires équilibrés Option Informatique Arbres binaires équilibrés Sujet novembre 2 Partie II : Algorithmique et programmation en CaML Cette partie doit être traitée par les étudiants qui ont utilisé le langage CaML dans

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche Université Paris Diderot Paris L Informatique Algorithmique Année 00-0, er semestre TD n Arbres Binaire de Recherche Le type de donné arbre" sera utilisé pour indiquer l ensemble de toutes les Arbres Binaires

Plus en détail

Listes et arbres binaires

Listes et arbres binaires Des structures de données dynamiques Listes, Listes ordonnées Arbres binaires, arbre binaires de recherche Listes chaînées Utile si le nombre d éléments n est pas connu à l avance et évolue beaucoup. Permet

Plus en détail

4.2 Les arbres binaires de recherche

4.2 Les arbres binaires de recherche 4.2 Les arbres binaires de recherche 4.2.1 Définition Les arbres binaires de recherche sont utilisés pour accélérer la recherche dans les arbres m-aires. Un arbre binaire de recherche est un arbre binaire

Plus en détail

Les arbres Florent Hivert

Les arbres Florent Hivert 1 de 1 Algorithmique Les arbres Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 1 Algorithmes et structures de données La plupart des bons algorithmes fonctionnent

Plus en détail

Compression méthode de Huffman

Compression méthode de Huffman Compression méthode de Huffman Thierry Lecroq Université de Rouen FRANCE La méthode de Huffman consiste à remplacer les caractères les plus fréquents par des codes courts et les caractères les moins fréquents

Plus en détail

Séance de TD 05 TD05. 1 Exercice 1. 1.1 Question 1 : dessins des ABR avec hauteurs différentes AG51

Séance de TD 05 TD05. 1 Exercice 1. 1.1 Question 1 : dessins des ABR avec hauteurs différentes AG51 Séance de TD 05 1 Exercice 1 1. Dessinez les arbres binaires de recherche de hauteur 2,3,4,5 et 6 pour le même ensemble de clés S = 1,4,5,10,16,17,21. 2. Donnez l algorithme de l opération ArbreRechercher(x,k)

Plus en détail

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN CHAPITRE 6 Arbres binaires Lycée Kléber MPSI, Option Info 2014/2015 1 Définitions 2 Parcours en largeur Parcours en profondeur Parcours préfixe, infixe, postfixe Reconstitution 3 Recherche Complexité Insertion

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures)

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures) L2 - lgorithmique et structures de données (nnée 2010/2011) Delacourt, Phan Luong, Poupet xamen (2 heures) Les documents (cours, TD, TP) sont autorisés. Les quatre exercices sont indépendants. À la fin

Plus en détail

Les arbres binaires de recherche

Les arbres binaires de recherche Institut Galilée Année 2010-2011 Algorithmique et arbres L2 TD 6 Les arbres binaires de recherche Type en C des arbres binaires (également utilisé pour les ABR) : typedef struct noeud_s { struct noeud_s

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

ALGORITHMIQUE II. Récurrence et Récursivité. SMI AlgoII

ALGORITHMIQUE II. Récurrence et Récursivité. SMI AlgoII ALGORITHMIQUE II Récurrence et Récursivité Récurrence Suite récurrente: la déition d une suite est la donnée d un terme général déi en fonction du (ou des) terme(s) précédant(s) D un terme initial qui

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Arbre Binaire B. Jacob IC2/LIUM 27 février 2010 Plan 1 Introuction 2 Primitives u TDA Arbin 3 Réalisations u TDA Arbin par cellules chaînées par cellules contiguës par curseurs (faux pointeurs)

Plus en détail

EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé

EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé MIE - E ANNÉE ALGORITHMIQUE GÉNÉRALE Vincent Mousseau EXAMEN FINAL Février 006 - heures Aucun document autorisé Exercice : On s intéresse à la gestion informatique des réservations sur l année d une salle

