AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

Dimension: px
Commencer à balayer dès la page:

Download "AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES"

Transcription

1 Collège Voltaire, AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES 3.A. Introduction B. Chaleur C. Variation d enthalpie de réaction D. Additivité des enthalpies E. Enthalpie standard de formation H f F. Loi de Hess G. Énergie de liaison H. Énergie et masse I. Résumé eleve/ volt1234

2 3.A. Introduction Aide-mémoire Ce chapitre fait partie de celui de la thermodynamique (du grec thermos, chaud, et dunamis, puissance). Cette discipline, développée dès la première moitié du XIXème siècle, coïncide avec la révolution industrielle et l'essor des machines à vapeur. Elle s intéresse aux modifications d énergie qui accompagnent les réactions chimiques. Problème Nous aimerions connaître la quantité d énergie dégagée ou absorbée par une réaction, comment pourrait-on faire? Les séries d'exercices avec les objectifs et le laboratoire de ce chapitre sont résumés ci-dessous. EXERCICES ET OBJECTIFS Série 10 Comprendre la signification de réaction endo ou exoénergétique/thermique, de chaleur,d'enthalpie de réaction et d enthalpie de formation Calculer les énergies ( chaleur, variation d'enthalpie) d'une réaction à partir de valeurs expérimentales ( Q= m C T et H= -Q) Calculer l'enthalpie de réaction à partir des enthalpies de formations (loi de Hess) Série 11 Calculer approximativement l'enthalpie de réaction à partir des énergies de liaisons Comprendre et calculer la variation de masse lors d'une réaction LABORATOIRES Calories des cacahuètes Chaleur de neutralisation p.2

3 3.B. Chaleur Aide-mémoire Il est possible de mesurer la chaleur dégagée ou absorbée (Q sys ) au cours d une réaction grâce à un calorimètre. Le calorimètre est un récipient ouvert, la réaction se déroule à l air libre donc à pression constante. On suppose que la chaleur dégagée ou absorbée par cette réaction ne s échappe pas du récipient, mais qu elle sert à refroidir ou chauffer le contenu du récipient. Le calcul de la chaleur dégagée (ou absorbée) par le système (dans ce cas du calorimètre) lors de la réaction se fait grâce à la relation : Q sys = m C T cf. CRM p.147 Par approximation, la chaleur absorbée par le calorimètre est supposée nulle (voir par la suite le laboratoire sans cette approximation). m= masse du contenu du récipient, souvent elle correspond à la masse d eau contenue dans le récipient, car les réactions se déroulent en solution aqueuse (le soluté (partie minoritaire) et le solvant (partie majoritaire : eau)) C= J/(K kg) chaleur massique de l eau, car les réactions se déroulent en solution aqueuse (cf. CRM p.165) T=T f -T i T f : température après réaction (finale) T i : température avant réaction (initiale) T f <T i, la réaction refroidit le système (réaction endothermique) Q sys <O T f >T i, la réaction chauffe le système (réaction exothermique) Q sys >0 p.3

4 3.C. Variation d enthalpie de réaction Expérimentalement, la variation d enthalpie H de réaction aussi appelée chaleur de réaction correspond à l opposé de la chaleur du système (-Q sys ) mesurée à pression constante (les réactions se déroulant à l air libre, même si des gaz interviennent dans la réaction). H= - Q sys Théoriquement, l enthalpie H est l énergie totale que contient la matière. L enthalpie de la matière n est pas connue, mais on peut seulement mesurer la variation d enthalpie H lors d une réaction. H = H finale H initiale H<0 Enthalpie des réactifs > Enthalpie des produits, donc de l énergie est perdue sous forme de chaleur à pression constante H>0 Enthalpie des produits > Enthalpie des réactifs, donc de l énergie est gagnée sous forme de chaleur à pression constante Il s'agit ici d'une détermination indirecte, c'est-à-dire calculée à partir des valeurs expérimentales des chaleurs de réaction. La méthode utilisée est l additivité des enthalpies standards de formation ou de réaction. p.4

5 3.D. Additivité des enthalpies La variation d'enthalpie H pour une réaction chimique est toujours la même, quelle que soit la manière dont se déroule cette réaction. Elle ne dépend que du système initial et du système final; peu importe que la réaction se déroule en une ou plusieurs étapes. Ce fait nous permettra de calculer, à partir d'autres réactions indirectes, la variation d'enthalpie d'une réaction lorsqu'une mesure expérimentale est impossible. p.5

6 3.E. Enthalpie standard de formation H f L enthalpie standard de formation H f est l enthalpie de la réaction de synthèse d une mole de produit à partir de ses éléments pris dans leur état le plus stable, à 25 C et 1 atm (conditions standards notées par le symbole : ). Diagramme des enthalpies de formation : La plupart des manuels fournissent la liste des H f de nombreux composés (cf. CRM p.235 et p.246) p.6

7 3.F. Loi de Hess La variation d'enthalpie d'une réaction ( H r ) dépend des variations d'enthalpie de formation ( H f ) de chaque composé. La loi de Hess est la suivante (cf. CRM p.220) : H r = Σ H f (produit) - Σ H f (réactif) Au cours d'une réaction, les réactifs se transforment en produits : a. Transformation des réactifs en éléments H transf. des réactifs en éléments = Σ H f (réactif) [Σ H f (réactif) signifie : la somme des enthalpies de formation standard des réactifs] b. Transformation des éléments en produits H transf. des éléments en produits = Σ H f (produit) c. Bilan On obtient la variation d'enthalpie de la réaction. H r = H transf. des réactifs en éléments + H transf. des éléments en produits = -Σ H f (réactif) + Σ H f (produit) Résumé Σ H f (réactif) Σ H f (produit) réactifs éléments produits H r = -Σ H f (réactif) +Σ H f (produit) p.7

