Les calculatrices sont autorisées

Dimension: px
Commencer à balayer dès la page:

Download "Les calculatrices sont autorisées"

Transcription

1 Les calculatrices sont autorisées Le sujet comporte quatre parties indépendantes. Les parties 1 et portent sur la mécanique (de la page à la page 7). Les parties 3 et 4 portent sur la thermodnamique (de la page 8 à la page 13). 1/13

2 MECANIQUE La première partie peut être vue comme l étude du mouvement d un sstème matériel composé de 3 parties, relativement à un repère fie. La seconde partie concerne le mouvement d un point matériel dans un fluide, le mouvement pouvant être étudié depuis un repère fie ou depuis un repère mobile. Noter que les deu parties sont indépendantes. PARTIE 1 Une moto et son conducteur On va étudier quelques mouvements d une motocclette (moto) et de son conducteur. On suppose l eistence d un référentiel galiléen auquel est associé un repère orthonormé direct Oz et on note r r r e, e, ez les vecteurs unitaires des aes ; la direction O est supposée horizontale. L accélération r r due à la pesanteur est notée g = ge (pour simplifier les calculs, on pourra prendre g = 10 m.s ). L ensemble moto + conducteur est de masse M = 300kg, la position du barcentre de cet ensemble est caractérisée par les distances d 1 = 0, 7 m, d = 0, 4 m et h = 1m (voir figure 1). La roue avant, pneu inclus, de centre O 1, possède un raon r 1 = 0,5m et un moment d inertie, relativement à un ae ( O1, e r z ), J 1 = 6 kg.m. La roue arrière, pneu inclus, de centre O, possède un raon r = 0,5 m et un moment d inertie, relativement à un ae ( O e r, z ), J = 10 kg.m. Lorsque la moto se déplace, les deu roues en contact avec la chaussée supposée horizontale, les points de contact des roues avant et arrière sont r r r notés I 1 et I. Les réactions du sol sur les roues sont respectivement R 1 = T1e + N1e et r r r R = Te + N e. Le coefficient de frottement des roues sur le sol est f = 0, 8 ; il ne sera pas fait de distinction entre le coefficient de frottement statique et le coefficient de frottement dnamique. A r r un instant donné quelconque, la vitesse instantanée de l ensemble est v = v. e (on se limitera au cas ν > 0). De même, on note ω er 1 z et ω er z, les vitesses de rotation instantanées des roues avant et arrière. On supposera toujours que les roues roulent sans glisser sur le sol. De plus, pour les questions allant de 1.1 à 1.14, on négligera l action de l air ambiant sur la moto et son conducteur (il peut s agir, par eemple, d une phase de démarrage pour laquelle la vitesse n est pas élevée). g r Roue arrière Roue avant G O h O 1 e r O e r I d d1 I 1 Figure 1 : vue dans le plan vertical O /13

3 1.1 Ecrire les relations de non glissement des roues sur le sol ; en déduire les epressions de ω 1 et ω en fonction de v, r1, r. 1. On note ( ) 1 O 1 σr et σr ( O ), les moments cinétiques en 1 s agit de moments pour un observateur du repère Oz ). Donner les epressions de ( O 1 1 ) ( ) O σr en fonction de J1, ω1, J, ω. 1.3 Montrer que le moment cinétique ( G) O et O des roues avant et arrière (il σr et r σ de l ensemble moto + conducteur relativement au point G, moment pour un observateur du repère Oz, se limite à la somme des moments précédents (on pourra utiliser le théorème de Koenig faisant référence au repère barcentrique). 1.4 En utilisant le théorème de la résultante dnamique, donner deu epressions et liant N, N, T, T, M, g, v& (accélération instantanée) En utilisant le théorème du moment cinétique, donner une epression liant N1, N, T1, T et h, d1, d, J1, r1, J, r, v&. 1.6 En appliquant le théorème du moment cinétique à la roue avant, établir une relation entre T1, J1, r1, v& (il est à noter que l articulation de cette roue sur le reste de la moto est supposée parfaite et que cette roue n est soumise à aucun couple). 1.7 A partir des relations obtenues, écrire N1, N, T1, T en fonction de v&. v& 1.8 Pour une accélération telle que 0,1 g =, montrer que les roues ne décollent pas du sol. 1.9 De même, montrer qu il n a pas glissement sur le sol, pour cette accélération Le moteur eerce un couple sur la roue arrière noté Γ.e r z ( Γ < 0 puisqu il s agit du couple moteur ; il n a pas de couple eercé sur la roue arrière). Par application du moment cinétique à la roue arrière, epliciter la relation liant le couple et l accélération On suppose le couple constant, ce qui correspond à une accélération constante. Eprimer la puissance instantanée P transmise par le moteur à la roue arrière motrice. Pour les questions 1.1 à 1.14, on suppose que le pilote parvient à soulever du sol la roue avant de son véhicule et on notera θ l angle d inclinaison de O O 1 par rapport à l horizontale (voir figures et 3, page 4). 3/13

4 Roue avant Roue arrière G O 1 h H Sol O I 1 I d d 1 Figure : moto inclinée de θ par rapport à l horizontale O C I θ Figure 3 : détail du point de contact 1.1 En supposant négligeable la vitesse de rotation de la roue avant, eprimer le moment cinétique en G de l ensemble (il s agit du moment cinétique pour un observateur du repère Oz ) Déterminer le moment en G des forces s appliquant à l ensemble moto + conducteur D après les deu questions précédentes, donner une équation permettant le calcul de l angle θ. v& Donner la valeur numérique de cet angle, pour 0, g = en utilisant le graphe de la figure v& Moment / G pour 0, g = eprimé en N.m θ en degrés -100 Figure 4 : moment / G des forces appliquées à l ensemble moto + conducteur en fonction de θ 4/13