Plus en détail

Introduction: Arbres de recherche + Rappel: Arbres binaires de recherche

Introduction: Arbres de recherche + Rappel: Arbres binaires de recherche Introduction: Arbres de recherche + Rappel: Arbres binaires de recherche Dictionnaires ordonnés: Opérations principales: trouver(k): find(k): Si le dictionnaire a une entrée de clé k, retourne la valeur

Plus en détail

Travaux dirigés n o 6

Travaux dirigés n o 6 Travaux dirigés n o 6 Lycée Kléber MPSI, Option Info 2014/2015 Exercice 1 (Indexation d un arbre binaire) Ecrire une fonction Caml indexation : ( f, n) arbre_binaire -> (string,string) arbre_binaire qui

Plus en détail

pedigree d'un cheval Zoe ; son père est Tonnerre et sa mère Belle ; mère de Belle est Rose et père de Belle est Eclair jean jean marc paul luc

pedigree d'un cheval Zoe ; son père est Tonnerre et sa mère Belle ; mère de Belle est Rose et père de Belle est Eclair jean jean marc paul luc Chap. 3 Les arbres binaires Un arbre est un ensemble de nœuds, organisés de façon hiérarchique, à partir d'un nœud distingué, appelé racine. La structure d'arbre est l'une des plus importantes et des plus

Plus en détail

Algorithmique IN102 TD 3

Algorithmique IN102 TD 3 Algorithmique IN10 TD 16 décembre 005 Exercice 1 Clairement, il existe des arbres de hauteur h à h + 1 éléments : il sut pour cela que leurs n uds internes aient au plus un ls non vide. On a alors un arbre

Plus en détail

Les arbres binaires. Terminologie avancée (1) TAD arbre binaire. Terminologie avancée (2) Terminologie avancée (3)

Les arbres binaires. Terminologie avancée (1) TAD arbre binaire. Terminologie avancée (2) Terminologie avancée (3) Les arbres Structures les plus importantes et les plus utilisées en informatique Liste = cas dégénéré d arbre Eemples: Arbres généalogiques Arbres de classification Arbres d epression / - Traduction de

Plus en détail

Structures de données et algorithmes

Structures de données et algorithmes Structures de données et algorithmes Chapitre 4 Les arbres Nous introduisons dans ce chapitre le TDA : arbres binaires Ce TDA est intéressant pour plusieurs raisons : Les arbres de recherche binaire permettent

Plus en détail

Algorithmique et Structures de données Feuille 5 : Arbres binaires

Algorithmique et Structures de données Feuille 5 : Arbres binaires Université Bordeaux Algorithmique et Structures de données Feuille : Arbres binaires On considère le type abstrait arbrebinaire d objet défini en cours. Pour rappel voir annexe A. LicenceInformatique0-0

Plus en détail

Arbres binaires de recherche et arbres rouge noir

Arbres binaires de recherche et arbres rouge noir Institut Galilée lgo, rbres, Graphes I nnée 006-007 License rbres binaires de recherche et arbres rouge noir Rappels de cours et correction du TD rbres binaires de recherche : définitions Un arbre binaire

Plus en détail

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Algorithmique P2 HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Structure de tas - arbre Un tas est une structure de données qui Permet un nouveau type de tri (Tri par tas) Permet l'implémentation

Plus en détail

Exercice 1 : Questions diverses (5 points)

Exercice 1 : Questions diverses (5 points) Université Claude Bernard Lyon 1 Licence Sciences, Technologies, Santé L2 Année 2010-2011, 2ème semestre LIF5 Algorithmique & Programmation procédurale Contrôle final du 20 juin 2011 Durée : 1h30 Note

Plus en détail

Plan. Piqûre de rappel sur les références Evaluation d'expressions arithmétiques Variables et méthodes statiques Vocabulaire sur les arbres.