8 3.G. Énergie de liaison Aide-mémoire DEFINITION : l énergie de liaison est l énergie qu il est nécessaire de fournir à une mole de molécules, prises à l état gazeux, pour les dissocier en leurs atomes constitutifs à l état gazeux, à une température donnée. Exemple : H 2(g) H (g) + H (g) EL=436 kj pour dissocier une mole de H 2 (CRM p. 230) L énergie de liaison est positive, car la molécule constitue un état plus stable que les atomes séparés donc : 1. Casser une liaison nécessite de fournir de l énergie 2. Former une liaison libère de l énergie. Exemple : H 2 2H endoénergetique et 2H H 2 exoénergétique À partir des énergies de liaison (cf. CRM p.230) et en tenant compte du nombre et du type de liaison, il sera possible de calculer la variation d enthalpie de réaction. La variation d enthalpie de la réaction peut se calculer très approximativement, de la manière suivante : H r = ΣEL(réactif) - ΣEL(produit) Au cours d'une réaction, il est nécessaire de rompre et de reformer de nouvelles liaisons 1. Rupture des liaisons des réactifs Le système absorbe de l'énergie (endoénergétique) pour rompre les liaisons des réactifs en leurs atomes: H rupture des liaisons d un réactif = ΣEL(réactif) [ ΣEL(réactif) signifie : la somme des énergies de liaison des réactifs] 2. Formation des liaisons des produits Il y a libération d'énergie (exoénergétique) pour former les produits à partir des atomes précédemment obtenus. H formation des liaisons d un produit = - Σ EL(produit) 3. Bilan En faisant le bilan ou la somme des quantités d'énergie à fournir et des quantités d'énergie libérée, on obtient : H r = ΣEL(réactif) - ΣEL(produit) Résumé Σ EL(réactif) - Σ EL(produit) réactifs atomes produits H r = ΣEL(réactif) - ΣEL(produit) p.8

9 Attention : atome (dans le cas de l énergie de liaison) ne signifie pas élément dans son état le plus stable (dans le cas des enthalpies de formation). Exemple : Exemple de calcul d enthalpie de liaison: Combustion de l éthanol C 2 H 5 OH (g) + 3 O 2 (g) 2 CO 2 (g) + 3 H 2 O (g) H liaison =5 EL(C-H)+ 3 EL(O=O) + EL(C-C)+ EL(C-O)+ EL(O-H) -4 EL(C=O)- 6 EL(O-H)= 5(414) +3(498) (803) -6(463) =-1260 kjpour 1mol d éthanol Les énergies de liaison ne donnent qu un ordre de grandeur des enthalpies de réaction (les résultats sont précis surtout pour les réactions dans l'état gazeux (cf. définition de l'énergie de liaison)). On n utilise cette méthode surtout lorsqu il nous manque les valeurs des H f. p.9

10 3.H. Énergie et masse Albert Einstein a proposé l'équation suivante pour montrer que toute variation d énergie aura comme conséquence une variation de masse: E= mc 2 où E : l'énergie, m: la masse, et c : la vitesse de la lumière Une perte de masse a lieu lors d une réaction exoénergétique et un gain de masse a lieu lors d une réaction endoénergétique. Dans une réaction chimique, cette perte ou ce gain de masse est difficilement observable avec une balance, car cette différence est très infime notamment à cause des faibles énergies de liaisons entre les atomes de la molécule. Exemple : C (s) + O 2 (g) CO 2 (g) kj/ mol de CO 2 (exoénergétique) m= E/c 2 =( J ) /( m/s) 2 = kg= g = 4.38 ng Lorsque 18g d eau (1 mol) se forment, la perte de masse est seulement de 4.38 nanogrammes. Par contre, les réactions nucléaires (ex.: bombes atomiques, centrales nucléaires) dégagent énormément d énergie et la variation de masse sera plus importante à cause des fortes énergies de liaisons dans le noyau (4ème année). p.10

11 3.I. Résumé -Il est possible de déterminer la chaleur dégagée ou absorbée lors d une réaction en mesurant la différence de température avant et après la réaction et à l aide de la formule : Q sys = m C T -Sans effectuer l expérience, il est possible de déterminer la chaleur d une réaction : - grâce à la loi de Hess et les enthalpies de formation H r = Σ H f (produit) - Σ H f (réactif) - grâce aux énergies de liaisons (détermination très approximative) H r = ΣEL(réactif) - ΣEL(produit) -La modification des liaisons lors de la réaction chimique entraîne un dégagement ou absorption de chaleur. - Selon la formule : E= mc 2, une perte de masse a lieu lors d une réaction exoénergétique et un gain de masse a lieu lors d une réaction endoénergétique. Cependant, les limites de précision des balances ne permettent pas d observer une variation de la masse lors de la réaction, car la variation est trop petite. p.11

EXERCICES LA THERMOCHIMIE. Table des matières

EXERCICES LA THERMOCHIMIE. Table des matières Collège Voltaire, 2014-2015 EXERCICES LA THERMOCHIMIE http://dcpe.net/poii/sites/default/files/cours%20et%20ex/ex-ch2-thermo.pdf Table des matières Série 10 La thermochimie 2015... 2 Comprendre la signification

Plus en détail

DEVOIR DE THERMOCHIMIE

DEVOIR DE THERMOCHIMIE DEVOIR DE THERMOCHIMIE Données fournies Constante des gaz parfaits: R= 8,31 kpa.l.k-1.mol -1 Nombre d'avogadro: N A = 6,02 x 10 23 mol -1. Capacité thermique massique de l'eau solide: 2,14 J/g. C. Capacité

