Physique de l environnement

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Physique de l environnement"

Transcription

1 Physique de l environnement Contrôle du décembre 2012 Éléments de correction Aucun document autorisé Calculatrice élémentaire autorisée Les deux parties sont indépendantes. Les questions indépendantes sont signalées par le symbole Données numériques en dernière page A A.I Ozone et rayonnement solaire Les bandes d absorption de l ozone 1e 20 1e 21 Hartley Huggins 298 K Huggins 226 K Chappuis section efficace d absorption de l ozone en m 2 1e 22 1e 2 1e 24 1e 25 1e 26 Fig. 1: Section efficace d absorption de l ozone dans l UV et le visible bandes σ max 200 nm < λ < 10 nm Hartley m 2 10 nm < λ < 50 nm Huggins 10 2 m nm < λ < 800 nm Chappuis m 2 1e longeur d onde en nanomètres Q 1 : Décrire brièvement l effet de l ozone sur le rayonnement solaire. Dans quel domaine d altitude son rôle est-il majeur? Pourquoi? L ozone absorbe le rayonnement solaire dans l UV contribuant ainsi au chauffage de l atmosphère. Le maximum d ozone est situé dans la basse stratosphère. On montre grâce au modèle de Chapman que le taux de chauffage par l ozone est maximum vers 50 km d altitude. Q 2 : Le contenu intégré de la colonne d ozone N O 0, ) étant donné ci-dessous, déterminer l épaisseur optique verticale totale de l atmosphère associée à l absorption par l ozone τ O au maximum de la bande de Hartley, à 0,25 µm, puis au maximum des bandes de Chappuis, à 0,6 µm cf. fig. 1). N O = N O 0 n O z)dz = n air 0) z O et τ O = σ O N O = 2, m 10 m = 8, m 2 À 0,25 µm, τ O 81 1, alors qu à 0,6 µm, τ O 0, 04. 1/6

2 Q : La théorie simplifiée de Chapman détermine l altitude ẑ du maximum du taux spectral d absorption du rayonnement par unité de volume. Rappeler sans démonstration par quelle valeur ˆτ de l épaisseur optique, entre z et le haut de l atmosphère, est caractérisée cette altitude. Dans quel domaine spectral l épaisseur optique d ozone τ O peut-elle dépasser ˆτ? La théorie de Chapman montre que ˆτ = 1. Les sections efficaces d absorption de l ozone sont deux ordres de grandeur plus élevées dans l ultra-violet bande de Hartley) que dans le visible : elles dominent la photodissociation au dessus de 0 km. L épaisseur optique totale d ozone est largement supérieure à 1 dans la bande de Hartley où la théorie de Chapman peut s appliquer. En revanche, les hypothèses de Chapman ne sont plus envisageables avec τ O 0, 8au maximum des bandes de Huggins et encore moins avec τ O 0, 04 au maximum des bandes de Chappuis : dans le visible, l atmosphère est très transparente. À basse altitude, où le flux UV de longueur d onde inférieure à 0,2 µm a été complètement absorbé plus haut, ce sont les bandes de Chappuis qui prennent le relais dans la photodissociation de l ozone, en particulier en troposphère. A.II Taux de photodissociation de l ozone dans les bandes de Chappuis On se propose de calculer un ordre de grandeur du taux de photodissociation J O de l ozone dans ses bandes d absorption les plus faibles, les bandes de Chappuis. La section efficace d absorption de l ozone σ O dans les bandes de Chappuis peut être grossièrement approximée cf. fig. 1) par : σ O λ) σo max exp λ λ ) 0 où 0, 1 µm, λ 0 0, 6 µm et σo max m 2 1) Le taux de photodissociation spectral, j O,λ, s exprime en fonction du flux spectral photonique sphérique : j O,λ = η λ σ O λ) q λ hν en s 1 m 1 ) η λ est le rendement quantique, proche de 1 dans la bande ; q λ = 4π L λ u ) d 2 Ω est le flux sphérique spectral incident sur les molécules d ozone. où Le taux de photodissociation J O en s 1 ) dans la bande est obtenu par intégration spectrale de j O,λ. Calcul du taux de photodissociation de l ozone au sommet de l atmosphère Au sommet de l atmosphère et en ne prenant en compte que le flux direct, q λ z = ) Ω S où Ω S est l angle solide sous lequel est vu le Soleil depuis la molécule, et la luminance spectrale du Soleil. Le Soleil est supposé rayonner comme un corps noir à la température T O. Pour mener un calcul analytique approché, on recherche le facteur le plus lentement variable de l intégrande, pour le sortir de l intégration spectrale. Q 4 : Dans les courtes longueurs d onde, la luminance du corps noir loi de Planck) peut être approximée par la loi de Wien éq., p. 6). Déterminer l expression approchée de d ln/hν) dans le domaine des bandes de Chappuis, autour de λ 0, en fonction de x = hν/kt et λ. En déduire la valeur de x, puis la longueur d onde où cette dérivée s annule. On rappelle que le maximum de luminance spectrale L λ est obtenu pour x 5. L approximation de Wien est valable à 10% tant que x > 2, où x = C2 λt S. Pour T S = 6000 K, elle s applique tant que λ < 1 µm, donc dans les bandes de Chappuis. Alors hν Cette dérivée logarithmique s annule pour : = 2ce x λ 4 d ln/hν) = x 4 λ x = 4 c est à dire λ = C 2 4T S 0, 6 µm 2/6