Plan. Piqûre de rappel sur les références Evaluation d'expressions arithmétiques Variables et méthodes statiques Vocabulaire sur les arbres. Plan Piqûre de rappel sur les références Evaluation d'expressions arithmétiques Variables et méthodes statiques Vocabulaire sur les arbres Amphi 4 1 Retour sur les références class Code { int numero; Code(int

Plus en détail

Cours d Algorithmique et Complexité

Cours d Algorithmique et Complexité Cours d Algorithmique et Complexité Structures de données (2e suite) Catalin Dima Arbres binaires de recherche Propriété de base des arbres binaires de recherche Soit x un noeud de l arbre. Alors : 1.

Plus en détail

1 Définition. 2 Recherche dans un Arbre-B. 3 Insertion dans un Arbre-B. 4 Suppression dans un Arbre-B. Arbre-B

1 Définition. 2 Recherche dans un Arbre-B. 3 Insertion dans un Arbre-B. 4 Suppression dans un Arbre-B. Arbre-B Déition Recherche Arbre-B Insertion Arbre-B Suppression Arbre-B Déition Recherche Arbre-B Insertion Arbre-B Suppression Arbre-B Plan... Les arbres-b Géraldine Del Mondo, Nicolas Delestre 1 Déition 2 Recherche

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 6 Arbres binaires de recherche 6.1 Introduction On a étudié le problème de la recherche dans une collection d éléments ordonnés entre eux : on a montré que Pour une liste contiguë, la recherche

Plus en détail

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014 Langage C/C++ TD 3-4 : Création dynamique d objets Hubert Godfroy 7 novembre 014 1 Tableaux Question 1 : Écrire une fonction prenant un paramètre n et créant un tableau de taille n (contenant des entiers).

Plus en détail

Enveloppes convexes dans le plan

Enveloppes convexes dans le plan ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE B (XECLR)

Plus en détail

Cours numéro 9 : arbres binaires et de recherche

Cours numéro 9 : arbres binaires et de recherche Cours numéro 9 : arbres binaires et de recherche LI213 Types et Structures de données Licence d Informatique Université Paris 6 Arbre Arbre Un arbre est un ensemble fini A d éléments, liés entre eux par

Plus en détail

ARBRES BINAIRES DE RECHERCHE

ARBRES BINAIRES DE RECHERCHE ARBRES BINAIRES DE RECHERCHE Table de symboles Recherche : opération fondamentale données : éléments avec clés Type abstrait d une table de symboles (symbol table) ou dictionnaire Objets : ensembles d

Plus en détail

TP 4 -Arbres Binaires -

TP 4 -Arbres Binaires - L3 Informatique Programmation fonctionnelle OCaml Année 2013/2014 TP 4 -Arbres Binaires - Un arbre binaire est une structure de données qui peut se représenter sous la forme d une hiérarchie dont chaque

Plus en détail

TP 8 : Arbres binaires de recherche

TP 8 : Arbres binaires de recherche TP 8 : Arbres binaires de recherche Semaine du 17 Mars 2008 Exercice 1 Dénir une structure struct noeud_s permettant de coder un n ud d'un arbre binaire contenant une valeur entière. Ajouter des typedef

Plus en détail

Devoir Surveillé informatique MP, PC, PSI

Devoir Surveillé informatique MP, PC, PSI NOM : Classe : Devoir Surveillé informatique MP, PC, PSI L utilisation des calculatrices n est pas autorisée pour cette épreuve. Le langage de programmation choisi est Python. L espace laissé pour les

Plus en détail

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante :

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante : Ocaml - Exercices Exercice Définir en Ocaml les fonctions suivantes:. f : x sin x + cos x. g : x x 3x+ x x 5 3. Fonction h calculant la moyenne géométrique de deux float positifs ( xy) Exercice Ecrire

Plus en détail

Arbres binaires Version prof Version prof

Arbres binaires Version prof Version prof Arbres binaires Version prof Version prof types /* déclaration du type t_element */ t_arbrebinaire = t_noeudbinaire t_noeudbinaire = enregistrement t_element cle t_arbrebinaire fg, fd n enregistrement