Plus en détail

Thermochimie - TD 2 Corrigé

Thermochimie - TD 2 Corrigé Thermochimie - TD Corrigé Licence 1 «Groupes Concours & Polytech» - 007 / 008 Exercice 1 : combustion La combustion dans une bombe calorimétrique (volume constant) d une pastille de 3,76 g d acide benzoïque

Plus en détail

Δ f H 0 (H 2 O) = -285,3 kj. mol -1

Δ f H 0 (H 2 O) = -285,3 kj. mol -1 ANNEXE : RAPPELS DE THERMODYNAMIQUE DEFINITION DE LA NOTION D ENTHALPIE Le terme enthalpie vient des mots grecs signifiant «chaleur interne». L enthalpie exprime la quantité de chaleur et le travail mécanique

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

Chapitre 5 : Noyaux, masse et énergie

Chapitre 5 : Noyaux, masse et énergie Chapitre 5 : Noyaux, masse et énergie Connaissances et savoir-faire exigibles : () () (3) () (5) (6) (7) (8) Définir et calculer un défaut de masse et une énergie de liaison. Définir et calculer l énergie

Plus en détail

P.V = n.r.t. P.V = n.r.t Avec: n: quantité de matière (1 mole = 6,02. 10 23 molécules). R : constante des gaz parfaits. R = 8,3 J.K -1.

P.V = n.r.t. P.V = n.r.t Avec: n: quantité de matière (1 mole = 6,02. 10 23 molécules). R : constante des gaz parfaits. R = 8,3 J.K -1. CHALEUR, TRAVAIL & ENERGIE INTERNE DES GAZ PARFAITS LES 4 TRANSFORMATIONS THERMODYNAMIQUES DE BASE EQUATION CARACTERISTIQUE DES GAZ PARFAITS GAZ PARFAITS L'état d'un gaz parfait est décrit par ses trois

Plus en détail

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE CP7 MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE 1 ) Relation d'équivalence entre la masse et l'énergie -énergie de liaison 2 ) Une unité d énergie mieux adaptée 3 ) application 4

Plus en détail

L ' E N E R G I E T H E R M I Q U E

L ' E N E R G I E T H E R M I Q U E L ' E N E R G I E T H E R M I Q U E Introduction : utilisation de l énergie thermique dans l hôtellerie et la restauration : Appareils producteurs de chaleur : Grill, Fours, Brûleurs, Radiateur, Chauffe-eau

Plus en détail

Produits + calorimètre à T 1

Produits + calorimètre à T 1 THERMOCHIMIE ) Définitions La thermochimie est l'étude des quantités de chaleur échangées avec l'extérieur par un système où se produisent des réactions chimiques Ces quantités de chaleur dépendent des

Plus en détail

DIAGRAMMES BINAIRES. Sommaire. G.P. Diagrammes binaires 2013

DIAGRAMMES BINAIRES. Sommaire. G.P. Diagrammes binaires 2013 DIAGRAMMES BINAIRES Sommaire I.Éléments de thermochimie maths spé...2 A.Introduction de la notion d'enthalpie libre...2 B.Évolution d'une même espèce chimique sous deux phases à P et constants...2 C.Expression

Plus en détail

Chapitre n 4 : L'ENERGIE EN CHIMIE

Chapitre n 4 : L'ENERGIE EN CHIMIE I) Calorimétrie, rappels : ) Equilibre thermique : Chimie - 6 ème année - Ecole Européenne Chapitre n 4 : L'ENERGIE EN CHIMIE - Un système est en équilibre thermique quand tous ses points sont à la même

Plus en détail

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire Énergie Table des A. Énergie 1. 2. 3. La centrale Énergie Table des Pour ce chapitre du cours il vous faut à peu près 90 minutes. A la fin de ce chapitre, vous pouvez : -distinguer entre fission et fusion.

Plus en détail

SESSION 2013 SECOND CONCOURS ÉCOLE NORMALE SUPÉRIEURE PHYSIQUE CHIMIE. Durée : 4 heures

SESSION 2013 SECOND CONCOURS ÉCOLE NORMALE SUPÉRIEURE PHYSIQUE CHIMIE. Durée : 4 heures SESSION 2013 SECOND CONCOURS ÉCOLE NORMALE SUPÉRIEURE PHYSIQUE CHIMIE Durée : 4 heures L usage des calculatrices électroniques de poche à alimentation autonome, sans imprimante et sans document d accompagnement,

Plus en détail

Thermochimie et Thermodynamique Chimique

Thermochimie et Thermodynamique Chimique Thermochimie et Thermodynamique Chimique Quelques notions de départ Les réactions chimiques s accompagnent souvent d échanges de chaleur, voire d autres formes d énergie (électrique, mécanique) La Thermochimie

Plus en détail

Transfert d énergie sous forme thermique

Transfert d énergie sous forme thermique Chapitre 10 Transfert d énergie sous forme thermique Découvrir Activité documentaire n 1 Générations de carburants 1. Il existe trois catégories de carburants : les carburants issus de la pétrochimie,

Plus en détail

Thermodynamique de l atmosphère

Thermodynamique de l atmosphère Thermodynamique de l atmosphère 1 Introduction Notion de parcelle d air L atmosphère est composée d un ensemble de molécules. Pour la description de la plupart des phénomènes étudiés, le suivi des comportements

Plus en détail

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320 20 mars 2003 Généralités et mélanges de gaz parfaits 320 12 On s est principalement limité jusqu à présent à l étude des substances pures. Or, bon nombre de problèmes thermodynamiques font intervenir des

Plus en détail

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. Séance : Le diagramme de l air humide - Définitions Date :

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. Séance : Le diagramme de l air humide - Définitions Date : TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR Tâche T4.2 : Mise en service des installations Compétence C2.2 : Analyser, vérifier une faisabilité Thème : S4 : Approche scientifique et technique des

Plus en détail

Corrigé examen de chimie physique 2BBM janvier 2008.