3 Q 5 : Montrer que, autour du maximum λ 0 des bandes de Chappuis, d ln /hν) d ln σ O λ). d ln σ O λ) = ± 1 = ±107 m 1 Dans la bande de Chappuis, autour du maximum 0, 48 µm λ 0, 8 µm) d ln /hν) 1 λ 1, m 1 1 On peut donc considérer le flux sphérique spectral en photons par unité de longueur d onde et de surface) q λ /hν comme constant dans la bande et prendre sa valeur pour λ 0. Q 6 : Intégrer le taux de photodissociation spectral dans la bande de Chappuis en étendant artificiellement l intégration à λ = ± ) et exprimer J O z = ) en fonction de : σo max,, Ω S et la luminance du corps noir à λ 0. J O z = ) = 1 µm j O,λ = 1 µm η λ σ O λ) q 1 µm λ hν σ O λ) Ω S hν Par ailleurs, J O z = ) Ω S hν λ 0) J O z = ) Ω S hν λ 0)σ max + O + 1 µm exp σ O λ) exp λ λ ) 0 = 2 λ λ ) 0 Q 7 : Calculer numériquement Ω S, puis J O, Chappuisz = ). J O z = ) 2 Ω S ce 4 λ 4 0 σ max O 5, s 1 Cas général pour les bandes de Chappuis Q 8 : Compte tenu de la transmission atmosphérique dans ce domaine spectral, que peut on dire de J O, Chappuis au sol pour un soleil proche du zénith? L atmosphère est très transparente dans le domaine visible épaisseur optique verticale de 0,07 pour la diffusion Rayleigh et 0,04 pour l absorption par l ozone à 0,6 µm). Donc aux angles zénithaux faibles, le flux solaire est très peu atténué, ainsi le coefficient de photodissociation de l ozone dans ce domaine diminue très peu quand on se rapproche de la surface. Quels sont les phénomènes négligés en ne prenant en compte que le flux direct? Au flux direct, il faut ajouter le flux diffusé par les molécules d autant plus efficace que la longueur d onde est faible, diffusion Rayleigh en λ 4 ), les particules et les nuages, éventuellement plusieurs fois dans les basses couches plus denses ou les nuages épais) et la réflexion à la surface albedo). /6

4 B Mesure de transmission atmosphérique en visée oblique On se place maintenant dans le cadre de l approximation plan-parallèle où la composition de l atmosphère ne dépend que de l altitude, pour étudier la transmission totale de l atmosphère en fonction de l inclinaison du rayonnement solaire sur la verticale. B.I Préliminaire On note Φ λ θ, z) = Φ λ θ, τ λ ) le flux spectral solaire direct par unité de surface et de longueur d onde, τ λ l épaisseur optique verticale entre le haut de l atmosphère et l altitude z où θ désigne l angle zénithal 0 θ π/2 pour un flux vers le bas). Q 9 : Déterminer l expression du flux solaire Φ λ θ, τ λ ) en fonction de τ λ et θ, et du flux spectral par unité de surface en haut de l atmosphère Φ λ z = ). Φ λ θ, τ λ ) = Φ λ z = ) exp τ λ / cos θ) B.II Mesure de transmission : courbe de Langley Pendant une journée sans nuage au cours de laquelle on suppose constante la composition de l atmosphère, on mesure le flux spectral solaire direct par unité de surface Φ λ θ, τ λ ) à 0, 5 µm à l aide d un photomètre qui suit la direction du soleil. Le tracé de Φ λ θ, τ λ ) en échelle logarithmique en fonction de la quantité m = 1/ cos θ donne le graphique de Langley cicontre. 4 Phim) Q 10 : Expliquer la forme de la courbe obtenue et montrer que : d ln Φ λ θ, τ) dm = τ λ 2) Calculer l épaisseur optique verticale τ λ totale à partir des données graphiques. τ λ = ln Φm = 1)/Φm = 5)) /4 0.2 Phim) en W.m 2.nm 1 échelle log) Q 11 : Extrapoler cette représentation pour m 0. En déduire la valeur approximative du flux solaire en haut de l atmosphère Φ λ θ, τ λ = 0) à 0,5 µm en W.m 2.nm 1. Φ λ θ, τ λ = 0) 1, 8 W.m 2.nm m Fig. 2: Représentation de Langley du flux spectral Φ λ à 0,5 µm par unité de surface en W.m 2.nm 1 en échelle logarithmique), en fonction de m = 1/ cos θ. Q 12 : En supposant le spectre solaire Φ λ z = ) grossièrement représenté en échelles linéaires en fonction de λ par un triangle de base 1500 nm, avec un sommet à 0,5 µm, estimer la constante solaire. C 1, /2 150 W.m 2 Q 1 : Préciser, au vu des valeurs de m, dans quel domaine de latitude se situe l observation. Le soleil passe au zénith, donc zone inter-tropicale latitude entre ±2 ). 4/6

5 B.III Analyse des contributions à l extinction Q 14 : On suppose l atmosphère isotherme ; calculer l épaisseur optique verticale à 0,5 µm due à la diffusion Rayleigh. Calculer l épaisseur optique verticale due à l ozone. En déduire une estimation de l épaisseur optique des aérosols à cette longueur d onde. Quelle hypothèse vous paraît la plus fragile dans cette méthode? Hypothèse fragile : homogénéïté horizontale dans les couches les plus basses pendant une partie importante de la journée. latitude entre ±2 ). 5/6

6 Données numériques : albedo de la planète Terre A 0, constante solaire au niveau de la Terre C 180 W m 2 distance Terre-Soleil D = 1, m rayon du Soleil R O = 6, m température du Soleil T O 6000 K rayon de la Terre a 6, m nombre d Avogadro N = 6, constante de Stefan σ 5, Wm 2 K 4 vitesse de la lumière c =, m s 1 constante de Planck h = 6, J s constante de Boltzmann k = 1, J K 1 masse molaire de l air M air kg pression atmosphérique à la surface de la Terre P 0 = 10 5 Pa concentration du gaz atmosphérique en surface n air z = 0) 2, molécules m échelle de hauteur de l atmosphère terrestre H 7 km concentration du gaz atmosphérique à 0 km n air z = 0 km), molécules m nombre d Avogadro N chaleur massique à pression constante de l air C p 1000 J K 1 kg 1 épaisseur réduite d ozone z O mm concentration d ozone à 0 km n O 0 km) molécules m hauteur d échelle de l ozone au dessus de 0 km H a 5 km contenu intégré d ozone N O 0, ) molécules m 2 section efficace de diffusion Rayleigh à 1 µm σ R 1 µm) m 2 Loi de Planck B T λ) = db T = 2hc 2 hc λ [exp 5 kλt ) ] = 1 λ 5 [exp C 1 C2 λt ) ] = 1 C 1 λ 5 [e x 1] W m 2 sr 1 m 1 ) où C 1 = 2hc 2 1, W m 2 sr 1, C 2 = hc k 1, m K et x = hν kt = C 2 λt. Approximation de Wien B T λ) = db T C 1e x λ 5 à environ 10% pour x > 2, ) 6/6

Le rayonnement dans l atmosphère 1 : le domaine solaire

Le rayonnement dans l atmosphère 1 : le domaine solaire Chapitre 5 Le rayonnement dans l atmosphère 1 : le domaine solaire altitude (km) 5.1 Introduction 5.1.1 Structure thermique verticale moyenne de l atmosphère 80 70 60 50 40 30 20 10 217 K Profil vertical

Plus en détail

MP115 : Physique de l environnement Épreuve du 13 janvier 2014 (session 1) Deux parties indépendantes : rayonnement et océanographie.