Plus en détail

10' - LES ARBRES BINAIRES

10' - LES ARBRES BINAIRES Ch 10' - LES ARBRES BINAIRES On va restreindre les capacités des arbres en obligeant les nœuds à posséder au maximum deux sous-arbres. Ces nouveaux arbres seront plus faciles à maîtriser que les arbres

Plus en détail

Marches, permutations et arbres binaires aléatoires

Marches, permutations et arbres binaires aléatoires Marches, permutations et arbres binaires aléatoires Épreuve pratique d algorithmique et de programmation Concours commun des Écoles Normales Supérieures Durée de l épreuve: 4 heures Cœfficient: 4 Juillet

Plus en détail

Arbres binaires et codage de Huffman

Arbres binaires et codage de Huffman MP Option Informatique Premier TP Caml Jeudi 8 octobre 2009 Arbres baires et codage de Huffman 1 Arbres baires Soit E un ensemble non vide. On défit la notion d arbre baire étiqueté (aux feuilles) par

Plus en détail

LES ARBRES BINAIRES DE RECHERCHE

LES ARBRES BINAIRES DE RECHERCHE 1 INTRODUCTION À L ALGORITHMIQUE - LES ARBRES BINAIRES DE RECHERCHE Chargée de cours: Transparents:http://www-npa.lip6.fr/~blin/Enseignements.html Email: lelia.blin@lip6.fr Arbres binaires de Recherche

Plus en détail

ARBRES. Arbres binaires Représentation des arbres Fonctions primitives sur les arbres Parcours d arbres Arbres ordonnés

ARBRES. Arbres binaires Représentation des arbres Fonctions primitives sur les arbres Parcours d arbres Arbres ordonnés ARBRES Arbres binaires Représentation des arbres Fonctions primitives sur les arbres Parcours d arbres Arbres ordonnés À QUOI SERVENT LES ARBRES? Les arbres, comme les listes, permettent de représenter

Plus en détail

Programmation récursive

Programmation récursive Année 2004-2005 F. Lévy IUT De Villetaneuse Dép t informatique Cours d'algorithmique 2 éme Année Cours 8 Programmation récursive 1. Qu'est-ce que la programmation récursive Définition : la programmation

Plus en détail

Plan. Arbres équilibrés Arbres AVL Arbres a-b Quelques compléments de Java. Amphi 9 1

Plan. Arbres équilibrés Arbres AVL Arbres a-b Quelques compléments de Java. Amphi 9 1 Plan Arbres équilibrés Arbres AVL Arbres a-b Quelques compléments de Java Amphi 9 1 Structures d'arbre Les structures d'arbre permettent de réaliser des opérations dynamiques, telles que recherche, prédécesseur,

Plus en détail

Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés

Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés Hélène Toussaint, juillet 2014 Sommaire 1. Efficacité du std::sort... 1 1.1. Conditions expérimentales... 1 1.2. Tableaux de

Plus en détail

Cours 4 : Les arbres binaires. Définition Implémentation Manipulation

Cours 4 : Les arbres binaires. Définition Implémentation Manipulation Cours 4 : Les arbres binaires Définition Implémentation Manipulation Définition Un arbre binaire est un arbre qui possède au maximum deux sous-arbres (d où le binaire) 2013-2014 Algorithmique 2 Deux implémentations

Plus en détail

Application des arbres binaires. Plan

Application des arbres binaires. Plan Application des arbres binaires. Plan Compter les arbres binaires Tétrarbres (quad trees) Problème des n corps Recherche dans un intervalle Recherche dans un nuage de points Recherche dans un arbre d intervalles

Plus en détail

TD 1 de Langage C module Outils pour l'informatique Industrielle - Corrigés des Tds : http://www-lagis.univ-lille1.fr/~macaire/td.