Corrigé examen de chimie physique 2BBM janvier 2008. Corrigé examen de chimie physique 2BBM janvier 2008. Note : la dispense est fixée à 12. Problème 1. On s intéresse à la combustion du gaz naturel, assimilé à du méthane dans le dioxygène : CH 4(g) + 2

Plus en détail

Équivalence masse-énergie

Équivalence masse-énergie CHPITRE 5 NOYUX, MSSE ET ÉNERGIE Équivalence masse-énergie. Équivalence masse-énergie Einstein a montré que la masse constitue une forme d énergie appelée énergie de masse. La relation entre la masse (en

Plus en détail

Leçon N 1 : Capacités Connaissances Expériences Relever des températures. transfert de l énergie.

Leçon N 1 : Capacités Connaissances Expériences Relever des températures. transfert de l énergie. Leçon N 1 : Température et chaleur Capacités Connaissances Expériences Relever des températures. Connaître l'existence des échelles de Etalonnage d'un thermomètre. Vérifier expérimentalement que lors d

Plus en détail

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX T ale S Introduction : Une réaction nucléaire est Une réaction nucléaire provoquée est L'unité de masse atomique est une unité permettant de manipuler aisément

Plus en détail

Chimie BI réactions endothermiques et exothermiques exercices

Chimie BI réactions endothermiques et exothermiques exercices Chimie BI réactions endothermiques et exothermiques exercices 1. Écris une équation équilibrée pour la combustion complète du pentane C 5 H 12. 2. Écris une équation équilibrée pour la combustion complète

Plus en détail

C3. Produire de l électricité

C3. Produire de l électricité C3. Produire de l électricité a. Electricité : définition et génération i. Définition La matière est constituée d. Au centre de l atome, se trouve un noyau constitué de charges positives (.) et neutres

Plus en détail

première S 1S7 Géothermie

première S 1S7 Géothermie FICHE 1 Fiche à destination des enseignants Type d'activité Activité documentaire Notions et contenus du programme de première S Radioactivité naturelle et artificielle. Activité. Lois de conservation

Plus en détail

Energétique et exergétique de la combustion. D après Borel, Favrat Thermodynamique et énergétique PPUR chap 11

Energétique et exergétique de la combustion. D après Borel, Favrat Thermodynamique et énergétique PPUR chap 11 Energétique et exergétique de la combustion D après Borel, avrat Thermodynamique et énergétique PPUR chap 11 1 Notations Nous utilisons les règles de notation suivantes : toute quantité de substance exprimée

Plus en détail

Etude d un cycle frigorifique avec compresseur

Etude d un cycle frigorifique avec compresseur Etude d un cycle frigorifique avec compresseur Cycle frigorifique Le principe de la pompe à chaleur est ancien (Thomson 1852), mais il a fallu attendre 1927 pour voir da première pompe à chaleur fonctionner

Plus en détail

Equilibre solide-liquide des systèmes binaires

Equilibre solide-liquide des systèmes binaires Equilibre solide-liquide des systèmes binaires I. Introduction La matière présente généralement trois états: solide, liquide et gazeux. Les phases et les structures sous lesquelles peuvent exister les

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Suite énoncé des exos du Chapitre 14 : Noyaux-masse-énergie I. Fission nucléaire induite (provoquée)

Plus en détail

C - LES REACTIONS NUCLEAIRES

C - LES REACTIONS NUCLEAIRES C - LES RECTIONS NUCLEIRES Toute réaction nucléaire met en jeu la transformation spontanée ou provoquée de noyaux atomiques. C - I EQUIVLENCE MSSE ENERGIE I - 1 MISE EN EVIDENCE Les ondes électromagnétiques

Plus en détail

Exercices MathSpé PC 2012-2013. Chapitre T.6 : Les diagrammes binaires liquide-vapeur

Exercices MathSpé PC 2012-2013. Chapitre T.6 : Les diagrammes binaires liquide-vapeur Chapitre T.6 : Les diagrammes binaires liquide-vapeur Exercice 1 : Le diagramme binaire isobare du mélange binaire formé par le propan-2-ol (noté 2) et du 2-méthylpropan-2-ol (noté 1) est donné ci-dessous.

Plus en détail

Comment produit on industriellement de la vapeur d eau?.

Comment produit on industriellement de la vapeur d eau?. Comment produit on industriellement de la vapeur d eau?. combustion_chaudiere.html Schéma de principe d une chaudière de production de vapeur Plan Ti d une boucle vapeur 1/9 La vapeur d eau est généralement

Plus en détail

Nous pouvons diviser les formes d énergie en deux grandes catégories :

Nous pouvons diviser les formes d énergie en deux grandes catégories : Chapitre 4 : Les réactions endothermiques et exothermiques L énergie et ses formes Nous pouvons diviser les formes d énergie en deux grandes catégories : A) Cinétique : Énergie associée au mouvement. Dépend

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Mécanique...2 I.Mise en équations...2 II.Résolution...4 III.Vérifications...4 IV.Aspects énergétiques...4 Optique...5 I.Interférences