MP115 : Physique de l environnement Épreuve du 13 janvier 2014 (session 1) Deux parties indépendantes : rayonnement et océanographie. MP115 : Physique de l environnement Épreuve du 13 janvier 2014 (session 1) Deux parties indépendantes : rayonnement et océanographie Rayonnement Durée recommandée : 1h 45 Aucun document autorisé Calculatrice

Plus en détail

Chapitre 2. Rayonnement du corps noir. 2.1 Définition, propriétés du corps noir Processus d interaction rayonnement matière

Chapitre 2. Rayonnement du corps noir. 2.1 Définition, propriétés du corps noir Processus d interaction rayonnement matière Chapitre 2 Rayonnement du corps noir 2.1 Définition, propriétés du corps noir 2.1.1 Processus d interaction rayonnement matière incident réfléchi diffusé émis t λ = ρ λ = flux spectral transmis flux spectral

Plus en détail

Cours de thermodynamique. Chapitre 1 Transferts thermiques radiatifs

Cours de thermodynamique. Chapitre 1 Transferts thermiques radiatifs Cours de thermodynamique Chapitre 1 1 Introduction Un corps chaud, même placé dans le vide, émet un rayonnement d origine électromagnétique dont la composition spectrale est fonction de sa température.

Plus en détail

Chapitre 3. équilibre radiatif de l'atmosphère

Chapitre 3. équilibre radiatif de l'atmosphère Chapitre 3 Forces et contraintes agissant sur l'océan Equilibre radiatif terrestre Echanges océan-atmosphère Transport de chaleur par l'océan équilibre radiatif de l'atmosphère Comment le système Océan

Plus en détail

1 LES BASES PHYSIQUES

1 LES BASES PHYSIQUES 1.1 Le rayonnement 1 LES BASES PHYSIQUES Les informations mentionnées dans ce chapitre constituent la base minimale nécessaire pour la compréhension des techniques et applications de la télédétection.

Plus en détail

Transfert radiatif Notions Fondamentales

Transfert radiatif Notions Fondamentales Transfert radiatif Notions Fondamentales François-Marie Bréon Chercheur au Laboratoire des Sciences du Climat et de l Environnement Unité Mixte CEA-CNRS-UVSQ Spectre Solaire infrarouge (IR) Rouge 0.8 Violet

Plus en détail

Master 1 IMM mention Ingénierie Mécanique (M1) Transferts de chaleur et de masse TD7 - Rayonnement 1

Master 1 IMM mention Ingénierie Mécanique (M1) Transferts de chaleur et de masse TD7 - Rayonnement 1 Université de Caen UFR des Sciences 1 Master 1 IMM mention Ingénierie Mécanique (M1) Transferts de chaleur et de masse TD7 - Rayonnement 1 Exercice VII.1 : Le rayonnement solaire incident sur la terre

Plus en détail

Diagrammes HR et amas globulaires

Diagrammes HR et amas globulaires Diagrammes HR et amas globulaires Année 2013-2014: TD 4 Résumé du TD : Ce TD est divisé en 2 parties : La première partie concerne des aspects pratiques de la construction des diagrammes HR La deuxième

Plus en détail

Recueil d ordres de grandeur

Recueil d ordres de grandeur Recueil d ordres de grandeur 1 Optique La lumière Longueurs d onde (visible) :...400 nm < λ < 750 nm Fréquences (visible) :...4.10 14 Hz < ν = c/λ < 8.10 14 Hz Energie du photon (visible) :...1,5 ev

Plus en détail

Rayonnement Atmosphérique: Equation du Transfert Radiatif: modèles simplifiés. Luc MUSSON-GENON

Rayonnement Atmosphérique: Equation du Transfert Radiatif: modèles simplifiés. Luc MUSSON-GENON Rayonnement Atmosphérique: Equation du Transfert Radiatif: modèles simplifiés 1 Pourquoi le rayonnement en météorologie? C est la seule source d énergie du système Terre-Atmosphère L atmosphère ne consomme

Plus en détail

THERMODYNAMIQUE-DIFFUSION

THERMODYNAMIQUE-DIFFUSION Spé y 3-4 Devoir n THERMODYNAMIQUE-DIFFUSION On étudie la compression ou la détente d un ga enfermé dans un récipient. Lorsque le bouchon se déplace, le volume V occupé par le ga varie. L atmosphère est

Plus en détail

SOMMAIRE NOTIONS FONDAMENTALES 1

SOMMAIRE NOTIONS FONDAMENTALES 1 SOMMAIRE NOTIONS FONDAMENTALES 1 OBJECTIFS POURSUIVIS 1 NOTION DE TEMPERATURE 2 NOTION DE CHALEUR 3 DÉFINITIONS 3 ECHANGE DE CHALEUR À TRAVERS UNE SURFACE 3 UNITÉS SI ET UNITÉS PRATIQUES 4 EXEMPLES DE

Plus en détail

Transfert de chaleur par rayonnement

Transfert de chaleur par rayonnement Transfert de chaleur par rayonnement 1 Fraction de l émittance totale rayonnée par le corps noir dans un intervalle donnée λ 1 λ 2 Dans de nombreuses applications il arrive qu on ait besoin de connaître

Plus en détail

TRANSFERTS THERMIQUES

TRANSFERTS THERMIQUES Ecole des Mines Nancy 2 ème année r e r 0 ϕ c T 0 ϕ r ϕ r+dr T r r + dr Thermique log 10 (λ) γ -11-10 -9-8 -7-6 -5-4 -3-2 -1 0 1 2 3 4 5 X IR UV Visible Micro-onde Onde radio Téléphone TRANSFERTS THERMIQUES

Plus en détail

PHOTOMETRIE COLORIMETRIE Polycopié n 1 Licence Pro IOVIS

PHOTOMETRIE COLORIMETRIE Polycopié n 1 Licence Pro IOVIS PHOTOMETRIE COLORIMETRIE Polycopié n 1 Licence Pro IOVIS 2009-2010 Jean-Marc Frigerio UPMC Introduction - L optique instrumentale intervient dans des applications ou l observateur humain n est plus directement

Plus en détail

INTRODUCTION à L ASTROPHYSIQUE. Cours d option de Licence Magistere Interuniversitaire. 2eme cours: Le Transfert du Rayonnement