TD 1 de Langage C module Outils pour l'informatique Industrielle - Corrigés des Tds : http://www-lagis.univ-lille1.fr/~macaire/td. Exercice 1 TD 1 de Langage C module Outils pour l'informatique Industrielle - Corrigés des Tds : http://www-lagis.univ-lille1.fr/~macaire/td.htm Exercices de base de Programmation Arbre Programmatique

Plus en détail

Langages de spécification cours 4

Langages de spécification cours 4 Langages de spécification cours 4 Diagrammes de décision binaire(bdd) Catalin Dima Arbres de décision binaire Étant donnée une formule logique, on peut lui associer un arbre qui permet d évaluer la valeur

Plus en détail

RECURSIVITE ARBRES BINAIRES

RECURSIVITE ARBRES BINAIRES RECURSIVITE ARBRES BINAIRES Insertion, Parcours pré, post et in ordre, Recherche, Suppression. Ch. PAUL Algorithmique Arbres binaires 1 ARBRE BINAIRE DEFINITION RECURSIVE Les arbres binaires sont des arbres

Plus en détail

Arbres binaires. Chapitre 1. 1. Introduction. option informatique. 1.1 Définition formelle d un arbre binaire

Arbres binaires. Chapitre 1. 1. Introduction. option informatique. 1.1 Définition formelle d un arbre binaire Chapitre option informatique Arbres binaires. Introduction Dans son acceptation la plus générale, un arbre est un graphe acyclique orienté enraciné : tous les sommets, à l exception de la racine, ont un

Plus en détail

Année Universitaire 2013/2014 DST de Printemps

Année Universitaire 2013/2014 DST de Printemps Année Universitaire 2013/2014 DST de Printemps Parcours : Licence LIMI201 & LIMI211 Code UE : J1MI2013 Épreuve : Algorithmes et Programmes Date : Lundi 16 juin 2014 Heure : 16 heures 30 Durée : 2 heures

Plus en détail

Structures de données linéaires

Structures de données linéaires Structures de données linéaires I. Liste, Pile et file. Une liste linéaire est la forme la plus simple et la plus courante d'organisation des données. On l'utilise pour stocker des données qui doivent

Plus en détail

Analyse de fichier client

Analyse de fichier client 1 Analyse de fichier client Le problème 2 entreprise avec 10 millions de clients, client identifié par un numéro de 11 111 111 à 99 999 999. fichier séquentiel représente l'historique résumé des factures

Plus en détail

Algorithmes de tris. Chapitre 4

Algorithmes de tris. Chapitre 4 Chapitre 4 Algorithmes de tris Trier un ensemble d objets consiste à ordonner ces objets en fonction de clés et d une relation d ordre définie sur cette clé. Par exemple, chaque étudiant inscrit à l université

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche 1 arbre des comparaisons 2 recherche dichotomique l'arbre est recalculé à chaque recherche 2 5 3 4 7 9 1 6 1 2 3 4 5 6 7 9 10 conserver la structure d'arbre au lieu de la reconstruire arbre binaire de

Plus en détail

Programme. Pimp A - info121a. Exemple: Arbres d Hierarchie. Traverse et Calculs dans Arbres. Tri Récursivité Dichotomie Arbre Graphe Examen blanc

Programme. Pimp A - info121a. Exemple: Arbres d Hierarchie. Traverse et Calculs dans Arbres. Tri Récursivité Dichotomie Arbre Graphe Examen blanc Programme Pimp A - info121a Programmation IMPérative Avancée Burkhart Wolff Frédéric Vernier Tri Récursivité Dichotomie Arbre Graphe Examen blanc Recherche linéaire Diviser pour mieux régner Traverse et

Plus en détail

Programmation avancée

Programmation avancée Programmation avancée Chapitre 1 : Complexité et les ABR (arbres binaires de recherche) 1 1 IFSIC Université de Rennes-1 M2Crypto, octobre 2011 Plan du cours 1 2 3 4 5 6 7 8 9 10 Algorithmes Définition

Plus en détail

Arbres. Arbres binaires Représentation des arbres Fonctions primitives sur les arbres Parcours d arbres Arbres ordonnés. À quoi servent les arbres?