Plus en détail

TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie

TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie Lycée François Arago Perpignan M.P.S.I. 2012-2013 TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie Exercice 1 - Influence du chemin de transformation. Une mole de

Plus en détail

Séance n 1 Semaine du 22/09/2014

Séance n 1 Semaine du 22/09/2014 TUTORAT UE 1 2014 2015 Séance n 1 Semaine du 22/09/2014 Thermodynamique Pr. NURIT Séance préparée par les tuteurs de La Fed. Noircir la ou les propositions exactes parmi les 6 items proposés. QCM n 1 :

Plus en détail

DEVOIR DE THERMOCHIMIE

DEVOIR DE THERMOCHIMIE DEVOIR DE THERMOCHIMIE Données fournies Constante des gaz parfaits: R= 8,31 kpa.l.k-1.mol -1 Nombre d'avogadro: N A = 6,02 x 10 23 mol -1. Capacité thermique massique de l'eau solide: 2,14 J/g. C. Capacité

Plus en détail

Le rôle d un thermomètre est d assurer la liaison entre la grandeur thermométrique et la matière dont on veut repérer la température.

Le rôle d un thermomètre est d assurer la liaison entre la grandeur thermométrique et la matière dont on veut repérer la température. COURS DE THERMODYNAMIQUE de Mme F. Lemmini, Professeur STU-SVI CHAPITRE I : TEMPERATURE ET CHALEUR I.1 Température I.1.1 Notion de température La température est liée à la sensation physiologique du chaud

Plus en détail

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES Session 200 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE E-3 SCIENCES PHYSIQUES U-3 CHIMIE-PHYSIQUE INDUSTRIELLES Durée : 2 heures Coefficient : 2,5 Durée conseillée Chimie

Plus en détail

Air humide : corrigé

Air humide : corrigé Air humide : corrigé 1 Prise en mains du diagramme Notations : w = humidité absolue, ψ = humidité relative, P w = pression partielle de vapeur d eau, P s w = pression de saturation de l eau Placer le point

Plus en détail

INTRODUCTION AUX MÉTHODES D ANALYSE THERMIQUE SETSYS 24 TGA/DTA/DSC/TMA/MS Stéphane Gutierrez professionnel en caractérisation des matériaux

INTRODUCTION AUX MÉTHODES D ANALYSE THERMIQUE SETSYS 24 TGA/DTA/DSC/TMA/MS Stéphane Gutierrez professionnel en caractérisation des matériaux INTRODUCTION AUX MÉTHODES D ANALYSE THERMIQUE SETSYS 24 TGA/DTA/DSC/TMA/MS Stéphane Gutierrez professionnel en caractérisation des matériaux LCG/CCM/IMSI/UdeS OBJECTIFS Comprendre les principes de fonctionnement

Plus en détail

CCP Chimie MP 2011 Énoncé 1/5 6(66,21 03&+ (35(89(63(&,),48(),/,(5(03 zzzzzzzzzzzzzzzzzzzz &+,0,( 'XUpHKHXUHV zzzzzzzzzzzzzzzzzzzz

CCP Chimie MP 2011 Énoncé 1/5 6(66,21 03&+ (35(89(63(&,),48(),/,(5(03 zzzzzzzzzzzzzzzzzzzz &+,0,( 'XUpHKHXUHV zzzzzzzzzzzzzzzzzzzz CCP Chimie MP 20 Énoncé /5 6(66,2 03&+ C O N C O U R S C O M M U N S P O LY T E C H N I Q U E S (35(89(63(&,),48(),/,(5(03 zzzzzzzzzzzzzzzzzzzz &+,0,( 'XUpHKHXUHV zzzzzzzzzzzzzzzzzzzz %/HFDQGLGDWDWWDFKHUDODSOXVJUDQGHLPSRUWDQFHjODFODUWpjODSUpFLVLRQHWjODFRQFLVLRQGH

Plus en détail

1 Chambre froide : CORRECTION G.I.M. 2. Contrôle de thermodynamique du vendredi 30 janvier 2015

1 Chambre froide : CORRECTION G.I.M. 2. Contrôle de thermodynamique du vendredi 30 janvier 2015 IUT de Saint Denis Module THERM3 CORRECTION G.I.M. Contrôle de thermodynamique du vendredi 30 janvier 015 1 Chambre froide : 1. Les pressions d'évaporation et de condensation sont données par la table

Plus en détail

I Les différents états de l eau II Deux modes de vaporisation de l eau, III Echanges d énergie et changements d états

I Les différents états de l eau II Deux modes de vaporisation de l eau, III Echanges d énergie et changements d états I Les différents états de l eau II Deux modes de vaporisation de l eau, III Echanges d énergie et changements d états I Les différents états de l eau a- Les trois états de l eau. Quels sont les différents

Plus en détail

Les gaz: caractéristiques

Les gaz: caractéristiques Les gaz Les gaz: caractéristiques les gaz épousent le volume et la forme de leurs contenants les gaz sont compressibles alors que les liquides et les solides le sont très peu des gaz déversés dans un même

Plus en détail

10 Cycles frigorifiques

10 Cycles frigorifiques 14 mars 2003 Introduction 277 10 10.1 Introduction Dans la section 9.1, on a considéré des machines thermiques constituées de quatre processus distincts, mettant en œuvre soit des dispositifs à circulation

Plus en détail

CHAUFFAGE. Cours : 14 séances (A.Trombe, L.Adolphe, C.Oms) TD : 8 séances (S. Ginestet, M.Moisson, C.Oms) Tests : 1 QCM (30%) + 1 Contrôle final (70%)

CHAUFFAGE. Cours : 14 séances (A.Trombe, L.Adolphe, C.Oms) TD : 8 séances (S. Ginestet, M.Moisson, C.Oms) Tests : 1 QCM (30%) + 1 Contrôle final (70%) 2010/2011 CHAUFFAGE 4 - GC Cours : 14 séances (A.Trombe, L.Adolphe, C.Oms) TD : 8 séances (S. Ginestet, M.Moisson, C.Oms) Tests : 1 QCM (30%) + 1 Contrôle final (70%) 4 séances 2 séances 2 séances 4 séances

Plus en détail

Chapitre 0-2 Introduction générale au cours de BCPST1

Chapitre 0-2 Introduction générale au cours de BCPST1 Chapitre 0-2 Introduction générale au cours de BCPST Extrait du programme I. Les grandeurs en sciences physiques Définition : une grandeur est une observable du système On peut la mettre en évidence a.