INTRODUCTION à L ASTROPHYSIQUE. Cours d option de Licence Magistere Interuniversitaire. 2eme cours: Le Transfert du Rayonnement INTRODUCTION à L ASTROPHYSIQUE Cours d option de Licence Magistere Interuniversitaire de Physique. Steven Balbus 2eme cours: Le Transfert du Rayonnement 1 RAPPELS SUR LE RAYONNEMENT Relations d Einstein:

Plus en détail

PHYSIQUE DE L'ATMOSPHÈRE. Exercices de radiation

PHYSIQUE DE L'ATMOSPHÈRE. Exercices de radiation SCA 7002 PHYSIQUE DE L'ATMOSPHÈRE Exercices de radiation 1) Par l observation au sol, la projection sur la sphère de rayon unitaire d un nuage peut être schématiquement représenté par la portion du ciel

Plus en détail

Constante de Stefan-Boltzmann

Constante de Stefan-Boltzmann Expérience N o 39 Constante de Stefan-Boltzmann 1 Introduction Tout corps à température T 0 K émet et absorbe une radiation électromagnétique dans le domaine des longueurs d onde λ variant de 0 à l infini.

Plus en détail

1 Physique des rayonnements :

1 Physique des rayonnements : SPECROSCOPIE DES NÉBULEUSES À ÉMISSION E DES ÉOILES 1 Physique des rayonnements : 1.1 La loi de Plank et ses petites sœurs : Ces relations permettent de décrire le flux lumineux à partir de la longueur

Plus en détail

Questions de cours (réponses courtes souhaitées!)

Questions de cours (réponses courtes souhaitées!) Radiométrie Examen Décembre 2013 Durée : 2 heures Document autorisé: une feuille A4 manuscrite et une calculatrice. Les élèves étrangers ont également le droit d apporter un dictionnaire s ils le souhaitent.

Plus en détail

Figure 1.1 Angle solide élémentaire. = d2 Scosθ. = d2 Σ

Figure 1.1 Angle solide élémentaire. = d2 Scosθ. = d2 Σ Chapitre 1 Grandeurs radiométriques 1.1 Grandeurs géométriques 1.1.1 Angle solide Définition L angle solide Ω sous lequel est vue une surface S depuis un point A est l aire de la surface Σ 1 découpée dans

Plus en détail

Chapitre 3 : Les sources de lumières colorées (p. 45)

Chapitre 3 : Les sources de lumières colorées (p. 45) PARTIE 1 - OBSERVER : COULEURS ET IMAGES Chapitre 3 : Les sources de lumières colorées (p. 45) Compétences attendues : Distinguer une source polychromatique d une source monochromatique caractérisée par

Plus en détail

DM n 11. A la poursuite du rayon vert

DM n 11. A la poursuite du rayon vert DM n 11 Thème(s) : Electromagnétisme A la poursuite du rayon vert Le rayon vert est un phénomène lumineux qui se produit lors du coucher ou du lever du Soleil, lorsque certaines conditions atmosphériques

Plus en détail

Bilan énergétique effet de serre couche d ozone

Bilan énergétique effet de serre couche d ozone Bilan énergétique effet de serre couche d ozone Energie incidente au sommet de l atmosphère Selon la théorie du corps noir, tout objet dont la température est supérieure au 0 absolu (0K) rayonne. Le flux

Plus en détail

TD de rayonnement avec quelques éléments de correction TD 1 : GRANDEURS ÉNERGÉTIQUES

TD de rayonnement avec quelques éléments de correction TD 1 : GRANDEURS ÉNERGÉTIQUES TD de rayonnement avec quelques éléments de correction TD 1 : GRANDEURS ÉNERGÉTIQUES 1 Puissance reçue par une surface élémentaire S 2 S 4 d d 45 60 S 1 d S 3 On considère une source plane de petite surface

Plus en détail

Constante de Stefan-Boltzmann

Constante de Stefan-Boltzmann Expérience N o 39 onstante de Stefan-Boltzmann 1 Introduction Tout corps à température T 0 K émet et absorbe une radiation électromagnétique dans le domaine des longueurs d onde λ variant de 0 à l infini.

Plus en détail

Atelier météo Physique Séances des vendredi 8 et 15 janvier 2016 Le Climat de la Terre

Atelier météo Physique Séances des vendredi 8 et 15 janvier 2016 Le Climat de la Terre Atelier météo Physique Séances des vendredi 8 et 15 janvier 2016 Le Climat de la Terre A partir de : CNRS Sagascience, le climat de la Terre http://www.cnrs.fr/cw/dossiers/dosclim/ La température de la

Plus en détail

DS DE PHYSIQUE-CHIMIE DU 19 NOVEMBRE 2015

DS DE PHYSIQUE-CHIMIE DU 19 NOVEMBRE 2015 DS DE PHYSQUE-CHME DU 19 NOVEMBRE 2015 Rendre l énoncé avec la copie. Documents interdits. Calculatrice autorisée. Soigner la présentation. Numéroter correctement les questions. EXERCCE 1 : LES RAYONS

Plus en détail

Question de Théorie 3

Question de Théorie 3 Question de Théorie 3 Page 1 sur 8 Question de Théorie 3 Cette question comporte 5 parties indépendantes Pour chacune, on demande un ordre de grandeur, non une réponse précise Inscrivez toutes vos réponses

Plus en détail

IUT Lannion Optique instrumentale

IUT Lannion Optique instrumentale IUT Lannion Optique instrumentale Plan du cours Notions de base et définitions Photométrie / Sources de lumière Les bases de l optique géométrique Généralités sur les systèmes optiques Eléments à faces

Plus en détail

SCA2626 Météorologie générale HIVER Examen #1

SCA2626 Météorologie générale HIVER Examen #1 Examen #1 Durée : h. Pondération : Questions de 1 à 0 : points chaque (total 40 points) Exercices : 0 points chaque (total 60 points) Questions 1. à 17 : Choisissez la bonne réponse Questions 18 à 0 :

Plus en détail

DESCRIPTION DE LA MICROSTRUCTURE DU MATERIAU A SES DEUX ECHELLES CARACTERISTIQUES

DESCRIPTION DE LA MICROSTRUCTURE DU MATERIAU A SES DEUX ECHELLES CARACTERISTIQUES DESCRIPTION DE LA MICROSTRUCTURE DU MATERIAU A SES DEUX ECHELLES CARACTERISTIQUES 1 µm 100 nm F. Enguehard, CEA / Le Ripault, franck.enguehard@cea.fr 1 TRANSFERT RADIATIF : DEMARCHE DE MODELISATION NOTION