Arbres. Arbres binaires Représentation des arbres Fonctions primitives sur les arbres Parcours d arbres Arbres ordonnés. À quoi servent les arbres? Arbres Arbres binaires Représentation des arbres Fonctions primitives sur les arbres Parcours d arbres Arbres ordonnés À quoi servent les arbres? Les arbres, comme les listes, permettent de représenter

Plus en détail

9. Implantations des arbres binaires par un tableau: les monceaux (les tas) - heap en anglais.

9. Implantations des arbres binaires par un tableau: les monceaux (les tas) - heap en anglais. 9. Implantations des arbres binaires par un tableau: les monceaux (les tas) - heap en anglais. Définition : Un monceau (tas) est un arbre binaire complet dans lequel il existe un ordre entre un nœud et

Plus en détail

Algorithmique avancée en Python TDs

Algorithmique avancée en Python TDs Algorithmique avancée en Python TDs Denis Robilliard sept. 2014 1 TD 1 Révisions 1. Ecrire un programme qui saisit un entier, et détermine puis affiche si l entier est pair où impair. 2. Ecrire un programme

Plus en détail

Arbres de segments. Plan. Arbres de segments. Arbres de sélection Listes à saut Compléments de Java Dictionnaires Automates. Solution.

Arbres de segments. Plan. Arbres de segments. Arbres de sélection Listes à saut Compléments de Java Dictionnaires Automates. Solution. Plan Arbres de segments Arbres de segments Arbres de sélection Listes à saut Compléments de Java Dictionnaires Automates Problème : Chercher, dans un ensemble d intervalles de la droite réelle, les intervalles

Plus en détail

Programmation avancée Examen final

Programmation avancée Examen final Programmation avancée Examen final jeudi 17 décembre 2009 Nom : Prénom : Vos points sont précieux, ne les gaspillez pas! Votre nom Le travail qui ne peut pas vous être attribué est perdu: écrivez votre

Plus en détail

Corrigé des exercices

Corrigé des exercices hapitre 1 option informatique orrigé des eercices Arbres binaires Eercice 1 La première solution qui vient à l esprit est sans doute celle-ci : let rec profondeur p = function Nil > [] a when p = 0 > [a]

Plus en détail

1 Les arbres binaires en Java

1 Les arbres binaires en Java Université de Nice-Sophia Antipolis Deug MIAS-MI 1 Algorithmique & Programmation 2002 2003 TP N 10 Arbres binaires Buts : structuration des arbres binaires en Java. classes internes. objets de parcours.

Plus en détail

PROGRAMMATION 3A: ALGORITHMIQUE Arbres équilibrés

PROGRAMMATION 3A: ALGORITHMIQUE Arbres équilibrés PROGRAMMATION 3A: ALGORITHMIQUE Arbres équilibrés Introduction Conception: arbres 2-3-4 Définition et propriétés d'un arbre 2-3-4 Construction Implémentation: arbres bicolores Propriétés des arbres bicolores

Plus en détail

Programmation fonctionnelle

Programmation fonctionnelle 1/30 Programmation fonctionnelle Notes de cours Cours 9 23 novembre 2011 Sylvain Conchon sylvain.conchon@lri.fr 2/30 Les notions abordées cette semaine Les foncteurs Set.Make et Map.Make d Ocaml Arbres

Plus en détail

LIFAP3 Algorithmique et programmation avancée. Samir Akkouche Nicolas Pronost

LIFAP3 Algorithmique et programmation avancée. Samir Akkouche Nicolas Pronost LIFAP3 Algorithmique et programmation avancée Samir Akkouche Nicolas Pronost Chapitre 8 Arbre 2 Définition d un arbre Un arbre est une structure de donnée hiérarchique, composé de nœuds et de relations

Plus en détail

3 Structures de données Tableaux Listes. Problème du tri. Tri rapide

3 Structures de données Tableaux Listes. Problème du tri. Tri rapide Cours 2 Algorithmique IN102-02 Michel Mauny ENSTA Prénom.Nom@ensta.fr 1 Tris Retour sur fusion et quicksort Complexité minimale Efficacité 2 Récursivité 3 Structures de données Tableaux Listes Michel Mauny