5 1.15 A partir de cette question, on suppose que la moto roule de nouveau sur ses deu roues, le moteur eerçant un couple constant sur la seule roue arrière, couple noté Γ.e r z ( Γ < 0 ) A partir de cette question, on suppose que la moto roule de nouveau sur ses deu roues, le suppose que Comme on s intéresse à une phase où la vitesse v peut être plus grande que celles des moteur la moto eerçant roule de un nouveau couple sur constant ses deu roues, questions précédentes, il est maintenant nécessaire d introduire une force supplémentaire de onstant sur la seule roue arrière, couple noté.e r sur la seule roue arrière, couple noté Γ.e r z ( Γ < 0 ). Comme on s intéresse à une phase Γ où z ( la Γ < vitesse 0 ). v peut être plus grande rque celles r des phase où la freinage, due à l environnement de l ensemble. Cette force s écrira F = kv e et l on questions vitesse v précédentes, peut être plus il est grande maintenant que celles nécessaire des d introduire une force supplémentaire de supposera, pour simplifier, que sa ligne d action horizontale passe par le r aintenant nécessaire d introduire une force supplémentaire de point G. r freinage, due à l environnement Etablir l équation différentielle pour v (reprendre les équations à et tenir compte de la force F r r de l ensemble. r Cette force s écrira F = kv e et l on ent la moto de l ensemble. roule supposera, de nouveau Cette pour force sur simplifier, ses s écrira deu roues, F = le kv e et l on ), équation. la sa seule ligne d action roue arrière, horizontale couple passe noté par.e le r que sa ligne d action horizontale passe par le point G. Etablir l équation différentielle Γ point G. z ( Γ < pour 0 ). v (reprendre les équations à et tenir compte de la e pour v (reprendre 1.15 A partir vitesse v 1.16 peut force Montrer être Fles r équations de cette question, à et on tenir suppose compte que de la la moto roule de nouveau sur ses deu roues, le ), plus qu il grande eiste,. que pour celles la vitesse des moteur eerçant un couple constant v, sur une la valeur seule roue limite arrière, v l dont couple on donnera noté l epression Γ.e r en cessaire d introduire une force supplémentaire de z ( Γ < 0 ). fonction du couple r et des autres paramètres. emble Cette Montrer Comme force s écrira qu il on eiste, s intéresse r F = pour à kv ela une vitesse phase et l on v, une où la valeur vitesse limite v peut v l dont être on plus donnera grande l epression que celles en des itesse v, une valeur questions limite précédentes, v l dont on il donnera est maintenant l epression nécessaire en d introduire une force supplémentaire de ction horizontale fonction 1.17 passe du Montrer par couple que point et l équation G. des autres paramètres. r peut s écrire sous la forme v& + av. = av. l. On r s paramètres. freinage, due à l environnement de l ensemble. Cette force s écrira F = kv e précisera et l on rendre les équations à et tenir compte de la 1.17 Montrer supposera, l epression que pour l équation de simplifier, la constante que peut a sa en ligne s écrire fonction d action de sous kmj, horizontale la, forme 1, J, rr 1passe,. v& + av. par = le av. point l. On G. précisera peut s écrire sous Etablir la l équation forme v& différentielle + av. = av. l. pour On v précisera (reprendre les équations à et tenir compte de la l epression de la constante a en fonction de kmj,, 1, J, rr 1,. n valeur fonction limite de 1.18 kmj v force, En, supposant que la vitesse est nulle à l instant t = 0, établir la solution de l équation l dont F r 1, on J),, équation donnera rr 1,.. l epression en v En l précédente. supposant que Pour la cela, vitesse on pourra est nulle introduire à l instant le changement t = 0, établir de fonction la solution suivant de : ul équation 1.16 Montrer qu il eiste, pour la vitesse v, une valeur limite v =. est nulle à l instant t = 0, établir la solution de l équation l dont on donnera l epression vl ven vl précédente. fonction du e sous la forme v& Pour couple cela, et on des pourra autres introduire paramètres. v le changement de fonction suivant : u =. + av. = av. l ra introduire le changement de fonction l. On précisera suivant : u =. vl v e kmj,, vl v 1, J, rr 1, Montrer que l équation peut s écrire sous la forme v& + av. = av. l. On précisera PARTIE l epression Point de la matériel constante dans a en un fonction fluide de kmj,, 1, J, rr 1,. l instant t = 0, établir la solution de l équation PARTIE Il s agit de Point l étude matériel du mouvement dans vun d un fluide l point matériel se déplaçant dans un fluide. n le fluide changement 1.18 de En fonction supposant suivant que : la u = vitesse. est nulle à l instant t = 0, établir la solution de l équation Soit R un premier référentiel v galiléen auquel est associé un repère orthonormé direct d aes OX, l v Il s agit de l étude du mouvement d un point matériel se déplaçant rdans r un r fluide. vl un point Soit matériel OY, R précédente. OZ. un se premier déplaçant Les vecteurs Pour référentiel dans cela, unitaires un on fluide. galiléen pourra associés auquel introduire à ces est aes le associé changement sont un notés repère Ede, fonction E orthonormé, Ez. Ce suivant repère direct : ulié d aes = à la Terre OX,. est en auquel est considéré associé comme fie. L ae OZ est vertical ascendant, l accélération r r r vl v OY, OZ. due à la pesanteur sera notée r Les r vecteurs un repère orthonormé direct d aes OX, r runitaires r associés à ces sont notés E, E, Ez. Ce repère lié à la Terre est iés à ces aes g = sont genotés z. considéré comme Efie., E L ae, Ez. Ce OZ repère est vertical lié à la ascendant, Terre est l accélération due à la pesanteur sera notée vertical rascendant, Soit rr l accélération un second référentiel due à la auquel pesanteur est sera associé notée un repère orthonormé direct d aes O, O, Oz. g = ge r r r ériel se déplaçant Les vecteurs z. PARTIE dans un Point unitaires fluide. matériel associés dans à ces un fluide aes sont notés e, e, ez. Ce second repère mobile effectue un Soit R un second référentiel auquel est associé un repère orthonormé direct d aes O, O, Oz. el t associé est associé un mouvement repère de rotation uniforme relativement à R. Les aes Oz et OZ coïncident et l on posera un repère orthonormé orthonormé direct direct d aes d aes OX, r r r Les vecteurs r r O, O, Oz. runitaires r associés à ces sont notés e, e, ez. Ce second repère mobile effectue un Il s agit de l étude du mouvement d un point matériel se déplaçant dans un fluide. s aes sont sont notés mouvement notés ( E X,, Ee ), ee de = z,. e ωrotation. zce t. Ce où repère second ω, uniforme la lié vitesse repère à la Terre relativement de mobile rotation, est effectue est à R supposée. un Les aes constante Oz et OZ (voir coïncident figures 5a et et l on b, page posera 6). Un lativement ndant, l accélération r Soit R un premier référentiel galiléen auquel est associé un repère orthonormé direct d aes OX, récipient à rr. Les lié due aes à à R Oz la, pesanteur figuré et OZ coïncident pointillés, sera notée et renferme l on posera r r r ( EOY, un volume fluide supposé au repos relativement à X, eoz. ) = Les ω. t vecteurs où ω, la unitaires vitesse associés rotation, à ces est supposée aes sont constante notés E (voir figures 5a et b, page 6). Un, E, Ez. Ce repère lié à Terre est tation, est supposée R, la masse constante volumique (voir figures du fluide 5a étant et b, notée page 6). ρ. Un récipient considéré lié comme à R, figuré fie. L ae en pointillés, OZ est vertical renferme ascendant, un volume l accélération fluide supposé due au à la repos pesanteur relativement sera notée à é Une particule pesante, de masse m et de masse volumique ρ s se déplace au sein du fluide sous és, un renferme repère r orthonormé r un volume fluide direct supposé d aes O, au O, repos l action de son poids, d une force F r Oz. r rr g, = la masse ge relativement à ant tés notée e, e, ρ. ez. Ce second z. volumique du fluide étant notée ρ. repère mobile effectue un (et par la suite d une force supplémentaire). On suppose que la Une Soit particule R force F r un second pesante, référentiel de masse auquel m et de masse volumique ρ s se déplace au sein du fluide sous et R. de Les masse aes volumique Oz et ρ ρ s écrit OZ coïncident ρ s sous se déplace forme et l on au sein posera = kdu. Opfluide +. mge sous.. z avec l action de son poids, d une force F r est associé un repère orthonormé direct d aes O, O, Oz. r r r Les vecteurs unitaires associés à ces (et aes par sont la suite notés d une e force supplémentaire). k =. m. ω, une On constante suppose positive que la et pposée (et par la constante suite d une (voir force figures supplémentaire). 5a et b, page 6). On Un suppose ρsque la ρs force ρ p désignant F r, e, ez. Ce second repère mobile effectue un r mouvement ρ r ρ s écrit de la sous rotation projection la ρ forme uniforme du Fpoint = relativement k. P Opsur + le plan. mge. à. R horizontal z,. avec Les kaes (cette = Oz. m et force. ωoz, est une coïncident la constante et résultante positive l on posera r des forces et de kun. Opvolume +. mge fluide r.. z, supposé avec k = au repos. m. ω relativement, une constante à ρpositive s et ρ ( E s X, e) = ω. t où ω, la vitesse de rotation, est supposée constante ρ ρ(voir figures 5a et b, page 6). Un p sdésignant pression la s eerçant projection ρs sur du la point particule). P sur le Par plan la horizontal suite, seul (cette le cas force est > 1la sera résultante considéré. des forces On repère de la sur volumique le plan récipient horizontal lié ρ (cette à R, force figuré est en la pointillés, résultante renferme des forces un de volume fluide ρ s supposé au repos relativement à s se déplace au sein du fluide sous ρ pression R ite position, la masse s eerçant de P volumique par sur ρses la coordonnées particule). du fluide étant Par X, Y, notée la Z suite, (relativement ρ. seul le cas à R ) ou >, 1, sera z (relativement considéré. On à R repère ). la. Par d une la suite, force seul supplémentaire). cas > 1On sera suppose considéré. que la On repère la ρ s ρ. ge. r Une particule pesante, de masse m et de masse volumique ρ s se déplace au sein du fluide sous ρ s Y, Z z, avec position k = de. m P. par ω, ses une coordonnées constante positive X, Y, Z et (relativement à R ) ou,, z (relativement à R ). l action de son poids, d une force F r (et par la suite d une force supplémentaire). On suppose que la (relativement ρ à R ) ou,, z (relativement à R ). s orizontal (cette force force F r r ρ r ρ s écrit est la sous résultante la forme des Fforces = k. Op de +. mge.. z, avec k =. m. ω, une constante positive et ρs ρs ρ, seul le cas > 1 sera considéré. On repère la 5/13 p désignant la projection du point P sur le plan horizontal (cette force est la résultante des forces de ρ s 5/13 ρ ement à R pression ) 5/13 ou,, s eerçant z (relativement sur la à particule). R ). Par la suite, seul le cas > 1 sera considéré. On repère la ρ s