Plus en détail

TM 2 année scolaire IE n 2

TM 2 année scolaire IE n 2 TM 2 année scolaire 2011-12 IE n 2 Partie commune Exercice n 1 L austénite est constituée de fer qui suit le réseau cubique faces centrées. 1. Représenter une maille de fer γ. 2. Calculer le rayon du fer

Plus en détail

Etude théorique et expérimentale d un récepteur d énergie solaire concentrée à lit fluidisé

Etude théorique et expérimentale d un récepteur d énergie solaire concentrée à lit fluidisé Etude théorique et expérimentale d un récepteur d énergie solaire concentrée à lit fluidisé Présenté par Germain BAUD Directeurs de thèse : - Jean-Jacques BEZIAN - Gabriel OLALDE 1 Les centrales solaires

Plus en détail

Test n 4 : Transferts thermiques par convection et par rayonnement

Test n 4 : Transferts thermiques par convection et par rayonnement Université de Cergy-Pontoise Phénomènes de transport S3-CUPGE / MP / MSI C. Pinettes Test n 4 : Transferts thermiques par convection et par rayonnement 1. Qu est-ce que la convection? La convection naturelle?

Plus en détail

La surface de la Lune

La surface de la Lune ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURS DE L AÉRONAUTIQUE ET DE L ESPACE DE TECHNIQUES AVANCÉES, DES TÉLECOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES

Plus en détail

PREMIER PROBLEME LANCER DE POIDS

PREMIER PROBLEME LANCER DE POIDS Note au candidat Les vecteurs sont notés en caractères gras dans le texte. Le sujet est divisé en 3 problèmes indépendants. Il est vivement conseillé au candidat de lire préalablement l intégralité du

Plus en détail

Examen. 6 janvier 2017

Examen. 6 janvier 2017 Master Recherche 2 e année Astronomie, Astrophysique et Ingénierie Spatiale Année 2016-2017 EL5A François Levrier Examen 6 janvier 2017 L examen est constitué de trois exercices tous indépendants. On prendra

Plus en détail

EXERCICES Equilibre radiatif

EXERCICES Equilibre radiatif EXERCICES Equilibre radiatif 1 Une surface plate à bord d un satellite se comporte comme un corps gris absorption indépendante de la longueur d onde) avec un facteur d absorption a. Calculez la température

Plus en détail

Journée d Etude de la SFT Mesures des propriétés thermiques de solides dans des conditions extrêmes

Journée d Etude de la SFT Mesures des propriétés thermiques de solides dans des conditions extrêmes Journée d Etude de la SFT Mesures des propriétés thermiques de solides dans des conditions extrêmes Paris, 17 décembre 2009 Problématique liée à la mesure des hautes températures par voie optique en présence

Plus en détail

Questions de cours (réponses courtes souhaitées!)

Questions de cours (réponses courtes souhaitées!) Radiométrie Examen Décembre 2014 Durée : 2 heures Documents autorisés: une feuille A4 manuscrite et une calculatrice. Les élèves étrangers ont également le droit d apporter un dictionnaire s ils le souhaitent.

Plus en détail

CAHIER DES CHARGES. I. Conception de différents fours solaires avec relevés de température. Aliment. Rangement. Utilisateur FC1 FP1 FC2.

CAHIER DES CHARGES. I. Conception de différents fours solaires avec relevés de température. Aliment. Rangement. Utilisateur FC1 FP1 FC2. 1 I. Conception de différents fours solaires avec relevés de température CAHIER DES CHARGES Déplacement Rangement FC2 FC1 Aliment FP1 Four solaire Utilisateur FC5 Fonctionnalité FC3 Soleil FC4 Prix 2 Solarimètre

Plus en détail

La radiation électromagnétique

La radiation électromagnétique La radiation électromagnétique Caractéristiques du champ radiatif Flux radiatif Irradiance et radiance (de bande et spectrale) Lois fondamentales du rayonnement thermique Émissivité versus absorbance Table

Plus en détail

Examen Instrumentation : optique & chaîne de détection

Examen Instrumentation : optique & chaîne de détection Observatoire de Paris 2016-2017 M1 Instrumentation, B. Mosser, S. Lacour Examen Instrumentation : optique & chaîne de détection Durée : 2h30. Conseil : pas plus de 5 minutes par exercice. Barême indicatif

Plus en détail

EXAMEN 18 décembre 2007

EXAMEN 18 décembre 2007 Université Pierre et Marie Curie LP 106 Ondes : Son et Lumière EXAMEN 18 décembre 2007 Durée : 2 heures Calculatrices, téléphones portables, et tout autre appareil électronique sont interdits. On donnera

Plus en détail

Le Rayonnement Électromagnétique (REM)

Le Rayonnement Électromagnétique (REM) Le Rayonnement Électromagnétique (REM) Caractéristiques du REM Géométrie Les angles Angle solide Luminance Flux Emission du rayonnement Equation du transfert radiatif Absorption atomique et moléculaire

Plus en détail

Ce document complète le chapitre X d électromagnétisme : Rayonnement dipolaire

Ce document complète le chapitre X d électromagnétisme : Rayonnement dipolaire Activité Documentaire Propriétés optiques de l atmosphère MP Ce document complète le chapitre X d électromagnétisme : Rayonnement dipolaire L observation du ciel interpelle nécessairement l observateur,

Plus en détail

Étude d un lac de montagne

Étude d un lac de montagne Université Paris Saclay année 015/016 Université Paris Sud faculté des sciences Licence de physique L3 PAPP & MECA Physique Statistique Examen du 7 janvier 016 Durée : 3h Seuls documents autorisés : le

Plus en détail

PRINCIPES GENERAUX DE LA SPECTROSCOPIE

PRINCIPES GENERAUX DE LA SPECTROSCOPIE Chapitre I PRINCIPES GENERAUX DE LA SPECTROSCOPIE I - DEFINITION La spectroscopie est l étude du rayonnement électromagnétique émis, absorbé ou diffusé par les atomes ou les molécules. Elle fournit des

Plus en détail

Spectroscopie et sources lumineuses

Spectroscopie et sources lumineuses Chapitre 3 Spectroscopie et sources lumineuses 3.1 Spectre de différentes sources de lumière 3.1.1 Domaine spectral proche du visible La lumière est une onde électromagnétique, c est à dire une perturbation

Plus en détail

Examen de thermique. Effet de serre et réchauffement climatique. Master M2 DFE Thermique - D5DFE11

Examen de thermique. Effet de serre et réchauffement climatique. Master M2 DFE Thermique - D5DFE11 Examen de thermique 18 décembre 013-3 heures I Effet de serre et réchauffement climatique La principale source de chaleur sur Terre provient de l énergie solaire, transmise sous forme de rayonnement. Ce

Plus en détail

Phénomènes de diffusion

Phénomènes de diffusion S3 PMCP 2016/2017 1 Réaction nucléaire. TD de thermodynamique n 7 Phénomènes de diffusion Un faisceau monocinétique de neutrons, de densité de courant J 0 e x arrive en x = 0 dans un milieu contenant n

Plus en détail

Partie I - Taille critique d une bactérie aérobie

Partie I - Taille critique d une bactérie aérobie Spé PC* 2018-2019 pour le : 28 Janvier 2019 DM DE PHYSIQUE N 8 Biophysique de la bactérie Escherichia coli L objet de ce problème est d appliquer les lois de la physique à la bactérie Escherichia coli,

Plus en détail

Corrigé. Numéro : CADRE RÉSERVÉ A L ENSEIGNANT :

Corrigé. Numéro : CADRE RÉSERVÉ A L ENSEIGNANT : Numéro : Corrigé PAGE DE GARDE SUJET D EXAMEN Année universitaire 206-207 Classe : Aéro-3 Type d examen : PARTIEL Matière : Transfert thermique Code matière : En 3tc Date : 25 janvier 207 Horaire : Durée

Plus en détail

L'effet de serre et les conséquences de ses variations

L'effet de serre et les conséquences de ses variations L'effet de serre et les conséquences de ses variations Jean Louis Dufresne Institut Pierre Simon Laplace Laboratoire de Météorologie Dynamique CNRS/ENS/X/UPMC Plan 1.Découverte et physique de l'effet de

Plus en détail

Rapide présentation des notions de base sur le rayonnement thermique.

Rapide présentation des notions de base sur le rayonnement thermique. Rapide présentation des notions de base sur le rayonnement thermique. 1 6 Juin 2012 Intervenante : Catherine Freydier, ENM/EGM catherine.freydier@meteo.fr Plan de l intervention : Les différents modes

Plus en détail

TD-PT4 : Fluides en écoulement

TD-PT4 : Fluides en écoulement TD-PT4 : Fluides en écoulement Révisions de cours : Définir une particule de fluide comme un système mésoscopique de masse constante. Décrire le champ eulérien des vitesses par opposition à la description

Plus en détail

Durée de l épreuve : 3 heures Documents autorisés Date examen : Mercredi 15 février 2012 de 18h30 à 21h30 Date rattrapage : Mercredi 18 avril 2012 de 18h30 à 21h30 1 ECHANGEUR On utilise un échangeur à

Plus en détail

C1 - Propriétés optiques des matériaux : réflexion, réfraction, dispersion, absorption

C1 - Propriétés optiques des matériaux : réflexion, réfraction, dispersion, absorption C1 - Propriétés optiques des matériaux : réflexion, réfraction, dispersion, absorption TD 1.1 - Utilisation d un prisme ayant un angle droit Q1.1.1 - Calculer l angle limite d incidence dans le cas de

Plus en détail

Transitions dans les cristaux liquides

Transitions dans les cristaux liquides Théorie Statistique des Champs Examen du 30 mars 2007 Transitions dans les cristaux liquides Les cristaux liquides furent découverts par F. Reinitzer en 1888. Ce sont des systèmes constitués de molécules

Plus en détail

Corrigé des TD de Physique Quantique

Corrigé des TD de Physique Quantique Université Joseph Fourier L2 UE Phy 242 Corrigé des TD de Physique Quantique C. Hoffmann, G. Méjean 28 1 Rayonnement du corps noir Soit u(ω, T ) la densité spectrale et volumique d énergie du rayonnement

Plus en détail

Thème 6. Transferts thermiques et rayonnement

Thème 6. Transferts thermiques et rayonnement 1 Thème 6 Transferts thermiques et rayonnement Questionnaire : 1 ère question : Quel coefficient définit la capacité d un matériau à conduire la chaleur : Le coefficient d échange thermique surfacique

Plus en détail

ministère éducation nationale jeunesse vie associative E AGRÉGATION CONCOURS EXTERNE

ministère éducation nationale jeunesse vie associative E AGRÉGATION CONCOURS EXTERNE ministère éducation nationale jeunesse vie associative E AGRÉGATION CONCOURS EXTERNE A EAE GCI 2 Tournez la page S.V.P. B 2 3 Tournez la page S.V.P. 4 5 Tournez la page S.V.P. 6 7 Tournez la page S.V.P.

Plus en détail

Approche descriptive du rayonnement thermique

Approche descriptive du rayonnement thermique Physique quantique Chapitre 1 Approche descriptive du rayonnement thermique Comment le programme officiel de PC définit ce chapitre Notions et contenus Approche descriptive du rayonnement du corps noir

Plus en détail

PRINCIPES GENERAUX DE LA SPECTROSCOPIE

PRINCIPES GENERAUX DE LA SPECTROSCOPIE Chapitre I PRINCIPES GENERAUX DE LA SPECTROSCOPIE I - DEFINITION La spectroscopie est l étude du rayonnement électromagnétique émis, absorbé ou diffusé par les atomes ou les molécules. Elle fournit des

Plus en détail

1. Théorie de la thermographie

1. Théorie de la thermographie 1. Théorie de la thermographie 1.1 Introduction Le domaine du rayonnement infrarouge et les techniques de thermographie associées sont souvent méconnus des nouveaux utilisateurs de caméra infrarouge. Cette

Plus en détail

Plan de la séance. L5C : Environnement thermique et maîtrise énergétique. Cours n 04 > Bases physiques (II)

Plan de la séance. L5C : Environnement thermique et maîtrise énergétique. Cours n 04 > Bases physiques (II) L5C : Environnement thermique et maîtrise énergétique Cours n 04 > Bases physiques (II) Brises soleils coulissants (Architecte Bruno Burlat) Nicolas.Tixier@grenoble.archi.fr! Les illustrations de ces cours

Plus en détail

1.11 La température effective

1.11 La température effective En intégrant sur les fréquences, on trouve les expressions suivantes : B = I = σt 4 π. F + = F = σt 4. u = 4σ c T 4 = at 4. P rad = 1 3 at 4. σ = 5.67 10 5 erg/(cm 2 K 4 sec) est la constante de Stefan

Plus en détail

Le rayonnement (2) Applications astrophysiques du rayonnement du corps noir Notions de spectroscopie L'atome d'hydrogène L'effet Doppler

Le rayonnement (2) Applications astrophysiques du rayonnement du corps noir Notions de spectroscopie L'atome d'hydrogène L'effet Doppler Le rayonnement (2) Applications astrophysiques du rayonnement du corps noir Notions de spectroscopie L'atome d'hydrogène L'effet Doppler 1 Le rayonnement de corps noir Rappels : Propriétés essentielles

Plus en détail

Examen de Physique Statistique 2ème session

Examen de Physique Statistique 2ème session Licence de Physique Fondamentale Université Paris-Sud Examen de Physique Statistique 2ème session Mardi 28 Août 2012 durée : 3 heures La qualité de la rédaction sera prise en compte dans la note. Les deux

Plus en détail

Licence 3 et Magistère de Physique année universitaire 2009/2010. TD de Physique Statistique n 10 Physique Statistique du Rayonnement

Licence 3 et Magistère de Physique année universitaire 2009/2010. TD de Physique Statistique n 10 Physique Statistique du Rayonnement Licence 3 et Magistère de Physique année universitaire 29/21 Formule utile : 1 Rayonnement fossile. TD de Physique Statistique n 1 Physique Statistique du Rayonnement + x 3 dx exp(x) 1 = π4 15. (1) Après

Plus en détail

Le rayonnement de corps noir

Le rayonnement de corps noir Le rayonnement de corps noir 1. Définition: Rayonnement émis par un milieu en équilibre thermodynamique. Que signifie «équilibre thermodynamique»? thermique (T), mécanique (P), chimique ETL Un exemple

Plus en détail

Question de cours. Mouvement circulaire des satellites

Question de cours. Mouvement circulaire des satellites Correction de la maturita bilingue franco-tchèque et franco-slovaque session de mai 006 Question de cours Mouvement circulaire des satellites 1. Forces mises en jeu a. Actions négligées : (1) les forces

Plus en détail

GRANDEURS ET UNITES PHOTOMETRIQUES

GRANDEURS ET UNITES PHOTOMETRIQUES GRANDEURS ET UNITES PHOTOMETRIQUES 1. NOTION D ANGLE SOLIDE : 1.1. Définition : Angle solide : Ω Angle = aire découpée sur une sphère aire du carré de côté égal au rayon DIMENSION : sans 1.2. Angle solide

Plus en détail

3 - Equilibre thermique

3 - Equilibre thermique 3 - Equilibre thermique Le rayonnement du corps noir Lois de Maxwell, Boltzmann et Saha Exemples Equilibres matière-rayonnement Milieu opaque au rayonnement Echanges d énergie Equilibre thermodynamique

Plus en détail

Sources de lumière. En déduire une relation entre λ et T puis une relation entre λ et f :

Sources de lumière. En déduire une relation entre λ et T puis une relation entre λ et f : 1 Sources de lumière I. La lumière : une onde 1. Longueurs d ondes Expérience : propagation d une onde à la surface de l eau La longueur d onde λ correspond à la distance qui sépare 2 vagues. Les vagues

Plus en détail

Exemples d échanges radiatifs: Equilibre thermique d un revêtement soumis au rayonnement solaire

Exemples d échanges radiatifs: Equilibre thermique d un revêtement soumis au rayonnement solaire Exemples d échanges radiatifs: Equilibre thermique d un revêtement soumis au rayonnement solaire THEMACS Ingénierie 23 rue Alfred Nobel 77420 Champs-sur-Marne Tél : 06.29.82.44.34 contact@themacs.fr www.themacs.fr

Plus en détail

Itinéraire d'accès à Al9ahira (point B sur la carte) en partant de la Place Ibéria

Itinéraire d'accès à Al9ahira (point B sur la carte) en partant de la Place Ibéria http://al9ahira.com/ Itinéraire d'accès à (point B sur la carte) en partant de la Place Ibéria المملكة المغربية ROYAUME DU MAROC Ministère de l'enseignement Supérieur, de la Recherche Scientifique et de

Plus en détail

BIOPHYSIQUE de la VISION

BIOPHYSIQUE de la VISION michel.cherel@univ-nantes.fr QuickTime et un décompresseur TIFF (LZW) sont requis pour visionner cette image. BIOPHYSIQUE de la VISION CHO lumière roug e lumière bleu e lumière vert e Fonctions sensorielles

Plus en détail

EXERCICES ET PROBLÈMES

EXERCICES ET PROBLÈMES APM-INPT thu-reladi (2004), O. Thual (June 8, 2004) 1 EXERCICES ET PROBLÈMES EXERCICE 0.1 Vitesse du son dans un gaz parfait Les lois d état d un gaz parfait peuvent s écrire p = ρ r Θ et e = C v Θ où

Plus en détail

Devoir surveillé n 4 :

Devoir surveillé n 4 : Devoir surveillé n 4 : Durée : 4h. Ce sujet comporte 3 problèmes indépendants. Calculette autorisée. Mécanique : Modèle de l électron élastiquement lié et couleur du ciel Document n 1 : Le modèle de l

Plus en détail

Devoir surveillé n 2 :

Devoir surveillé n 2 : TSI 1 - Lycée Pierre-Paul Riquet 2018-2019 Devoir surveillé n 2 : Phénomènes optiques Durée : 4h Exercice n 1 : Couleur et lumière (inspiré du concours BCPST 2013) Données : - Vitesse de la lumière dans

Plus en détail

Feuille d exercices : Ondes sonores

Feuille d exercices : Ondes sonores Feuille d exercices : Ondes sonores P Colin 2018/2019 1 Intensité sonore Deux ondes sonores, dont l une a une fréquence égale au double de la fréquence de l autre, ont des amplitudes de déplacement des

Plus en détail

Chapitre III Les photons X et γ

Chapitre III Les photons X et γ Chapitre III Les photons X et γ E.VIENT 1 Interaction des photons avec la matière Interactions "catastrophiques" : Modification radicale de la trajectoire et de l'énergie Disparition complète Probabilité

Plus en détail

Propriétés optiques des aérosols

Propriétés optiques des aérosols Propriétés optiques des aérosols Polluants Fiche détaillée Niveau (A partir de la 2nd) I. Interaction du rayonnement avec les aérosols et propriétés optiques associées Les rayonnements susceptibles d interagir

Plus en détail

1. La structure interne du soleil : un modèle simple

1. La structure interne du soleil : un modèle simple L héliosismologie l étude sismique du soleil a pris son envol au cours des années 1970, lorsque l on s est aperçu que les raies du spectre solaire étaient modulées à des périodes de l ordre de 5 minutes,

Plus en détail

CH2 CH 3 CH 3 CH 2 CH 3 CH CH 2. 1S DM Nom Prénom : Je connais mon cours : (Cou) 7 J applique mon cours : (App) 6 A P P L.

CH2 CH 3 CH 3 CH 2 CH 3 CH CH 2. 1S DM Nom Prénom : Je connais mon cours : (Cou) 7 J applique mon cours : (App) 6 A P P L. 1S DM Nom Prénom : Note : /20 Je connais mon cours : (ou) 7 J applique mon cours : (pp) 6 Je raisonne : (Rai) 4 Je communique (om) 0 O U R P P L R I S Exercice 1 : 1) Qu'est ce que la règle de l'octet?

Plus en détail

Licence 3 et Magistère de Physique année universitaire 2009/2010. TD de Physique Statistique n 10 Physique Statistique du Rayonnement

Licence 3 et Magistère de Physique année universitaire 2009/2010. TD de Physique Statistique n 10 Physique Statistique du Rayonnement Licence 3 et Magistère de Physique année universitaire 29/21 Formule utile : 1 Rayonnement fossile. TD de Physique Statistique n 1 Physique Statistique du Rayonnement + x 3 dx exp(x) 1 = π4 15. (1) Après

Plus en détail

Propriétés optiques des matériaux : réflexion, réfraction, dispersion, absorption

Propriétés optiques des matériaux : réflexion, réfraction, dispersion, absorption Propriétés optiques des matériaux : réflexion, réfraction, dispersion, absorption Les matériaux utilisés pour réaliser des composants optiques sont ± réfringents (déviation du faisceau au franchissement

Plus en détail

Une première présentation de l Univers. Thème : Univers

Une première présentation de l Univers. Thème : Univers Une première présentation de l Univers Thème : Univers Objectifs Savoir que le remplissage de l espace par la matière est essentiellement lacunaire, aussi bien au niveau de l atome qu à l échelle cosmique

Plus en détail

PHYSIQUE. (Révisions vacances d hiver 2013)

PHYSIQUE. (Révisions vacances d hiver 2013) PHYSIQUE (Révisions vacances d hiver 2013) Séance 3 ONDES : RAYONNEMENT DANS L UNIVERS CARACTERISTIQUES DES ONDES MECANIQUES PROPRIETES DES ONDES PERIODIQUES-DIFFRACTION Exercice Type 1 : Ondes progressives

Plus en détail

Document 1 : Corps noirs Consulter la vidéo. Pour en savoir davantage : https://media4.obspm.fr/public/fsu/pages_corps-noir/absorbant-observer.

Document 1 : Corps noirs Consulter la vidéo. Pour en savoir davantage : https://media4.obspm.fr/public/fsu/pages_corps-noir/absorbant-observer. Chap3 : Sources de lumières colorées ACTIVITE : LA COULEUR DES ETOILES Situation déclenchante Les étoiles peuvent être de différentes couleurs : Etoile Bételgeuse Soleil Sirius Rigel Couleur Rouge Jaune

Plus en détail

UE libre UBO CLIMAT : Plan du chapitre N 2 ~ 78 % O 2 ~ 21 % Ar ~ 1 % H 2 0 ~ 0.5 % CO 2 ~ 0.04 % Chapitre 4 Circulation atmosphérique

UE libre UBO CLIMAT : Plan du chapitre N 2 ~ 78 % O 2 ~ 21 % Ar ~ 1 % H 2 0 ~ 0.5 % CO 2 ~ 0.04 % Chapitre 4 Circulation atmosphérique UE libre UBO CLIMAT : Passé,, présent, futur Plan du chapitre Comprendre comment la pression et la température atmosphérique sont reliées entre elles Établir les forces motrices responsables du mouvement

Plus en détail

Étude des nuages de Vénus par polarimétrie avec SPICAV/VEx

Étude des nuages de Vénus par polarimétrie avec SPICAV/VEx Étude des nuages de Vénus par polarimétrie avec SPICAV/VEx Loïc Rossi Sous la direction de Franck Montmessin et Emmanuel Marcq LATMOS/UVSQ 26 mars 2013 Loïc Rossi (LATMOS/UVSQ) Étude des nuages de Vénus

Plus en détail

Couche Limite Atmosphérique Echange à l interface terre-atmosphère

Couche Limite Atmosphérique Echange à l interface terre-atmosphère Couche Limite Atmosphérique Echange à l interface terre-atmosphère Jean-Martial Cohard Cohard@hmg.inpg.fr Plan de Cours Couche Limite Atmosphérique Echange à l Interface Terre-Atmosphère I- Etude de l

Plus en détail

Le corps noir. par Gilbert Gastebois. = (n+1) p et la probabilité d'absorption est proportionnelle à n : P a. , séparés de ΔE = hν N e

Le corps noir. par Gilbert Gastebois. = (n+1) p et la probabilité d'absorption est proportionnelle à n : P a. , séparés de ΔE = hν N e Constante de Boltzmann Constante de Planck Vitesse de la lumière 1. Probabilité d'échange atome-photon Le corps noir par Gilbert Gastebois k = 1,380 650 3 10-23 J/K h = 6,626 068 7 10-3 J.s c = 299 792

Plus en détail

Chapitre 5. Forces de marée Limite de Roche Atmosphères planétaires Bilan énergétique

Chapitre 5. Forces de marée Limite de Roche Atmosphères planétaires Bilan énergétique Chapitre 5 Forces de marée Limite de Roche Atmosphères planétaires Bilan énergétique Eclatement des astres par effet de marée: la limite de Roche La limite de Roche Lorsque deux corps orbitent l un autour

Plus en détail

Glossaire. Termes techniques

Glossaire. Termes techniques Glossaire Termes techniques Aérosol Albédo Corps noir Diffusion dans l'atmosphère Diffusion de Mie Diffusion de Rayleigh Diffusion turbulente Durée d insolation Durée du jour Éclairement (lumineux) Éclairement

Plus en détail