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

IN 101 - Cours 05. 7 octobre 2011. Un problème concret Recherche de collisions

IN 101 - Cours 05. 7 octobre 2011. Un problème concret Recherche de collisions Un problème concret Recherche de collisions IN 101 - Cours 05 7 octobre 2011 Le paradoxe des anniversaires dit que 365 élèves sont suffisants (en moyenne) pour avoir une collision d anniversaire, deux

Plus en détail

Algorithmes pour les graphes

Algorithmes pour les graphes Algorithmes pour les graphes 1 Définitions Un graphe est représenté par : V : L ensemble des noeuds ou sommets. E : L ensemble des arcs ou arrêtes. E est un sous-ensemble de V xv. On note G = (V, E). Si

Plus en détail

Notes de cours d algorithmique L3

Notes de cours d algorithmique L3 UFR d Informatique Paris 7 Paris Diderot Année 2010 2011 Notes de cours d algorithmique L3 François Laroussinie Notes de cours d algorithmique L3 François Laroussinie francois.laroussinie@liafa.jussieu.fr

Plus en détail

Algorithmique - Techniques fondamentales de programmation Exemples en Python (nombreux exercices corrigés) - BTS, DUT informatique

Algorithmique - Techniques fondamentales de programmation Exemples en Python (nombreux exercices corrigés) - BTS, DUT informatique Introduction à l'algorithmique 1. Les fondements de l informatique 13 1.1 Architecture de Von Neumann 13 1.2 La machine de Turing 17 1.3 Représentation interne des instructions et des données 19 1.3.1

Plus en détail

Etude de la suppression de clés dans les arbres lexicographiques équilibrés

Etude de la suppression de clés dans les arbres lexicographiques équilibrés Université de Tours UFR Sciences & Techniques Av. Monge, Parc de Grandmont 37200 TOURS, FRANCE Tél. (33)2-47-36-70-20 www.univ-tours.fr http://depinfo.univ-tours.fr Département d Informatique Projet d

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

( n) !n! 0. Compter les arbres binaires (1) Application des arbres binaires. Plan

( n) !n! 0. Compter les arbres binaires (1) Application des arbres binaires. Plan pplication des arbres binaires. Plan ompter les arbres binaires Tétrarbres (quad trees) Problème des n corps Recherche dans un intervalle Recherche dans un nuage de points Recherche dans un arbre d intervalles

Plus en détail

Objectifs du cours d aujourd hui. Informatique I : Cours d introduction à l informatique et à la programmation Structures de Données Abstraites & Tris

Objectifs du cours d aujourd hui. Informatique I : Cours d introduction à l informatique et à la programmation Structures de Données Abstraites & Tris Objectifs du cours d aujourd hui Informatique I : Cours d introduction à l informatique et à la programmation Structures de Données Abstraites & Tris Continuer l approfondissement de la programmation de

Plus en détail

Types et Structures de Données LI213

Types et Structures de Données LI213 Types et Structures de Données LI213 Interrogation du 3 mars 2013 Aucun document n est autorisé. 1 Listes, piles et files Pour l exercice suivant, on a besoin de définir une liste chaînée de personnes.

Plus en détail

Chapitre 3 Structures de données linéaires : listes, piles et files

Chapitre 3 Structures de données linéaires : listes, piles et files Chapitre 3 Structures de données linéaires : listes, piles et files 1. Introduction Le but de ce chapitre est de décrire des représentations des structures de données de base telles les listes en général

Plus en détail

X, X, Petite classe 65. Plan. Langage Java. Paquetages et classes publiques. Algorithmique. Graphes Arbres Tas Tri par tas

X, X, Petite classe 65. Plan. Langage Java. Paquetages et classes publiques. Algorithmique. Graphes Arbres Tas Tri par tas Plan X, X, Petite classe 65 Langage Java Paquetages et classes publiques Algorithmique Graphes Arbres Tas Tri par tas Paquetages package paquet.test class ClasseTest {... } La ligne de code package paquet.test

Plus en détail