6 Z g r O P h Y O p Y h p X ω.t X Figure 5a : vue dans l'espace Figure 5b : vue dans le plan horizontal.1 Etablir les trois équations différentielles du mouvement de P pour un observateur de R, c està-dire pour les variables X, Y et Z, fonctions du temps (équations I, II et III). Donner la solution générale des équations différentielles I et II et préciser la nature de la trajectoire du point p, trajectoire vue de R.. Etude de quelques cas particuliers..1 Dans le cas des conditions initiales suivantes : k X(0) = X0, X& (0) = 0, Y(0) = 0, Y& (0) = X0, préciser la nature de la trajectoire du point p m (trajectoire dans R ) ainsi que la vitesse angulaire de parcours sur cette courbe. Indiquer la nature de cette même trajectoire vue de R ainsi que la vitesse angulaire de parcours... Pour les conditions initiales suivantes : X(0) = X0, X& (0) = U0, Y(0) = 0, Y& (0) = 0, établir les solutions de I et II ; préciser la nature de la trajectoire vue de R..3 A partir de maintenant, on va tenir compte d une force supplémentaire F r v, trouvant son r r origine dans la viscosité du fluide. Cette force s écrit Fv = μ. vr où μ désigne une constante positive, v r r étant la vitesse de P par rapport à R. On va maintenant déterminer les équations différentielles du mouvement pour un observateur de R, c est-à-dire pour les variables, r r r r r r et z, fonctions du temps. Eprimer, suivant e, e, ez, les vecteurs ar, ac, ae, respectivement accélération relative, de Coriolis et d entraînement du point P. 6/13

7 .4 En utilisant les résultats de la question.3, établir les équations différentielles du mouvement pour et (équations IV et V)..5 Des solutions approchées de ces équations IV et V peuvent être obtenues en supposant l accélération de Coriolis négligeable devant l accélération d entraînement. Etablir les epressions de et en fonction du temps. Pour simplifier l écriture, on pourra poser Ω = k m ω μ et = λ, cette dernière quantité étant supposée inférieure à Ω. m.6 Pour t +, quelle est la position de p? 7/13

8 THERMODYNAMIQUE Bilan thermique d une maison climatisée Ce problème se compose de deu parties. La première partie, indépendante de la seconde, porte sur une étude du double vitrage. Dans cette première partie, beaucoup de questions ne dépendent pas des précédentes. Nous analsons l intérêt d utiliser vitres ainsi que les solutions technologiques actuellement emploées pour réduire les pertes thermiques. La seconde partie aborde le fonctionnement du climatiseur d un point de vue très général puis le bilan thermique d une maison climatisée en présence d air sec. Données du problème : 8 4 Constante de Stefan : σ = 5, W.m.K. Constante des gaz parfaits : 1 1 R = 8,315 J.mol.K. PARTIE 3 Comparaison des fenêtres à double vitrage On suppose qu un corps noir au fond d une cavité est éclairé par le soleil. L ensemble du problème sera unidimensionnel. Le corps noir ne raonne que d un côté. Une fenêtre est interposée entre le soleil et le corps noir comme représenté sur la figure 6. Fenêtre Corps noir Isolant thermique sans rôle Figure 6 : corps noir recouvert d une vitre éclairé par un raonnement solaire Dans cette partie, le corps noir sera supposé parfait, absorbant l intégralité du raonnement incident et réémettant tout le raonnement absorbé. Toutes les vitres sont en verre que l on suppose parfaitement transparent au raonnement solaire et se comportant comme un corps noir dans l infrarouge lointain. Dans cette partie du problème, on supposera que le flu surfacique solaire incident ϕ s, normal au corps noir, est égal à 1000 W.m. 3.1 Questions préliminaires Donner la loi du déplacement de Wien reliant la température du corps noir T CN et la longueur d onde λ m du maimum d émission du corps noir en μm. 8/13