Plus en détail

Conséquences des deux principes Machines thermiques Potentiels thermodynamiques

Conséquences des deux principes Machines thermiques Potentiels thermodynamiques S3 PMCP 2015/2016 D de thermodynamique n 5 Conséquences des deux principes Machines thermiques Potentiels thermodynamiques 1 Cycle avec une seule source de chaleur. Soit un système pouvant, pendant un

Plus en détail

Application à l astrophysique ACTIVITE

Application à l astrophysique ACTIVITE Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.

Plus en détail

BILANS THERMIQUES 1. DU MICROSCOPIQUE AU MACROSCOPIQUE 2. ENERGIE INTERNE

BILANS THERMIQUES 1. DU MICROSCOPIQUE AU MACROSCOPIQUE 2. ENERGIE INTERNE 1. DU MICROSCOPIQUE AU MACROSCOPIQUE BILANS THERMIQUES La description de la matière peut être faite au niveau microscopique ou au niveau macroscopique: L approche microscopique décrit le comportement individuel

Plus en détail

Cours de combustion 1 ière partie Notions

Cours de combustion 1 ière partie Notions 1 Cours de combustion 1 ière partie Notions I Rappels sur la structure de la matière et les forces naturelles I-1 Généralités Toute matière (gaz, liquide ou solide) est constituée d atomes. L atome est

Plus en détail

Sciences de l'ingénieur

Sciences de l'ingénieur Sciences de l'ingénieur Semestre 2 Session 1 l1 UNIVERSITÉ DE NANTES U.F.R. des Sciences et des Techniques S.E.V.E. Bureau des Examens Nom de I'U.E.: Code de I'U.E. : Date de l'examen: Durée: Documentsautorisés:

Plus en détail

Module 2 L aspect énergétique des transformations

Module 2 L aspect énergétique des transformations Module 2 L aspect énergétique des transformations Notes de cours Module 2 Chapitre 3 Les transferts d énergie 1. Distinction entre chaleur et température Chaleur : transfert d énergie thermique qui se

Plus en détail

RDP : Bilan carbone d une centrale électrique thermique au gaz

RDP : Bilan carbone d une centrale électrique thermique au gaz 1S Thème : AGIR RDP : Bilan carbone d une centrale électrique thermique au gaz DESCRIPTIF DE SUJET DESTINE AU PROFESSEUR Objectif Compétences exigibles du B.O. Initier les élèves de première S à la démarche

Plus en détail

extraire et organiser l information utile

extraire et organiser l information utile 2009-2010 Sciences Physiques Liste des compétences (évaluables en vert / flous?? en bleu) Rechercher, Observer, recenser les informations extraire et organiser l information utile Je sais trouver les informations

Plus en détail

Cours CH4. Description d un système physico-chimique Transformation chimique

Cours CH4. Description d un système physico-chimique Transformation chimique Cours CH4 Description d un système physico-chimique Transformation chimique David Malka MPSI 2014-2015 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Description d un système

Plus en détail

Table des matières. Chapitre 1- Atomistique... 17. Chapitre 2- Liaisons chimiques... 47

Table des matières. Chapitre 1- Atomistique... 17. Chapitre 2- Liaisons chimiques... 47 Table des matières Chapitre 1- Atomistique... 17 1. Structure de l atome... 17 2. Modèle corpusculaire : cas de l atome H... 19 2.1 Objectif... 19 2.2 Modèle de Rutherford... 19 2.3 Modèle de Bohr... 20

Plus en détail

Energie nucléaire. Quelques éléments de physique

Energie nucléaire. Quelques éléments de physique Energie nucléaire Quelques éléments de physique Comment produire 1 GW électrique Nucléaire (rendement 33%) Thermique (38%) Hydraulique (85%) Solaire (10%) Vent : 27t d uranium par an : 170 t de fuel par

Plus en détail

1. Gaz parfait et transformations thermodynamiques

1. Gaz parfait et transformations thermodynamiques 1. Gaz parfait et transformations thermodynamiques Pour l'air : r = R / M = 0,871 kj / (kg.k), avec M masse molaire c p =1,005 kj/kg K, c v = 0,718 kj/kg K = 1.93 kg / m 3 à 0 C et à 1013 mbars Pour un

Plus en détail

Tableau d avancement

Tableau d avancement Terminale S - AP SPC 6 Tableau d avancement Objectifs : Savoir réaliser un bilan de matière initial, intermédiaire ou final grâce à un tableau d avancement. Une transformation chimique est l évolution

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

Le calorimètre de Junkers et la mesure de la masse moléculaire par effusiométrie

Le calorimètre de Junkers et la mesure de la masse moléculaire par effusiométrie Manipulation 1 Le calorimètre de Junkers et la mesure de la masse moléculaire par effusiométrie Consignes de sécurité Soyez prudent en utilisant le gaz naturel. Dans le cas d une odeur de gaz, fermez la

