Concours Fermat (11 e année Sec. V) le mardi 19 février 2008
|
|
|
- Côme Breton
- il y a 10 ans
- Total affichages :
Transcription
1 Concours canadien de mathématiques Une activité du Centre d éducation en mathématiques et en informatique, Université de Waterloo, Waterloo, Ontario Concours Fermat (11 e année Sec. V) le mardi 19 février 2008 Avec la contribution de: Avec la participation de: Comptables agréés Durée: 60 minutes c 2008 Waterloo Mathematics Foundation L usage de la calculatrice est permis. Directives 1. Attendez le signal du surveillant ou de la surveillante avant d ouvrir le cahier. 2. Il est permis d utiliser du papier brouillon, ainsi qu une règle et un compas. 3. Assurez-vous de bien comprendre le système de codage des feuilles-réponses. Au besoin, demandez à l enseignante ou à l enseignant d apporter des précisions. Il faut coder avec un crayon à mine, préférablement un crayon HB. Il faut bien remplir les cercles. 4. Dans la case dans le coin supérieur gauche de la feuille-réponse, écrivez en lettres moulées le nom de votre école, le nom de la ville et celui de la province. 5. Sur la feuille-réponse, assurez-vous de bien coder votre nom, votre âge, votre sexe, votre année scolaire et le concours que vous passez. Seuls ceux qui le font pourront être considérés candidats officiels. 6. Le concours est composé de questions à choix multiple. Chaque question est suivie de cinq choix de réponse, notés A, B, C, D et E, dont une seule est juste. Une fois le choix établi, remplissez le cercle approprié sur la feuille-réponse. 7. Notation: Chaque réponse juste vaut 5 points dans la partie A, 6 points dans la partie B et 8 points dans la partie C. Une réponse fautive n est pas pénalisée. Chaque question laissée sans réponse vaut 2 points, jusqu à un maximum de 10 questions. 8. Les figures ne sont pas dessinées à l échelle. Elles servent d appui visuel seulement. 9. Après le signal du surveillant ou de la surveillante, vous aurez 60 minutes pour terminer. Le nom de quelques-uns des candidats ayant obtenu les meilleurs résultats sera publié sur notre site web à
2 Notation: Une réponse fautive n est pas pénalisée. On accorde 2 points par question laissée sans réponse, jusqu à un maximum de 10 questions. artie A (5 points par bonne réponse) 1. uelle est la valeur de (A) 110 (B) 22 (C) uelle est la valeur de 6 ( )?? (D) 5 (E) 14 (A) 13 (B) 6 (C) 13 6 (D) 29 3 (E) 5 3. Si x = , quelle est la valeur de x? (A) 11 (B) 210 (C) 100 (D) 20 (E) Un camion vide pèse 9600 kg. Lorsqu on charge le camion de 40 caisses identiques, le poids total est de kg. uel est le poids de chaque caisse? 5. Si (A) 460 kg (B) 950 kg (C) 1190 kg (D) 240 kg (E) 710 kg 18 x = 2, quelle est la valeur de x? (A) 81 (B) 36 (C) 18 (D) 9 (E) 3 6. Dans la figure ci-contre, quelle est la mesure de l angle R? (A) 45 (B) 30 (C) 60 (D) 75 (E) R S 7. Si p est un entier impair et si q est un entier pair, laquelle des expressions suivantes représente un entier impair? (A) 2p + 3q (B) 3p + 2q (C) 4p + q (D) 2(p + 3q) (E) pq 8. Deux nombres de trois chiffres, soit abc et def, vérifient la propriété suivante : a b c + d e f Aucun des chiffres a, b, c, d, e et f n est égal à 0. uelle est la valeur de a + b + c + d + e + f? (A) 10 (B) 19 (C) 21 (D) 28 (E) 30
3 9. Beshmi a placé 1 5 de ses économies dans la compagnie X, 42 % de ses économies dans la compagnie Y et le reste de ses économies dans la compagnie Z. Si Beshmi a placé $ dans la compagnie Y, combien a-t-elle placé dans la compagnie Z? (A) $ (B) $ (C) $ (D) 9500 $ (E) 5000 $ 10. Dans la figure ci-contre, la région ombrée est bornée par l axe des abscisses et par les droites d équations y = x et y = 2x + 3. uelle est l aire de la région ombrée? y (A) 3 4 (B) 3 2 (C) 9 4 (D) 1 (E) 10 4 x artie B (6 points par bonne réponse) 11. Si 1 x = 2 et 1 x + 3 y = 3, quelle est la valeur de x + y? (A) 3 (B) 5 6 (C) 7 3 (D) 7 2 (E) Siobhan a écrit sept épreuves, chacune sur 100 points. Elle a obtenu des notes de 69, 53, 69, 71, 78, x et y. La moyenne des sept notes est de 66. uelle est la plus petite valeur possible de x? (A) 22 (B) 68 (C) 61 (D) 53 (E) Dans la figure ci-contre, les cercles de centres, et R ont un rayon respectif de 3, 2 et 1. Chaque cercle touche aux deux autres comme il est indiqué. uelle est l aire du triangle R? (A) 12 (B) 6 (C) 7,5 (D) 10 (E) 4 R 14. Dans la figure ci-contre, le point Z est situé sur le segment XY et les trois cercles ont pour diamètre respectif XZ, ZY et XY. Si XZ = 12 et ZY = 8, alors le rapport de l aire de la région ombrée à l aire de la région non ombrée est égal à : X Z Y (A) 12 : 25 (B) 12 : 13 (C) 1 : 1 (D) 1 : 2 (E) 2 : 3
4 15. Dans une course de relais, Alice complète le 1 er tour de piste en 72 secondes. Brigitte parcourt le 2 e tour de piste à 9 10 de la vitesse d Alice. Cécile parcourt le 3e tour de piste à 4 3 de la vitesse de Brigitte. Diane parcourt le dernier tour de piste à 6 5 de la vitesse de Cécile. uel temps ont-elles mis, à la seconde près, pour la course au complet? (A) 4 minutes, 48 secondes (B) 4 minutes, 22 secondes (C) 5 minutes, 27 secondes (D) 4 minutes, 37 secondes (E) 3 minutes, 46 secondes 16. Dans la figure ci-contre, les six petits carrés ont tous des côtés de longueur 2. Des segments O et O ont été ajoutés. uelle est la mesure de l angle O, en degrés, au dixième près? (A) 15,0 (B) 25,5 (C) 26,6 (D) 22,5 (E) 30,0 17. La différence des carrés de deux entiers consécutifs est égale à 199. uelle est la somme des carrés de ces deux entiers consécutifs? (A) (B) (C) (D) (E) Une suite arithmétique est une suite dans laquelle chaque terme, après le premier, est obtenu en ajoutant une même constante au terme précédent. our deux nombres particuliers, a et b, les quatre premiers termes d une suite arithmétique sont a, 2a, b et a 6 b. uelle est la valeur du 100 e terme? (A) 100 (B) 300 (C) 150 (D) 150 (E) Dans la figure ci-contre, le point R est situé sur le segment S. De plus, R = 8, R = 12, R = 120 et R S = 90. uelle est l aire du triangle S? (A) 72 3 (B) 72 (C) 36 (D) 60 3 (E) O 12 R S 20. Dans la figure ci-contre, LM est perpendiculaire à MN. Le sommet W du rectangle W XY Z est situé sur LM et le sommet Z est situé sur MN. De plus, Y Z = 1 m, XY = 3 m et MZ = 1,2 m. uelle est la distance du point X au segment MN, au centième de mètre près? W L X 3 m (A) 2,75 m (B) 3,67 m (C) 3,15 m (D) 3,26 m (E) 3,63 m M 1,2 m Z 1 m Y N
5 artie C (8 points par bonne réponse) 50 zéros { }} { 21. Supposons que N = Lorsqu on calcule la valeur de N et qu on l écrit sous la forme d un seul entier, la somme de ses chiffres est égale à : (A) 58 (B) 99 (C) 55 (D) 50 (E) our combien de valeurs entières de k les paraboles d équations y = 1 8 x2 + 4 et y = x 2 k se coupent-elles sur l axe des abscisses ou au-dessus de cet axe? (A) 9 (B) 32 (C) 33 (D) 36 (E) Le carré RS a des côtés de longueur 4 m. Le point U est situé sur le segment R de manière que R = 4UR. Un cercle de centre U touche à deux côtés du carré. Le segment W est tangent au cercle, W étant situé sur le segment R. uelle est la longueur de W, au millième de mètre près? W U R (A) 4,123 m (B) 4,472 m (C) 4,685 m (D) 4,726 m (E) 4,767 m S 24. Combien y a-t-il de triplets (a, b, c) d entiers positifs de manière que 1 a + 1 b + 1 c = 3 4? (A) 16 (B) 25 (C) 31 (D) 19 (E) La première figure ci-dessous est un prisme droit dont la base est un hexagone régulier. Il a été tranché pour obtenir le deuxième solide. La base du nouveau solide est un hexagone régulier ABCDEF. Les six faces latérales sont des trapèzes perpendiculaires à la base ABCDEF. Le dessus est un hexagone UV W XY Z qui n est pas nécéssairement régulier. U V armi les six arêtes AU, BV, CW, DX, EY et F Z, trois ont une longueur respective de 4, 7 et 10. uelle est la plus grande valeur possible de AU + BV + CW + DX + EY + F Z? (A) 42 (B) 51 (C) 69 (D) 78 (E) 91 A B Z F W C E Y X D
6 2008 Concours Fermat (français) Concours canadien de mathématiques our les élèves... Merci d avoir participé au concours Fermat de 2008! En 2007, plus de élèves à travers le monde se sont inscrits aux concours ascal, Cayley et Fermat. Encouragez votre enseignant à vous inscrire au concours Hypatie qui aura lieu le 16 avril Visitez notre site Web au pour plus d information à propos du concours Hypatie des copies gratuites des concours précédents des ateliers pour vous aider à vous préparer aux concours futurs de l information au sujet de nos publications qui visent l enrichissement en mathématiques et la préparation aux concours de l information concernant les carrières en mathématiques our les enseignants... Visitez notre site Web au pour inscrire vos élèvess aux concours Fryer, Galois et Hypatie qui auront lieu le 16 avril 2008 se renseigner sur des ateliers et des ressources disponibles aux enseignants trouver les résultats de votre école
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)
Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés
Les problèmes de la finale du 21éme RMT
21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................
ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES
ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
UN TOURNOI A GAGNER ENSEMBLE
UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Ch.G3 : Distances et tangentes
4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
EVALUATIONS FIN CM1. Mathématiques. Livret élève
Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés
P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES
OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES ACADÉMIE DE RENNES SESSION 2006 CLASSE DE PREMIERE DURÉE : 4 heures Ce sujet s adresse à tous les élèves de première quelle que soit leur série. Il comporte cinq
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution
Q.C.M. Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution Exercice 1 On considère les trois nombres A, B et C : 2 x (60 5 x 4 ²) (8 15) Calculer
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)
PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) LIGNES DIRECTRICES POUR LE PARCOURS À OBSTACLES VERSION 4.1 CANADIENNE-FRANÇAISE Les activités d entraînement et d évaluation du WSP-F 4.1 peuvent se dérouler
TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet
TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France
PRATIQUE DU COMPAS ou
PRTQU U OMPS ou Traité élémentaire de tous les traits servant aux rts et Métiers et à la construction des âtiments ZR, éomètre ii Reproduction de l édition de 1833, VNN, imprimerie TMON Père et ils, par
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
SÉQUENCE 4 Séance 1. Séquence. Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1
c Séquence 4 Ce que tu devais faire Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1 SÉQUENCE 4 Séance 1 Les commentaires du professeur 1) Pour calculer combien Paul dépense, on effectue
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français Avant de débuter, demander aux élèves de préparer le matériel suivant : crayon à papier, gomme,
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
Comment démontrer que deux droites sont perpendiculaires?
omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré
EQUATIONS ET INEQUATIONS Exercices 1/8
EQUATIONS ET INEQUATIONS Exercices 1/8 01 Résoudre les équation suivantes : x + 7 = 0 x 1 = 0 x + 4 = 0 3x 9 = 0 9x + 1 = 0 - x + 4 = 0-6x + = 0-5x 15 = 0-1 + 8x = 0-4 - 3x = 0-5x 3 + 7x = 0 + 6x 4 = 0
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
Programme de calcul et résolution d équation
Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
Je découvre le diagramme de Venn
Activité 8 Je découvre le diagramme de Venn Au cours de cette activité, l élève découvre le diagramme de Venn et se familiarise avec lui. Pistes d observation L élève : reconnaît les éléments du diagramme
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4
Valérie CLISSON Arnaud DUVAL Tests de logique Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4 CHAPITRE 1 Mise en bouche Les exemples qui suivent constituent un panorama de l ensemble des tests de logique habituellement
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Les nombres entiers. Durée suggérée: 3 semaines
Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
Puissances d un nombre relatif
Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
Repérage de l artillerie par le son.
Repérage de l artillerie par le son. Le repérage par le son permet de situer avec précision une batterie ennemie, qu elle soit ou non bien dissimulée. Le son se propage avec une vitesse sensiblement constante,
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Chapitre 4: Dérivée d'une fonction et règles de calcul
DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.
MAT2027 Activités sur Geogebra
MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il
Sur certaines séries entières particulières
ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane
LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE. Bonne utilisation à toutes et tous! UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE
LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE Utilisation des TBI UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE T B utoriel de base, ce mode d emploi a pour objectif de vous présenter les principales
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
2x 9 =5 c) 4 2 x 5 1= x 1 x = 1 9
Partie #1 : La jonglerie algébrique... 1. Résous les (in)équations suivantes a) 3 2x 8 =x b) Examen maison fonctions SN5 NOM : 2x 9 =5 c) 4 2 x 5 1= x 1 x d) 2 x 1 3 1 e) x 2 5 = 1 9 f) 2 x 6 7 3 2 2.
Du Premier au Second Degré
Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse
Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable
Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
4G2. Triangles et parallèles
4G2 Triangles et parallèles ST- QU TU T SOUVINS? 1) On te donne une droite (d) et un point n'appartenant pas à cette droite. vec une équerre et une règle non graduée, sais-tu construire la parallèle à
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Exercice n o 54 : Tracer le graphique d une fonction
Eercice n o 54 : Tracer le graphique d une fonction G- Pour chaque fonction donnée dans les problèmes à 6 : a) Dessine le graphique correspondant. b) Indique le domaine et l'image. c) Évalue f(0). d) Trouve
chapitre 4 Nombres de Catalan
chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C
Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée
1/5 Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée Étape 1 : associer la droite graduée à deux objets du quotidien : la règle graduée ici, celle de l'enseignant
BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE
BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE ÉPREUVE DE SCIENCES DE L INGÉNIEUR ÉPREUVE DU VENDREDI 20 JUIN 2014 Session 2014 Durée de l épreuve : 4 heures Coefficient 4,5 pour les candidats ayant choisi un
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
Réseau d Éducation Prioritaire de Harnes. Défis-math 2001-2009. Énoncés
Réseau d Éducation Prioritaire de Harnes Défis-math 2001-2009 Énoncés Défi-math 2001 Défi-math 2001 Défi n 1 On ne peut se déplacer dans ce labyrinthe qu en montant vers une case contenant un nombre plus
Cercle trigonométrique et mesures d angles
Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