9 3.1. Indiquer dans quel domaine spectral émet un corps noir chauffé à 300 K et à 5800 K 3.1. (température Indiquer du dans soleil). quel domaine spectral émet un corps noir chauffé à 300 K et à 5800 K (température du soleil) Le verre est globalement transparent pour le raonnement solaire (le soleil émet dans le visible) Le verre et se comporte est globalement comme transparent un corps noir pour dans le raonnement l infrarouge solaire lointain (le (issu soleil des émet corps dans à le température visible) ambiante). et se comporte Sachant comme que un 95 corps % du noir raonnement dans l infrarouge d un corps lointain noir est (issu concentré des corps à entre température 0,5 λ m et 8 ambiante). λ m, déterminer Sachant la longueur que 95 d onde % du approimative raonnement d un à laquelle corps le noir verre est change concentré de comportement. entre 0,5 λ Les constructeurs en fonction du tpe de verre donnent 3-4 µm. m et 8 λ m, déterminer la longueur d onde approimative à laquelle le verre change de comportement. Les constructeurs en fonction du tpe de verre donnent 3-4 µm. 3. Comparaison du simple et du double vitrage 3. Comparaison du simple et du double vitrage 3..1 La fenêtre est composée d une simple vitre (température T v1 ). A partir d un bilan radiatif et 3..1 sans La tenir fenêtre compte est composée de la présence d une d air, simple déterminer vitre (température la température T du corps noir T CNa en v1 ). A partir d un bilan radiatif et régime sans stationnaire. tenir compte Effectuer de la présence l application d air, numérique déterminer pour la Ttempérature CNa ( ϕs = 1000 du W.m corps ) noir. T CNa en régime stationnaire. Effectuer l application numérique pour TCNa ( ϕs = 1000 W.m ). 3.. La fenêtre est maintenant composée d un double vitrage. La vitre etérieure est à la 3.. température La fenêtre T v1 est et la maintenant vitre face composée au corps noir d un à double la température vitrage. T La v. vitre A partir etérieure d un bilan est à la radiatif température et sans tenir T compte de la présence d air, déterminer la température du corps noir v1 et la vitre face au corps noir à la température T v. A partir d un bilan T CNbradiatif en régime et sans stationnaire. tenir compte de la présence d air, déterminer la température du corps noir Effectuer T CNb l application en régime stationnaire. numérique pour TCNb ( ϕs = 1000 W.m ). Effectuer l application numérique pour TCNb ( ϕs = 1000 W.m ). On cherche maintenant une durée caractéristique de la décroissance de la température pour les différentes On cherche fenêtres. maintenant On ne tient une toujours durée caractéristique pas compte de de l air. la On décroissance suppose que de le la corps température noir est pour à la les température différentes de T fenêtres. = 333KOn à ne t = tient 0s, toujours qu il raonne pas compte et se refroidit. de l air. On Il ne suppose reçoit plus que le de corps raonnement noir est à la 4 1 solaire. Sachant que le corps noir a une capacité thermique C = 10 J.K température de T = 333K à t = 0s, qu il raonne et se refroidit. Il ne, une reçoit surface plus A de de raonnement 1m et que la capacité thermique des vitres est négligeable : 4 1 solaire. Sachant le corps noir a une capacité thermique = 10 J.K C, une surface A de 1m et que la capacité thermique des vitres est négligeable : 3..3 Déterminer la durée τ a pour que le corps noir soit à une température de T 1 = 300 K pour le 3..3 simple Déterminer vitrage. la Effectuer durée τ a l application pour que le corps numérique noir soit et à donner une température cette durée de en T 1 = minutes 300 K pour et le secondes. simple vitrage. Effectuer l application numérique et donner cette durée en minutes et secondes Déterminer la durée τ b pour que le corps noir soit à une température de T 1 = 300 K pour le 3..4 double Déterminer vitrage. Eprimer la durée τ b en pour fonction que le de corps τ a. L application noir soit à une numérique température n est de pas T 1 = demandée. 300 K pour le double vitrage. Eprimer τ b en fonction de τ a. L application numérique n est pas demandée. 3.3 Amélioration par métallisation eterne 3.3 Amélioration par métallisation eterne Sur la face la plus eterne du double vitrage à la température T v1, est déposée une fine couche Sur métallique la face la ou plus un eterne revêtement du double à faible vitrage émission à la température thermique. On T suppose que cette v1, est déposée une fine couche couche transmet métallique intégralement ou un le revêtement flu solaire à et faible réduit émission de moitié thermique. l émission On de suppose cette face. que En cette 1 4 conséquence, couche transmet on devra intégralement écrire que le le flu flu surfacique solaire et réduit émis par de moitié la vitre l émission vaut ϕ = de σcette T pour face. En 1 4 conséquence, on devra écrire 4 que le flu surfacique émis par la vitre vaut ϕ = σt pour la face métallisée et ϕ = σt pour la face non métallisée. A partir d un bilan radiatif et sans tenir compte de la présence d air, 4 la face métallisée et ϕ = σt pour déterminer la face non la métallisée. température A partir T CNc d un du bilan corps radiatif noir. La et sans tenir compte de la présence d air, déterminer la température T CNc du corps noir. La 9/13 9/13

10 température de la vitre face au corps noir est notée T v. Effectuer l application numérique pour TCNc ( ϕs = ) 1000 W.m Déterminer la durée caractéristique τ c de la décroissance de la température pour passer de T = 333K à T 1 = 300 K pour cette fenêtre. Comme précédemment, on suppose que le corps noir ne reçoit plus de raonnement solaire, qu il a une capacité thermique 4 1 C = 10 J.K, une surface A de 1m et que la capacité thermique des vitres est négligeable. Eprimer τ c en fonction de τ a. L application numérique n est pas demandée. 3.4 Prise en compte des échanges diffusifs dans le double vitrage On prend en compte, dans un premier temps, les échanges de tpe diffusif dus à un gaz uniquement entre les deu vitres. Dans le cadre d un modèle microscopique, on considère que les molécules se déplacent à la vitesse quadratique moenne identique v suivant trois directions et pour chaque direction suivant deu sens (isotropie de la distribution des vitesses) Trouver, dans le cadre de ce modèle simplifié du gaz parfait en équilibre thermodnamique interne, la relation entre la pression p et la vitesse v A partir de l équation d état du gaz parfait, retrouver l epression suivante de la vitesse v en fonction de la température T : 3RT v = M où R est la constante des gaz parfaits et M la masse molaire du gaz considéré. On suppose maintenant, qu à une échelle d espace plus grande, les molécules subissent des chocs caractérisés par une section efficace, a, que l on suppose constante en fonction de la pression et de la température. La conductivité thermique peut s écrire : 1 c λ = v 3 a où c est la capacité thermique constante d une molécule et v la vitesse quadratique moenne obtenue à la question précédente Est-ce que la conductivité thermique λ varie avec la pression? Et avec la température? T v1 T v Température etérieure 303 K Température intérieure 93 K L Figure 7 : vitres composant le double vitrage 10/13