Plus en détail

1) Explications (Expert) :

1) Explications (Expert) : 1) Explications (Expert) : Mesures expérimentales : Dans nos conditions d expérience, nous avons obtenu les résultats suivants : Les dimensions des récipients sont : 1) bocal vide : épaisseur de verre

Plus en détail

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable. DE3: I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable. Aujourd hui, nous obtenons cette énergie électrique en grande partie

Plus en détail

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit

Plus en détail

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques C est Niveau la représentation 4 ème 2. Document du professeur 1/6 Physique Chimie LES ATOMES POUR COMPRENDRE LA TRANSFORMATION CHIMIQUE Programme Cette séance expérimentale illustre la partie de programme

Plus en détail

Energie, puissance et production d énergie

Energie, puissance et production d énergie Energie, puissance et production d énergie Le skateur Un skateur part, à l arrêt du haut de la rampe d un skate parc de hauteur 5 m. La masse du skateur est de 50 kg (on prendra g=10 pour l accélération

Plus en détail

Résumé qualitatif sur les diagrammes binaires

Résumé qualitatif sur les diagrammes binaires Résumé qualitatif sur les diagrammes binaires A Diagramme binaire Liquide Vapeur A1 Diagramme binaire Liquide vapeur idéaux Diagramme isotherme: La courbe donnant la pression en fonction de la fraction

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

Énergétique du bâtiment : Ventilation et quelques équipements 2

Énergétique du bâtiment : Ventilation et quelques équipements 2 1 Énergétique du bâtiment : Ventilation et quelques équipements 2 M. Pons CNRS-LIMSI, Rue J. von Neumann, BP133, 91403 Orsay Cedex http://perso.limsi.fr/mpons 1 Organisation Deuxième partie Notions de

Plus en détail

S O 2H O S SO 3H O. une solution de thiosulfate de sodium de concentration en ion thiosulfate [S 2

S O 2H O S SO 3H O. une solution de thiosulfate de sodium de concentration en ion thiosulfate [S 2 PARTIE 3 : Réactions chimiques et milieux biologiques TP 15 La chimie des facteurs cinétiques OBJECTIFS : Mettre en œuvre une démarche expérimentale pour mettre en évidence quelques paramètres influençant

Plus en détail

L AIR ET L AÉRAULIQUE

L AIR ET L AÉRAULIQUE Roger Cadiergues MémoCad ne03.a L AIR ET L AÉRAULIQUE SOMMAIRE ne03.1. Les applications de l aéraulique ne03.2. L utilisation des débits ne03.3. Ecoulements : débits et vitesses ne03.4. Vitesses et pressions

Plus en détail

Document de préparation Examen chapitre 1 et 2

Document de préparation Examen chapitre 1 et 2 Document de préparation Examen chapitre 1 et 2 Qui suis-je? Chapitre 1 et 2 1. Représentation imagée d une vérité inaccessible par les sens. Modèle scientifique 2. Plus petite partie possible de la matière

Plus en détail

4 COMPOSANTS ET TRANSFORMATIONS ÉLÉMENTAIRES

4 COMPOSANTS ET TRANSFORMATIONS ÉLÉMENTAIRES 4 COMPOSANTS ET TRANSFORMATIONS ÉLÉMENTAIRES Dans l'introduction de cet ouvrage, nous avons montré que les technologies énergétiques se présentent comme des assemblages de composants traversés par des

Plus en détail

PRINCIPE DE FONCTIONNEMENT D UN THERMOMETRE

PRINCIPE DE FONCTIONNEMENT D UN THERMOMETRE ECHANGES THERMIQUES 1. GENERALITES : 1.1. Notion de température : Cette notion est liée à la sensation de chaud et de froid (sensation subjective). Par contre elle est directement liée à l état thermique

Plus en détail

SOMMAIRE. CHIMIE GENERALE ET MINERALE... p.47

SOMMAIRE. CHIMIE GENERALE ET MINERALE... p.47 SOMMAIRE REMISE A NIVEAU-NOTIONS NOTIONS DE BASE... p.7 REMISE A NIVEAU PHYSIQUE-CHIMIE-N 1 : STRUCTURE DE LA MATIERE. p.8 I. Structure atomique... p.8 II. La répartition électronique et représentation

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 7 : Thermodynamique - Partie 2 Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Finalité du chapitre Après

Plus en détail

Stage : "Développer les compétences de la 5ème à la Terminale"

Stage : Développer les compétences de la 5ème à la Terminale Stage : "Développer les compétences de la 5ème à la Terminale" Session 2014-2015 Documents produits pendant le stage, les 06 et 07 novembre 2014 à FLERS Adapté par Christian AYMA et Vanessa YEQUEL d après

Plus en détail

Rappels sur les couples oxydantsréducteurs

Rappels sur les couples oxydantsréducteurs CHAPITRE 1 TRANSFORMATIONS LENTES ET RAPIDES 1 Rappels sur les couples oxydantsréducteurs 1. Oxydants et réducteurs Un réducteur est une espèce chimique capable de céder au moins un électron Demi-équation

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2014

BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 Série STI2D Série STL spécialité sciences physiques et chimiques en laboratoire PHYSIQUE-CHIMIE Durée : 3 heures Coefficient : 4 CALCULATRICE AUTORISÉE L emploi

Plus en détail

1. LE MOTEUR THERMIQUE

1. LE MOTEUR THERMIQUE 1. LE MOTEUR THERMIQUE 1.1 Définition Les moteurs thermiques transforment de la chaleur en travail mécanique destiné à équilibrer le travail résistant d un véhicule qui se déplace. Les machines thermiques

Plus en détail

DANGER ATTENTION H315: Provoque une irritation cutanée H319: Provoque une sévère irritation des yeux H335: Peut irriter les voies respiratoires

DANGER ATTENTION H315: Provoque une irritation cutanée H319: Provoque une sévère irritation des yeux H335: Peut irriter les voies respiratoires TP Chimie 1 Mesure de transfert thermique I Introduction 1 Présentation Sécurité 3 Données II Mesure de la valeur en eau du calorimètre 1 Principe Mesures 3 Incertitude de la mesure III Mesure d une enthalpie

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2015

BACCALAURÉAT TECHNOLOGIQUE SESSION 2015 BACCALAURÉAT TECHNOLOGIQUE SESSION 2015 Série STI2D Toutes spécialités Série STL Spécialité sciences physiques et chimiques en laboratoire PHYSIQUE-CHIMIE Durée : 3 heures Coefficient : 4 CALCULATRICE

Plus en détail

PARTIE A GENIE CHIMIQUE. Du gaz de Lacq au soufre

PARTIE A GENIE CHIMIQUE. Du gaz de Lacq au soufre PARTIE A GENIE CHIMIQUE Du gaz de Lacq au soufre Plus de la moitié du soufre produit dans le monde provient du traitement des gaz naturels et des pétroles. En France, il est produit principalement à partir

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

Partie II TEMPERATURES DANS LE REACTEUR

Partie II TEMPERATURES DANS LE REACTEUR Spé y 2001-2002 Devoir n 2 THERMODYNAMIQUE Ce problème étudie quelques aspects des phénomènes intervenants dans une centrale nucléaire de type Réacteur à Eau Pressurisée (ou PWR en anglais) qui est le

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Noyaux Masse - Energie

Noyaux Masse - Energie Noyaux Masse - Energie Masse et Energie. 1. Quelle relation Einstein établit-il entre la masse et l énergie? Préciser les unités. C = 2. Compléter le tableau : 3. Défaut de masse a) Choisir un noyau dans

Plus en détail

Tous ces exemples sont des applications contrôlables par l'homme. Ils sont, de ce fait, utiles.

Tous ces exemples sont des applications contrôlables par l'homme. Ils sont, de ce fait, utiles. Chapitre 8b EFFET CALORIFIUE ENERGIE CALORIFIUE Sommaire Effets calorifiques Energie calorifique Exercices 8.7 EFFETS CALORIFIUES La transformation d'énergie électrique W él en une énergie calorifique

Plus en détail

Énergie électrique mise en jeu dans un dipôle

Énergie électrique mise en jeu dans un dipôle Énergie électrique mise en jeu dans un dipôle Exercice106 Une pile de torche de f.é.m. E = 4,5 V de résistance interne r = 1,5 Ω alimente une ampoule dont le filament a une résistance R = 4 Ω dans les

Plus en détail

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN Objectifs : Exploiter un spectre infrarouge pour déterminer des groupes caractéristiques Relier un spectre

Plus en détail

Chapitre 2. Combustion

Chapitre 2. Combustion Chapitre 2 Combustion 1 Nous étudierons dans ce chapitre le mode de production de chaleur le plus couramment rencontré dans l industrie. Nous nous limiterons au bilan énergétique et non aux processus de

Plus en détail

Doc 3 transferts thermiques

Doc 3 transferts thermiques Activité Documentaire Transferts d énergie entre systèmes macroscopiques Doc 1 Du microscopique au macroscopique La description de la matière peut être faite au niveau microscopique ou au niveau macroscopique.

Plus en détail

la matièr cuivre (II) Donner la 2) Déterminer et Cu 2+ + Correction : ions chlorure. 1) Chlorure de cuivre neutralité CuCl 2. = =

la matièr cuivre (II) Donner la 2) Déterminer et Cu 2+ + Correction : ions chlorure. 1) Chlorure de cuivre neutralité CuCl 2. = = 1) Chlorure de cuivre Le chlorure de cuivre (II) est un composé ionique constitué d'ions chlorure Cl - et d'ions cuivre (II) Cu 2+. Donner la formule statistique de ce composé. Écrire l'équation de sa

Plus en détail

Le modèle du gaz parfait

Le modèle du gaz parfait Table des matières 1 : énergie interne, équation d état 1.1 Hypothèses........................................... 1. Énergie interne d un GPM................................... 1.3 Équation d état du GPM....................................

Plus en détail

Mesure du rendement d une machine à vapeur.

Mesure du rendement d une machine à vapeur. Mesure du rendement d une machine à vapeur. Rappels : Le rendement N est le rapport entre l énergie utile (fournie par la machine ) et l énergie motrice (fournie à la machine). C est aussi le rapport entre

Plus en détail

Modèle réduit pour la DSC : Application aux solutions binaires

Modèle réduit pour la DSC : Application aux solutions binaires Modèle réduit pour la DSC : Application aux solutions binaires Stéphane GIBOUT 1, Erwin FRANQUET 1, William MARÉCHAL 1, Jean-Pierre BÉDÉCARRATS 1, Jean-Pierre DUMAS 1 1 Univ. Pau & Pays Adour, LaTEP-EA

Plus en détail

Etude de la déshumidification de l air pour les applications de séchage dans les régions humides

Etude de la déshumidification de l air pour les applications de séchage dans les régions humides Revue des Energies Renouvelables SMSTS 08 Alger (2008 135 144 Etude de la déshumidification de l air pour les applications de séchage dans les régions humides H. Derbal 1*, M. Belhamel 1, A. Benzaoui 2

Plus en détail