11 Dans les doubles vitrages, le constructeur vante le remplacement de la lame d air emprisonnée entre les deu vitres par de l argon. A pression atmosphérique et à 73K, la conductivité thermique de 1 1 l argon vaut 0, 0177 W.m.K thermique est définie par : alors que pour l air, elle s élève à R th ΔT = Φ 1 1 0, 040 W.m.K. La résistance où Δ = v1 v T T T est la différence de températures entre les deu thermostats entre lesquelles s échange un flu énergétique Φ (en W). La température intérieure est de 93K et la température etérieure de 303K comme indiqué sur la figure Eprimer R th en fonction de la surface A de chaque vitre, de la distance entre les deu thermostats L et de la conductivité thermique λ Donner l analogie entre les grandeurs thermiques (, Δ, Φ) dans un tableau en spécifiant, pour chaque grandeur, l unité. R T et les grandeurs électriques Les vitres séparées par l air sont distantes de d = 1cm. Quelle distance L permet d avoir la même résistance thermique avec de l argon? La différence vous parait-elle importante? On suppose une faible différence de température (linéarisation du problème) et l on prend en considération (1) la conductivité thermique et () le raonnement entre les deu vitres Ecrire le flu énergétique entre la vitre 1 et la vitre en fonction des données du problème (surface A, distance L entre les vitres, températures des vitres T v1 et T v, conductivité λ et constante de Stephan σ ). Linéariser cette epression sachant que 4 ( ) ( ) v1 v = v + v1 v v v1 v 4 v T T T T T T T T T Que vaut la résistance thermique pour la lame d air (L vaut alors d = 1cm ) sans le raonnement ( ) ths R et avec le raonnement ( ) tha th R? Effectuer l application numérique. On prendra une surface A = 1m. Est-ce que la contribution du raonnement est importante? Remarque : il est courant que la métallisation ou une couche à faible émission thermique soit située sur une des faces internes Entre une lame d air et une lame d argon, la différence est un peu plus grande que celle que l on a calculée. De plus, si l espacement entre les vitres est supérieur à 1, cm, la résistance thermique ne varie plus. Quel phénomène de transport thermique permet d epliquer ces observations? 11/13

12 Le coefficient de transfert thermique U d une fenêtre, eprimé en W.m.K, est défini comme l inverse du produit de la résistance thermique de l objet et de sa surface A. Il vaut pour les différents tpes de fenêtres : Sstème Fenêtre 1 U ( W.m.K ) I Simple vitrage 5,8 II Double vitrage ordinaire,8 III Double vitrage avec métallisation 1,9 IV Double vitrage avec métallisation et argon 1,1 V Triple vitrage avec métallisation et argon 0,8 Pour référence, les murs ont tpiquement un coefficient de transfert thermique de 1 0,5 W.m.K. Analser l importance du nombre de vitres à partir du tableau ci-dessus et des questions précédentes. Justifier que l on installe majoritairement des fenêtres en double vitrage. PARTIE 4 Bilan thermique d une maison climatisée en été On considère une maison et sa climatisation. La température etérieure est de T C = 303K. La température intérieure est de T F = 93K. L ensemble mur-fenêtre reçoit un flu net (radiatifconvectif-diffusif) de W. La maison est équipée d une climatisation idéale. Sur chaque ccle, le fluide circulant dans l installation reçoit un transfert thermique Q C à la source chaude, un transfert thermique Q F à la source froide et un travail W. Dans toute cette partie, on admettra que la conversion électromécanique du compresseur (moteur servant lors de la compression) a un rendement unité. 4.1 Maison sans circulation d air A partir du premier principe, eprimer le travail W en fonction du transfert thermique avec la source chaude Q et froide Q. C F 4.1. A partir du second principe en supposant une machine de Carnot, donner l epression de Q F en fonction de QC, T C et T F Déterminer le coefficient de performance (COP) du climatiseur idéal modélisé comme une machine de Carnot fonctionnant en récepteur. Effectuer l application numérique Quelle puissance électrique est nécessaire pour maintenir la température interne de la maison à 93K avec cette machine de Carnot? Rappel : le moteur est idéal, sans perte, convertissant l intégralité de la puissance électrique reçue en puissance mécanique. 1/13

13 4.1.5 La machine réelle utilisée pour la climatisation de la maison a un COP de 3. En déduire la puissance électrique nécessaire pour maintenir la température interne de la maison à 93K. 4. Prise en compte de la circulation d air sec 3 1 Dans une maison de 100m, le débit volumique d air entrant mesuré à l etérieur vaut 100m.h. L air chaud entrant est directement en contact avec la climatisation. La température à l intérieur de la maison est homogène. L air entrant est à la même pression que l air sortant. On prendra : p = 1,00 10 Pa, M air = 0,089 kg.mol et c p, air = 1005 J.kg.K. d L air sera traité comme un gaz parfait. Dans la suite, on adoptera la notation : = &. dt 4..1 Ecrire le bilan des débits massiques (on notera m& V, air, e le débit massique d air entrant et m& le débit massique d air sortant). Déterminer la valeur numérique du débit massique V, air, s entrant en 1 g.s. La température de référence sera la température etérieure T = 303K. 4.. Ecrire le premier principe et en déduire l epression du transfert thermique reçu par l air entrant δ Q air, e en fonction des paramètres du problème dont font partie le débit massique m& V, air, e et la différence de température TC T F. Dans le cas d un sstème ouvert, on rappelle que la variation d enthalpie dh = C p dt est reliée au transfert thermique δq et au travail utile δ Wu = Vdp par : dh = δw + δq En déduire la puissance thermique Q & F reçue par le fluide de la climatisation nécessaire pour refroidir cet air. Effectuer l application numérique Quelle puissance électrique est maintenant nécessaire pour maintenir la température interne COP = 3? de la maison ensoleillée à 93K avec la climatisation réelle ( ) 4..5 En présence d air humide saturé (air + vapeur d eau dont la pression partielle est égale à la pression de vapeur saturante), la puissance thermique Q & F trouvée à la question 4..3 passe à 190 W. A quel phénomène phsique est associée cette augmentation sachant que la pression de vapeur saturante de l eau vaut 446Pa à 303K et 339Pa à 93K? u air Fin de l'énoncé. 13/13

14

15

16 IMPRIMERIE NATIONALE D après documents fournis

1) Explications (Expert) :

1) Explications (Expert) : 1) Explications (Expert) : Mesures expérimentales : Dans nos conditions d expérience, nous avons obtenu les résultats suivants : Les dimensions des récipients sont : 1) bocal vide : épaisseur de verre

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

SPE PSI DL 8 Pour le 05/12/11

SPE PSI DL 8 Pour le 05/12/11 SPE PSI DL 8 Pour le 05/12/11 CONDUCTION DANS LES METAUX: L'espace est rapporté à un repère O muni d'une base cartésienne ( e, e, e ). Données numériques: - charge de l'électron: -e = - 1,6.10-19 C. -

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

TRANSFERT DE CHALEUR

TRANSFERT DE CHALEUR TP - L3 Physique - Plate-forme TTE - C.E.S.I.R.E. - Université Joseph Fourier - Grenoble TRANSFERT DE CHALEUR Document à lire avant de commencer TOUT TP de Thermodynamique Ce document est un résumé des

Plus en détail

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015 BT V 2015 (envoyé par Frédéric COTTI - Professeur d Electrotechnique au Lycée Régional La Floride Marseille) Document 1 - Etiquette énergie Partie 1 : Voiture à faible consommation - Une étiquette pour

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

Master1 CCS. Université Paul Sabatier. Toulouse III. TPs RdM.6 + VBA. Michel SUDRE

Master1 CCS. Université Paul Sabatier. Toulouse III. TPs RdM.6 + VBA. Michel SUDRE Université Paul Sabatier Master1 CCS Toulouse III TPs RdM.6 + VBA Michel SUDRE Déc 2008 TP N 1 Poutre Fleion-Tranchant On considère 2 poutres droites identiques de longueur L dont la est un de hauteur

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Jouets...2 I.Voiture avec volant d'inertie réservoir d'énergie cinétique...2 A.Préliminaire...3 B.Phase 1...3 C.Phase 2...4 D.Phase

Plus en détail

Etude Annuelle. Analyse expérimentale et données constructeur. Comportement «durable» Contenu. Citroën C4-Coupé, Entreprise.

Etude Annuelle. Analyse expérimentale et données constructeur. Comportement «durable» Contenu. Citroën C4-Coupé, Entreprise. décembre 8 Yann DUCHEMIN Citroën C4-Coupé, Entreprise Etude Annuelle Analyse expérimentale et données constructeur Au terme d une année d utilisation d un véhicule de marque Citroën, et de type C4- coupé

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant I Présentation I.1 La roue autonome Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009.

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

Test : principe fondamental de la dynamique et aspect énergétique

Test : principe fondamental de la dynamique et aspect énergétique Durée : 45 minutes Objectifs Test : principe fondamental de la dynamique et aspect énergétique Projection de forces. Calcul de durée d'accélération / décélération ou d'accélération / décélération ou de

Plus en détail

Contrôle final de Thermique,

Contrôle final de Thermique, Contrôle final de Thermique, GM3C mars 08 2heures, tous documents autorisés Calculatrices autorisées Problèmes de refroidissement d un ordinateur On se donne un ordinateur qui dissipe une certaine puissance,

Plus en détail

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent

Plus en détail

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

DISQUE DUR. Figure 1 Disque dur ouvert

DISQUE DUR. Figure 1 Disque dur ouvert DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

I - Quelques propriétés des étoiles à neutrons

I - Quelques propriétés des étoiles à neutrons Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est

Plus en détail

Formation Bâtiment Durable :

Formation Bâtiment Durable : 1 Formation Bâtiment Durable : ENERGIE PASSIF/BASSE ENERGIE Bruxelles Environnement ISOLATION : INTRODUCTION THEORIQUE Marny DI PIETRANTONIO Plate-forme Maison Passive asbl Objectif(s) de la présentation

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

L énergie sous toutes ses formes : définitions

L énergie sous toutes ses formes : définitions L énergie sous toutes ses formes : définitions primaire, énergie secondaire, utile ou finale. Quelles sont les formes et les déclinaisons de l énergie? D après le dictionnaire de l Académie française,

Plus en détail

TS Physique Satellite à la recherche de sa planète Exercice résolu

TS Physique Satellite à la recherche de sa planète Exercice résolu P a g e 1 Phsique atellite à la recherche de sa planète Exercice résolu Enoncé Le centre spatial de Kourou a lancé le 1 décembre 005, avec une fusée Ariane 5, un satellite de météorologie de seconde génération

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Le Système de Récupération de l Energie Cinétique (SREC)

Le Système de Récupération de l Energie Cinétique (SREC) Concours EPITA 011 Epreuve de Sciences Industrielles pour l ingénieur Le Système de Récupération de l Energie Cinétique (SREC) Tous documents interdits Calculatrice autorisée Durée : h L augmentation de

Plus en détail

TD de Physique n o 1 : Mécanique du point

TD de Physique n o 1 : Mécanique du point E.N.S. de Cachan Département E.E.A. M FE 3 e année Phsique appliquée 011-01 TD de Phsique n o 1 : Mécanique du point Exercice n o 1 : Trajectoire d un ballon-sonde Un ballon-sonde M, lâché au niveau du

Plus en détail

Baccalauréat STI2D et STL SPCL Epreuve de sciences physiques Corrigé Session septembre 2014 Métropole. 01/10/2014 www.udppc.asso.fr.

Baccalauréat STI2D et STL SPCL Epreuve de sciences physiques Corrigé Session septembre 2014 Métropole. 01/10/2014 www.udppc.asso.fr. Baccalauréat STI2D et STL SPCL Epreuve de sciences physiques Corrigé Session septembre 2014 Métropole 01/10/2014 www.udppc.asso.fr Page 1 sur 11 ÉTUDE DE L EMPREINTE ENVIRONNEMENTALE DE QUELQUES DISPOSITIFS

Plus en détail

TD : Oscillateur harmonique

TD : Oscillateur harmonique TD : Oscillateur harmonique Observation du chromosome X par microscopie à force atomique. À gauche : nanoparticules observées par microscopie à force atomique (AFM, SP1-P2). Image du Dr. K. Raghuraman

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

Chapitre 2: Mouvements Rectilignes

Chapitre 2: Mouvements Rectilignes e B et C Mouements rectilignes 13 Chapitre : Mouements Rectilignes 1. Définitions * Le mouement est rectiligne la trajectoire est une droite. * Le mouement est uniforme (intensité du ecteur itesse instantanée)

Plus en détail

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides

Plus en détail

À propos d ITER. 1- Principe de la fusion thermonucléaire

À propos d ITER. 1- Principe de la fusion thermonucléaire À propos d ITER Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 8 juin 005, les pays engagés dans le projet

Plus en détail

Principes de la Mécanique

Principes de la Mécanique Chapitre 1 Principes de la Mécanique L expérience a montré que tous les phénomènes observés dans la nature obéissent à des lois bien déterminées. Ces lois peuvent être, en plus, déterministes ou indéterministes.

Plus en détail

Baccalauréat STI2D et STL spécialité SPCL

Baccalauréat STI2D et STL spécialité SPCL Baccalauréat STI2D et STL spécialité SPCL Épreuve de PHYSIQUE CHIMIE Session de septembre 2013 Proposition de correction 19/10/2013 http://www.udppc.asso.fr/national/ Page 1 sur 19 CAMPING-CAR Monsieur

Plus en détail

DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique Le centre spatial de Kourou a lancé le 21 décembre 200, avec une fusée Ariane, un satellite

Plus en détail

UNIVERSITÉE KASDI MERBAH OUARGLA

UNIVERSITÉE KASDI MERBAH OUARGLA UNIVERSITÉE KASDI MERBAH OUARGLA FACULTE DES SCIENCES APPLIQUÉES Département de Génie des Procédés Phénomènes de transferts Travaux pratiques de mécanique des fluides CHAOUCH Noura et SAIFI Nadia 2013

Plus en détail

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus. CABLECAM de HYMATOM La société Hymatom conçoit et fabrique des systèmes de vidéosurveillance. Le système câblecam (figure 1) est composé d un chariot mobile sur quatre roues posé sur deux câbles porteurs

Plus en détail

1 Problème 1 : L avion solaire autonome (durée 1h)

1 Problème 1 : L avion solaire autonome (durée 1h) Problèmes IPhO 2012 1 NOM : PRENOM : LYCEE : 1 Problème 1 : L avion solaire autonome (durée 1h) Nous souhaitons dans ce problème aborder quelques aspects de la conception d un avion solaire autonome. Les

Plus en détail

Quatrième partie. Hydrostatique, hydrodynamique des fluides parfaits

Quatrième partie. Hydrostatique, hydrodynamique des fluides parfaits Quatrième partie Hydrostatique, hydrodynamique des fluides parfaits 105 Chapitre 11 LE THÉORÈME DE BERNOULLI Le principe de conservation de l énergie est très général. Nous allons montrer qu il permet

Plus en détail

Baccalauréat STI2D et STL SPCL Epreuve de sciences physiques Correction Session septembre 2014 Antilles - Guyane. Page 0 sur 9

Baccalauréat STI2D et STL SPCL Epreuve de sciences physiques Correction Session septembre 2014 Antilles - Guyane. Page 0 sur 9 Baccalauréat STI2D et STL SPCL Epreuve de sciences physiques Correction Session septembre 2014 Antilles - Guyane 26/11/2014 www.udppc.asso.fr Page 0 sur 9 LES EXPLOITATIONS AGRICOLES PIONNIERES DANS LES

Plus en détail

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL OBJECTIFS Jusqu à présent, nous avons rencontré deux méthodes pour obtenir l équation du mouvement d un point matériel : - l utilisation du P.F.D. - et celle du

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Le pavillon. Électrothermie. Chauffage électrique

Le pavillon. Électrothermie. Chauffage électrique PAGE 1 DE 10 SOUS / Objectif Énoncer les différents procédés de chauffage (direct et indirect). Énoncer les principes de fonctionnement. Identifier les éléments constitutifs. Savoir technologique visé

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices

Plus en détail

Un récupérateur de chaleur est donc un échangeur qui permet de transférer la chaleur et éventuellement l humidité entre l air rejeté et l air neuf:

Un récupérateur de chaleur est donc un échangeur qui permet de transférer la chaleur et éventuellement l humidité entre l air rejeté et l air neuf: RECUPERATION D'ENERGIE I. PRINCIPE La réglementation sanitaire impose l introduction d un minimum d air neuf dans les locaux ce qui implique le rejet d air se trouvant proche des conditions de l ambiance

Plus en détail

LA FORCE DE FREINAGE ou les lois physiques du freinage

LA FORCE DE FREINAGE ou les lois physiques du freinage LA FORCE DE FREINAGE ou les lois physiques du freinage Du point de vue de la conduite automobile, le freinage d urgence est sans doute le geste technique le plus difficile à réaliser. C est pourtant un

Plus en détail

Objectifs : Notion de rendement. 1 ère GMB Technologie Les performances moteur 1 / 14

Objectifs : Notion de rendement. 1 ère GMB Technologie Les performances moteur 1 / 14 1 ère GMB Technologie Les performances moteur 1 / 14 Les performances moteur Objectifs : L élève devra être capable de : Définir et calculer un rendement global du moteur ; Citer les paramètres influents

Plus en détail

Mesure de la dépense énergétique

Mesure de la dépense énergétique Mesure de la dépense énergétique Bioénergétique L énergie existe sous différentes formes : calorifique, mécanique, électrique, chimique, rayonnante, nucléaire. La bioénergétique est la branche de la biologie

Plus en détail

TS Physique L automobile du futur Electricité

TS Physique L automobile du futur Electricité P a g e 1 TS Physique Electricité Exercice résolu Enoncé Le moteur thermique, étant très certainement appelé à disparaître, les constructeurs automobiles recourront probablement au «tout électrique» ou

Plus en détail

I-1 Introduction : I-2.Etude bibliographique :

I-1 Introduction : I-2.Etude bibliographique : I-1 Introduction : La production de l énergie thermique à partir de l énergie solaire par les capteurs plans connait de nos jours de nombreuses applications vue leurs innombrables intérêts économiques

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

Module HVAC - fonctionnalités

Module HVAC - fonctionnalités Module HVAC - fonctionnalités Modèle de radiation : DO = Discrete Ordinates On peut considérer l échauffement de solides semi transparents causé par le rayonnement absorbé par le solide. On peut également

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN MOTO ELECTRIQUE MISE EN SITUATION La moto électrique STRADA EVO 1 est fabriquée par une société SUISSE, située à LUGANO. Moyen de transport alternatif, peut-être la solution pour concilier contraintes

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Transferts de Chaleur

Transferts de Chaleur Transferts de Chaleur EXERCICES de REFERENCE - 107 EXERCICES de REFERENCE RAYONNEMENT : Problème introductif... - 109 FACTEUR DE FORME... - 110 ESTIMATION D'UN FACTEUR DE FORME...- 110 FACTEUR DE FORME

Plus en détail

+ Engineering Equation Solver

+ Engineering Equation Solver + Engineering Equation Solver EES V. 15/10/12 Partie 2 Master 2 GSI Maitrise de l Energie Julien Réveillon, Prof. Université de Rouen Julien.Reveillon@coria.fr http://www.cfdandco.com + 2/ Exercice Cycle

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

1 Mise en application

1 Mise en application Université Paris 7 - Denis Diderot 2013-2014 TD : Corrigé TD1 - partie 2 1 Mise en application Exercice 1 corrigé Exercice 2 corrigé - Vibration d une goutte La fréquence de vibration d une goutte d eau

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative

Plus en détail

Comprendre l Univers grâce aux messages de la lumière

Comprendre l Univers grâce aux messages de la lumière Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE SUJET

BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE SUJET SESSION 2010 France métropolitaine BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE ÉPREUVE N 2 DU PREMIER GROUPE ÉPREUVE SCIENTIFIQUE ET TECHNIQUE Option : Génie des équipements agricoles Durée : 3 heures 30 Matériel

Plus en détail

TP 03 B : Mesure d une vitesse par effet Doppler

TP 03 B : Mesure d une vitesse par effet Doppler TP 03 B : Mesure d une vitesse par effet Doppler Compétences exigibles : - Mettre en œuvre une démarche expérimentale pour mesurer une vitesse en utilisant l effet Doppler. - Exploiter l expression du

Plus en détail

Note technique : Rénovation thermique des gîtes de Tayac et Taurines

Note technique : Rénovation thermique des gîtes de Tayac et Taurines Note technique : Rénovation thermique des gîtes de Tayac et Taurines Réalisé par : Arnaud Larvol Conseiller énergie Pays Ruthénois 6, avenue de L Europe 12 000 Rodez 05.65.73.61.70 a.larvol@pays-ruthenois.f

Plus en détail

Correction ex feuille Etoiles-Spectres.

Correction ex feuille Etoiles-Spectres. Correction ex feuille Etoiles-Spectres. Exercice n 1 1 )Signification UV et IR UV : Ultraviolet (λ < 400 nm) IR : Infrarouge (λ > 800 nm) 2 )Domaines des longueurs d onde UV : 10 nm < λ < 400 nm IR : 800

Plus en détail

Intégration à grande échelle du Photovoltaïque en toiture

Intégration à grande échelle du Photovoltaïque en toiture Préparer le bâtiment à l horizon 2010 Journées Thématiques 2004 Enveloppe du Bâtiment 1 Intégration à grande échelle du Photovoltaïque en toiture Hélène DESMALES Yves JAUTARD 11 mars 2004 Du site isolé

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

LA FORCE CENTRIFUGE. En effet, cette force tend à expulser les voitures en dehors d un virage serré.

LA FORCE CENTRIFUGE. En effet, cette force tend à expulser les voitures en dehors d un virage serré. LA ORCE CENTRIUGE Introduction La force centrifuge est assez connue du public, elle fait d ailleurs l objet d une question pouvant être posée pour l obtention du permis de conduire. En effet, cette force

Plus en détail

LA MESURE DE PRESSION PRINCIPE DE BASE

LA MESURE DE PRESSION PRINCIPE DE BASE Page 1 / 6 LA MESURE DE PRESSION PRINCIPE DE BASE 1) Qu est-ce qu un sensor de pression? Tout type de sensor est composé de 2 éléments distincts : Un corps d épreuve soumit au Paramètre Physique φ à mesurer

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Ce document a été numérisé par le Canopé de l académie de Bordeaux pour la Base nationale des sujets d Examens de l enseignement professionnel.

Ce document a été numérisé par le Canopé de l académie de Bordeaux pour la Base nationale des sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le Canopé de l académie de Bordeaux pour la Base nationale des sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

Etude numérique des transferts de chaleur dans une fenêtre pariétodynamique.

Etude numérique des transferts de chaleur dans une fenêtre pariétodynamique. Etude numérique des transferts de chaleur dans une fenêtre pariétodynamique. Rémy GREFFET 1, Ghislain MICHAUX 1, Patrick SALAGNAC 1*, Jean-Baptiste RIDORET 2 1 Laboratoire des Sciences de l'ingénieur pour

Plus en détail

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes). SUJET DE CONCOURS Sujet Exploitation d une documentation scientifique sur le thème de l énergie 2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D,

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

S2I. La robotique au service du handicap

S2I. La robotique au service du handicap I Introduction S2I PSI 4 heures Calculatrices autorisées La robotique au service du handicap 2010 Les avancées technologiques récentes des actionneurs électriques ont permis le développement du champ d

Plus en détail

Concilier confort acoustique et santé des occupants. Choix des vitrages

Concilier confort acoustique et santé des occupants. Choix des vitrages Concilier confort acoustique et santé des occupants Choix des vitrages 2010 1 Le verre : ses spécificités Le verre : permet la vision vers l extérieur laisse pénétrer, dans les bâtiments, la lumière naturelle.

Plus en détail

Les différents éléments d un CESI

Les différents éléments d un CESI Les différents éléments d un CESI 1. Capteur Solaires 1.1. Introduction Un capteur solaire thermique est un dispositif qui transforme le rayonnement solaire en énergie thermique. Les caractéristiques générales

Plus en détail

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance

Plus en détail

La place des vitrages dans la démarche de qualité environnementale

La place des vitrages dans la démarche de qualité environnementale La place des vitrages dans la démarche de qualité environnementale Des créations architecturales sans oublier les performances Contexte Un produit verrier impacte de différentes façons le bilan environnemental

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX Coefficient 8 Durée 4 heures Aucun document autorisé Calculatrice

Plus en détail

ENERGETIQUE. Référence au programme S.T.I Référence au module 4- Energétique et dynamique. Module 14 15 : :Energétique 4-1 Energétique

ENERGETIQUE. Référence au programme S.T.I Référence au module 4- Energétique et dynamique. Module 14 15 : :Energétique 4-1 Energétique ENERGETIQUE ET DYNAMIQUE ENERGETIQUE Mécanique Référence au programme S.T.I Référence au module 4- Energétique et dynamique. Module 14 15 : :Energétique 4-1 Energétique 1- Objectifs de la séquence : Calculer

Plus en détail

SCIENCES INDUSTRIELLES (S.I.)

SCIENCES INDUSTRIELLES (S.I.) SESSION 2014 PSISI07 EPREUVE SPECIFIQUE - FILIERE PSI " SCIENCES INDUSTRIELLES (S.I.) Durée : 4 heures " N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision

Plus en détail

accumulation. Un procédé indispensable pour des besoins en eau chaude importants, avec un bon niveau de confort.

accumulation. Un procédé indispensable pour des besoins en eau chaude importants, avec un bon niveau de confort. A B C Accélérateur Egalement appelé pompe de circulation ou circulateur, l accélérateur assure la circulation de l eau de chauffage entre la chaudière et les pièces à chauffer. Les installations très anciennes

Plus en détail

CONCOURS COMMUN 2010 PHYSIQUE

CONCOURS COMMUN 2010 PHYSIQUE CONCOUS COMMUN SUJET A DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES Épreuve de Physique-Chimie (toutes filières) Corrigé Barème total points : Physique points - Chimie 68 points PHYSIQUE Partie A :

Plus en détail

MANUEL D UTILISATION

MANUEL D UTILISATION MANUEL D UTILISATION Document mis à jour le 9 juillet 2015 B.B.S. Développement : 04.73.34.96.69 Fax : 04.73.34.10.03 info@bbs-developpement.com 1 SOMMAIRE 1. Installation 4 2. Configuration minimale 7

Plus en détail

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX 1. EXPERIENCE 1 : APPLICATION DE LA LOI FONDAMENTALE DE LA DYNAMIQUE a) On incline d un angle α la table à digitaliser (deuxième ou troisième cran de la table).

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail