1 La formule de Black et Scholes en t discret
|
|
|
- Gautier Simon
- il y a 10 ans
- Total affichages :
Transcription
1 Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose qu un agent a le choix entre deux placements possibles : La Caisse d Epargne 2,5% garanti, dont le cours évolue au cours du temps suivant la formule ici α > 1 : R n = R 0 α n, n = 1, 2,... Action en bourse : 1 seul type d action, dont le cours fluctue suivant la formule : S n = S 0 ξ 1 ξ 2 ξ n, n = 1, 2,... où les v.a. {ξ n, n 1} sont i.i.d. avec IPξ i = u = p, IPξ 1 = d = 1 p, d < α < u u= up, d= down. Une option d achat en Anglais call = un contrat conclu à l instant 0, aux termes duquel le vendeur s engage à vendre à l acheteur un nombre fixé y d actions à l instant T, au prix fixé K quel que soit le prix S T de l action à l instant T. Une option de vente en Anglais put est un contrat analogue, dans lequel le vendeur s engage à acheter à l acheteur des actions. L option donne à l acheteur le droit pas l obligation d acheter resp. de vendre les y actions au prix K à l instant T. Evidemment, l acheteur va exercer son action si S T > K resp. S T < K, et ne pas l exercer si S T K resp. S T K. En échange de ce droit, l acheteur paie un prix x à l instant 0. Quel est le juste prix x de cette option? L acheteur débourse xeàl instant 0, et à l instant T il encaisse un gain égal à fs T = ys T K + resp. yk S T +. 1
2 Le vendeur, lui, encaisse xeàl instant 0, et débourse ys T K + resp. yk S T + à l instant T. Il cherche à se couvrir. Pour cela il va placer au mieux les xeque lui verse l acheteur à l instant 0, pour qu ils deviennent à l instant T un montant aussi proche que possible de fs T. L idéal serait qu il existe un montant x et une stratégie de placement au cours du temps appelée stratégie de couverture telle que les x e de l instant 0 deviennent exactement fs T eàl instant T. Or une telle stratégie de couverture existe, et le montant initial x nécessaire est appelé le juste prix de l option. Supposons qu à l instant n la richesse initiale x soit devenue X n = X n Z n + Z n, où Z n est la partie investie en bourse, et X n Z n la somme déposée à la Caisse d Epargne. Alors la richesse à l instant n + 1 sera On veut que X n+1 = X n Z n α + Z n ξ n+1 = X n α + Z n ξ n+1 α. X T = fs T. Cherchons X T 1 et Z T 1 tels que cette relation soit satisfaite. X T 1 α + Z T 1 ξ T α = fs T 1 ξ T p.s. ce qui impose les deux relations suivantes : X T 1 α + Z T 1 d α = fs T 1 d, X T 1 α + Z T 1 u α = fs T 1 u. On résoud ce système de deux équations aux deux inconnues X T 1 et Z T 1, et on obtient X T 1 = 1 α ΦfS T 1, avec Φ fs = u α α d fs d + fs u u d u d = IE fsξ T, 2
3 si IP ξ n = u = q, IP ξ n = d = 1 q, avec q = α d p! En outre u d En itérant, on obtient : Soit encore : Z T 1 = fs T 1u fs T 1 d u d = dérivée discrète. X T k = 1 α kφk fs T k Z T k = Φk 1 fs T k u Φ k 1 fs T k d α k 1 u d avec X k = Fk, S k Z k = Fk + 1, S ku Fk + 1, S k d, u d Fk, s = α T k Φ T k fs T k = α T k CTq l l 1 q T k l fsu l d T K l l=0 = α T k IE fs ξ k+1 ξ T, où sous IP les ξ n sont i.i.d. de loi commune donnée comme ci dessus différente de la loi des fluctuations du marché!. où S T = α T S T. x = α T Φ T fs 0 T = α T CT l ql 1 q T l fs 0 u l d T l l=0 = α T IE fs 0 ξ 1 ξ T = IE S T Kα T +, cas d un call = IE Kα T S T +, cas d un put, 3
4 Remarque 1 Le choix de Z n ne dépend que des fluctuations des cours jusqu à l instant n donc bien de quantités connues à cet instant. Le résultat est indépendant de p, il ne dépend que de α, et des valeurs prises par les ξ i. Le résultat s exprime à l aide d une loi de probabilité artificielle IP, t.q. n, IE ξ n = α, c est à dire que sous IP, l espérance mathématique du gain à la bourse est le gain que fournit la caisse d épargne. 2 La formule de Black Scholes en temps continu ous allons maintenant établir la formule de Black Scholes en temps continu par passage à la limite sur le modèle discret. On suppose maintenant que, T étant un réel positif arbitraire, t prend les valeurs 0, 1 [T],...,, et que avec [t] S t = S 0 ξk, k=1 [t] S t = S 0 exp k=1 η k = log ξ k r. α = e r/ η k, σ }. On suppose que les ηk σ prennent leurs valeurs dans l ensemble {, La formule pour le prix du call resp. du put devient donc, si Zt := [t] k=1 η k, IE [ S0 expz T Ke rt + ] 4
5 resp. [ Ke IE rt S 0 expzt ]. + Il reste à trouver la loi limite de Z T quand sous IP. On a le Théorème 2 Si Zt := [t] k=1 η k et pour chaque les {ηk, k 0} sont i.i.d. à valeurs dans { σ σ, }, avec IE ηk = µ, et µ µ quand, alors sous IP, quand, Z t µt + σb t, t 0, où {B t, t 0} est un mouvement brownien sous IP. Preuve On sait cf. par exemple Breiman [Probability] page 180 que si une v.a.r. X admet un moment d ordre 3, pour tout r IR, IE expirx = 1 + irie X r2 2 IE X 2 i r3 6 IE X 3 + δx, r, avec δx, r 3IE X 3. Donc donc IE expirη k = 1 + irµ r2 σ 2 IE expirz t = 1 + irµ r2 σ 2 exp irµt r2 σ 2 t O 3/2, [t] 2 + O 3/2 quand. Pour pouvoir appliquer ce théorème, il nous reste à calculer l espérance de ηk sous IP. Cette dernière probabilité est caractérisée par l identité soit, avec p a := IP η k = σ,. IE expη k = 1, exp σ p a + exp σ p b = 1, 5
6 d où et p a = e σ 1 e σ e σ e σ σ, p b = 1 e e σ IE η k = σ Il résulte alors du théorème ci dessus que sous IP, Z t σ2 2 t + σb t. On en déduit la formule limite pour le prix du call : C 0 = e rt IE S T K + = 2π 1/2 + et celle du put P 0 = e rt IE K S T + = 2π 1/2 +, S 0 e σ2 T 2 +σ Ty Ke rt Ke rt S 0 e σ2 T 2 +σ Ty + + e y2 /2 dy, e y2 /2 dy. Ces formules se réécrivent comme suit en fonction de la fonction de répartition F de la loi normale centrée réduite. C 0 = S 0 Fd 1 Ke rt Fd 2, P 0 = Ke rt F d 2 S 0 F d 1, avec d 1 = 1 σ T log d 2 = 1 σ T log S0 K S0 K + r T σ + r T σ + σ T 2, σ T 2. otons que l on trouve la formule dite de parité call put C 0 P 0 = S 0 Ke rt, en remarquant que Fd i + F d i = 1, i = 1, 2. 6
7 Remarque 3 La formule de Black Scholes en temps continu dépend de la volatilité σ et du taux d intérêt r. On peut considérer que r est connu, par contre la volatilité est essentiellement inconnue! On peut l estimer à l aide d une procédure statistique. On peut aussi inverser la formule de Black Scholes comme suit. Il existe en fait un marché des options. Connaissant, K, T, r et S 0, il existe une seule valeur de la volatilité σ qui redonne par la formule de Black Scholes le prix observé sur le marché. Cette valeur de la volatilité dite volatilité implicite est la valeur que les acteurs du marché semblent anticiper comme volatilité. Remarque 4 On a vu que S t = S 0 exp r σ2 t + σbt, 2 et sous la probabilité dite risque neutre IP, {Bt, t 0} est un mouvement brownien. On a aussi S t = S 0 exp µt + σb t, où {B t, t 0} est un mouvement brownien sous la probabilité IP qui modélise les fluctuations du marché. On a donc la relation µ r Bt = + σ t + B t. σ 2 Le paramètre µ n intervient pas du tout dans la formule de Black Scholes. 3 Option portant sur plusieurs sous jacent Jusqu ici nous nous sommes contentés d étudier des options portant sur un seul actif risqué. Même si c est le cas d un grand nombre d options, il en existe qui portent sur plusieurs actifs risqués à la fois. Un premier exemple typique de ce second type est le cas des options spread, qui portent sur l écart entre les prix de deux actifs, i.e. H = ST 1 S2 T +, où S 1 et S 2 sont les prix de deux actifs risqués. Un second exemple est constitué par les options sur portefeuille appelées aussi options paniers basket option en Anglais. Les options sur indice type CAC 40 en sont un exemple. Une option de vente put sur portefeuille est un moyen d assurer son portefeuille. Étant donné un 7
8 portefeuille composé de a i actions de prix St i à l instant t, i = 1,...,d, un put qui paye K n i=1 a ist i + garantit que le portefeuille pourra être revendu au moins au prix K à l échéance. On pourra consulter comme référence [3], page 221. Suposons que, outre l actif non risqué, qui cote R t = e rt à l instant t le marché est composé de d actifs risqués, dont les prix St, i i = 1,..., d, fluctuent suivant le modèle [ ] d St i = S0 i exp µ i t + σ ij B j t, 1 i d, t 0. j=1 Pour généraliser la théorie de Black Scholes on montre, sous l hypothèse que la matrice Σ cf. ci dessous est inversible, l existence d une probabilité risque neutre IP équivalente à la probabilité IP, sous laquelle le processus des prix actualisés S t = e rt S t = e rt St 1,...,Sd t, t 0} soit une martingale vectorielle, donc en particulier t. q. IE S t = e rt IE S t = S 0, t 0. La formule pour le prix du call resp. de put devient n C 0 = IE a i Si T e rt K i=1 n resp. P 0 = IE e rt K a i Si T + i=1 +, où sous IP la loi de L t = log S t 1,..., log S t d est la loi de Gauss vectorielle logs 0 T 2 s2, ΣΣ T, avec l abus de notation logs 0 = logs0 1,...,logSd 0 et σ 11 σ 1d s 2 1 Σ =.., s 2 d =., où s 2 i = σij 2. σ d1 σ j=1 dd s 2 d 8
9 En effet la condition ci dessus sur IE St impose que S t i = S0 i exp s 2 t d i 2 + σ ij B j t, où B 1 t,...,b d t sont des mouvements brownien mutuellement indépendants sous IP. otons que la formule de parité call put prend maintenant la forme j=1 C 0 P 0 = n a i S0 i e rt K. i=1 4 Simulations On va appliquer la méthode de Monte Carlo au calcul du call dans le cas de l option panier présentée à la section précédente, avec n = 5, a = 8 2, S 95 0 = 105, K = 2000, rt = 0, 05, , , TΣ = 0 0 0, , , 4 1 Calculer le prix du call en appliquant la méthode de Monte Carlo à la formule pour C 0 avec tirages. On prendra soin d évaluer de façon approchée la variance de la v.a. dont on cherche à estimer l espérance, et on donnera un intervalle de confiance pour la quantité cherchée. 2 Faire le même calcul y compris l intervalle de confiance en combinant la même méthode appliquée à la formule pour le prix du put P 0 avec le même nombre de tirages, et la formule de parité call put. Comment les deux approches se comparent-elles? 9
10 5 Simulations en dimension 1 Le but est d appliquer la méthode de Monte Carlo au calcul du prix d une option d achat call européenne portant sur un sous jaçant dont le cours à l instant 0 est de 105e, au prix d exercice K = 110e, à échéance d un an, avec un taux bancaire à 5% i.e. rt = 0, 05, et une volatilité telle que σ T = 0, 3. 1 Calculer le prix du call en appliquant la méthode de Monte Carlo à la formule C 0 = IE [ ST Ke rt avec tirages. On prendra soin d évaluer de façon approchée la variance de la v.a. dont on cherche à estimer l espérance, et on donnera un intervalle de confiance pour la quantité cherchée. 2 Faire le même calcul y compris l intervalle de confiance en combinant la même méthode appliquée à la formule pour le prix du put : [ Ke ] P 0 = IE rt S T, + avec le même nombre de tirages, et la formule de parité call put. 3 Calculer une troisième fois le prix de la même option d achat, en utilisant cette fois la formule + ], C 0 = S 0 Fd 1 Ke rt Fd 2, avec d 1 = 1 σ T log S0 + r T K σ + σ T 2, d 2 = 1 σ T log S0 + r T K σ σ T 2, et la fonction de répartition F de la 0, 1 fournie par Matlab. 4 Question subsidiaire Le prix du marché pour l option ci dessus étant de 15e, en déduire la volatilité implicite i.e. inverser la formule de Black Scholes en utilisant la méthode de ewton. 10
11 References [1] F. E. Benth : Option theory with stochastic analysis, Universitext, Springer, [2] D. Lamberton, B. Lapeyre : Introduction au calcul stochastique appliqué à la finance, Mathématiques et Applications 9, Ellipses, [3] M. Musiela, M. Rutkowski, Martingale Methods in Financial Modeling : Theory and Application, Springer
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
MATHS FINANCIERES. [email protected]. Projet OMEGA
MATHS FINANCIERES [email protected] Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
Les mathématiques de la finance Université d été de Sourdun Olivier Bardou [email protected] 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des
Propriétés des options sur actions
Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,
PRIME D UNE OPTION D ACHAT OU DE VENTE
Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,
Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible»
Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Quand la trésorerie d une entreprise est positive, le trésorier cherche le meilleur placement pour placer les excédents.
Prix et couverture d une option d achat
Chapitre 1 Prix et couverture d une option d achat Dans cette première leçon, on explique comment on peut calculer le prix d un contrat d option en évaluant celui d un portefeuille de couverture de cette
I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.
I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous
Valorisation d es des options Novembre 2007
Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère
Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone...
Liste des notes techniques.................... xxi Liste des encadrés....................... xxiii Préface à l édition internationale.................. xxv Préface à l édition francophone..................
Finance, Navier-Stokes, et la calibration
Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 www.crimere.com/blog Avril 2013 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck
TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines
Ensimag - 2éme année Mai 2010 TRAVAIL D ETUDE ET DE RECHERCHE Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire AURIAULT 1/48 2/48 Cadre de l Étude Cette étude a été
Théorie Financière 8 P. rod i u t its dé dérivés
Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
Chapitre 14 Cours à terme et futures. Plan
hapitre 14 ours à terme et futures Plan Différences entre contrat à terme et contrat de future Fonction économique des marchés de futures Rôle des spéculateurs Futures de matières premières Relation entre
LISTE D EXERCICES 2 (à la maison)
Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros
Options, Futures, Parité call put
Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix
de calibration Master 2: Calibration de modèles: présentation et simulation d
Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe
Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1
Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs
Les techniques des marchés financiers
Les techniques des marchés financiers Corrigé des exercices supplémentaires Christine Lambert éditions Ellipses Exercice 1 : le suivi d une position de change... 2 Exercice 2 : les titres de taux... 3
Résumé des communications des Intervenants
Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit
TURBOS WARRANTS CERTIFICATS. Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital.
TURBOS WARRANTS CERTIFICATS Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital. 2 LES TURBOS 1. Introduction Que sont les Turbos? Les Turbos sont des produits
Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012
Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Pierre Andreoletti [email protected] Bureau E15 1 / 20 Objectifs du cours Définition
Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.
Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors
Processus aléatoires avec application en finance
Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et
Les Turbos. Guide Pédagogique. Produits à effet de levier avec barrière désactivante. Produits présentant un risque de perte en capital
Les Turbos Guide Pédagogique Produits à effet de levier avec barrière désactivante Produits présentant un risque de perte en capital Les Turbos 2 Sommaire Introduction : Que sont les Turbos? 1. Les caractéristiques
Introduction au pricing d option en finance
Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés
NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE
NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE Avec le développement des produits dérivés, le marché des options de change exerce une influence croissante sur le marché du change au comptant. Cette étude,
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Hedging delta et gamma neutre d un option digitale
Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Value at Risk. CNAM GFN 206 Gestion d actifs et des risques. Grégory Taillard. 27 février & 13 mars 20061
Value at Risk 27 février & 13 mars 20061 CNAM Gréory Taillard CNAM Master Finance de marché et estion de capitaux 2 Value at Risk Biblioraphie Jorion, Philippe, «Value at Risk: The New Benchmark for Manain
Dérivés Financiers Options
Stratégies à base d options Dérivés Financiers Options 1) Supposons que vous vendiez un put avec un prix d exercice de 40 et une date d expiration dans 3 mois. Le prix actuel de l action est 41 et le contrat
Calcul Stochastique pour la finance. Romuald ELIE
Calcul Stochastique pour la finance Romuald ELIE 2 Nota : Ces notes de cours sont librement inspirées de différentes manuels, polycopiés, notes de cours ou ouvrages. Citons en particulier ceux de Francis
ING Turbos Infinis. Avantages des Turbos Infinis Potentiel de rendement élevé. Pas d impact de la volatilité. La transparence du prix
ING Turbos Infinis Produit présentant un risque de perte en capital et à effet de levier. Les Turbos sont émis par ING Bank N.V. et sont soumis au risque de défaut de l émetteur. ING Turbos Infinis Les
4. Les options Une option donne à son propriétaire le droit d acheter ou de vendre un contrat à terme à un prix et une échéance prédéterminés.
4. Les options Une option donne à son propriétaire le droit d acheter ou de vendre un contrat à terme à un prix et une échéance prédéterminés. C est un droit et non une obligation. L acheteur d une option
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE
QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE Le présent document est un recueil de questions, la plupart techniques, posées à des candidats généralement jeunes diplômés, issus d école d ingénieurs, de commerce
Qu est-ce-qu un Warrant?
Qu est-ce-qu un Warrant? L epargne est investi dans une multitude d instruments financiers Comptes d epargne Titres Conditionnel= le detenteur à un droit Inconditionnel= le detenteur a une obligation Obligations
Options exotiques. April 18, 2000
Options exotiques Nicole El Karoui, Monique Jeanblanc April 18, 2000 1 Introduction Les options exotiques sont des produits complexes, qui constituent un marché d une réelle importance depuis les années
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
TURBOS Votre effet de levier sur mesure
TURBOS Votre effet de levier sur mesure Société Générale attire l attention du public sur le fait que ces produits, de par leur nature optionnelle, sont susceptibles de connaître de fortes fluctuations,
ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+
ERRATA ET AJOUTS Chapitre, p. 64, l équation se lit comme suit : 008, Taux effectif = 1+ 0 0816 =, Chapitre 3, p. 84, l équation se lit comme suit : 0, 075 1 000 C = = 37, 50$ Chapitre 4, p. 108, note
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Les indices à surplus constant
Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
MARTINGALES POUR LA FINANCE
MARTINGALES POUR LA FINANCE une introduction aux mathématiques financières Christophe Giraud Cours et Exercices corrigés. Table des matières I Le Cours 7 0 Introduction 8 0.1 Les produits dérivés...............................
Chaînes de Markov au lycée
Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
WARRANTS TURBOS CERTIFICATS. Les Warrants. Découvrir et apprendre à maîtriser l effet de levier
WARRANTS TURBOS CERTIFICATS Les Warrants Découvrir et apprendre à maîtriser l effet de levier 2 WARRANTS Qu est-ce qu un Warrant? Un warrant est une option cotée en Bourse. Emis par des établissements
Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO
Manuel d Utilisateur - Logiciel ModAFi Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 12 juin 2012 Table des matières 1 Introduction 3 2 Modèles supportés 3 2.1 Les diérents modèles supportés pour
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA
Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA Contents 1 Introduction aux marchés financiers 2 1.1 Rôle des marchés financiers......................... 2 1.2 Les différents
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Options et Volatilité (introduction)
SECONDE PARTIE Options et Volatilité (introduction) Avril 2013 Licence Paris Dauphine 2013 SECONDE PARTIE Philippe GIORDAN Head of Investment Consulting +377 92 16 55 65 [email protected]
Introduction aux Mathématiques Financières. Ecole Centrale Paris. Lionel Gabet, Frédéric Abergel, Ioane Muni Toke
Introduction aux Mathématiques Financières Ecole Centrale Paris Deuxième année, S3 Lionel Gabet, Frédéric Abergel, Ioane Muni Toke Version 2010 Introduction aux mathématiques financières 2 Table des matières
DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS. Semestre d hiver 2001-2002
Département d économie politique DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS Semestre d hiver 2001-2002 Professeurs Marc Chesney et François Quittard-Pinon Séance
Modèle GARCH Application à la prévision de la volatilité
Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes
ING Turbos. Faible impact de la volatilité. Evolution simple du prix
ING Turbos Produit présentant un risque de perte en capital et à effet de levier. Les Turbos sont émis par ING Bank N.V. et sont soumis au risque de défaut de l émetteur. ING Turbos ING a lancé les Turbos
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
CERTIFICATS TURBOS Instruments dérivés au sens du Règlement Européen 809/2004 du 29 avril 2004
CERTIFICATS TURBOS Instruments dérivés au sens du Règlement Européen 809/2004 du 29 avril 2004 Emétteur : BNP Paribas Arbitrage Issuance B.V. Garant du remboursement : BNP Paribas S.A. POURQUOI INVESTIR
Certificats TURBO. Bénéficiez d un effet de levier en investissant sur l indice CAC 40! Produits non garantis en capital.
Certificats TURBO Bénéficiez d un effet de levier en investissant sur l indice CAC 40! Produits non garantis en capital. www.produitsdebourse.bnpparibas.com Les Certificats Turbo Le Certificat Turbo est
Petite introduction aux mathématiques des dérivés financiers (notes de cours, version provisoire)
Petite introduction aux mathématiques des dérivés financiers notes de cours, version provisoire Michel Miniconi Département de Mathématiques Laboratoire Jean-Alexandre Dieudonné Université de Nice Sophia-Antipolis
TURBOS JOUR : DES EFFETS DE LEVIER DE x20, x50, x100 jusqu à x300!
TURBOS Jour TURBOS JOUR : DES EFFETS DE LEVIER DE x20, x50, x100 jusqu à x300! PRODUITS À EFFET DE LEVIER PRéSENTANT UN RISQUE DE PERTE DU CAPITAL Société Générale propose une nouvelle génération de Turbos,
Pratique des options Grecs et stratégies de trading. F. Wellers
Pratique des options Grecs et stratégies de trading F. Wellers Plan de la conférence 0 Philosophie et structure du cours 1 Définitions des grecs 2 Propriétés des grecs 3 Qu est ce que la volatilité? 4
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Ask : Back office : Bar-chart : Bear : Bid : Blue chip : Bond/Junk Bond : Bull : Call : Call warrant/put warrant :
Parlons Trading Ask : prix d offre ; c est le prix auquel un «market maker» vend un titre et le prix auquel l investisseur achète le titre. Le prix du marché correspond au prix le plus intéressant parmi
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Introduction à la théorie des options financières
Introduction à la théorie des options financières Christophe Chorro ([email protected]) ESC REIMS Le 16 Janvier 2008 hristophe Chorro ([email protected]) (ESC REIMS) Théorie des options
Génération de scénarios économiques
Modélisation des taux d intérêt Pierre-E. Thérond [email protected] [email protected] Galea & Associés ISFA - Université Lyon 1 22 novembre 2013 Motivation La modélisation des taux d intérêt est
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
1 Introduction et modèle mathématique
Optimisation parallèle et mathématiques financières Optimisation parallèle et mathématiques financières Pierre Spiteri 1 IRIT ENSEEIHT, UMR CNRS 5505 2 rue Charles Camichel, B.P. 7122 F-31 071 Toulouse,
Méthodes de la gestion indicielle
Méthodes de la gestion indicielle La gestion répliquante : Ce type de gestion indicielle peut être mis en œuvre par trois manières, soit par une réplication pure, une réplication synthétique, ou une réplication
Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.
Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Produits structurés. Sacha Duparc, Développement & Trading Produits Structurés 20.12.2013
Produits structurés Sacha Duparc, Développement & Trading Produits Structurés 20.12.2013 Importance du marché des produits structurés en Suisse Les produits structurés constituent une catégorie d investissement
Le théorème des deux fonds et la gestion indicielle
Le théorème des deux fonds et la gestion indicielle Philippe Bernard Ingénierie Economique& Financière Université Paris-Dauphine mars 2013 Les premiers fonds indiciels futent lancés aux Etats-Unis par
TP de risque management Risque Forex
TP de risque management Risque Forex Exercice 1 Partie 1. Le but de cette exercice est voir quel sont les options qui permettent de gérer le risque du au taux de change. En effet, dans notre cas, une société
Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes
Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire
Attitude des ménages face au risque. M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014
Attitude des ménages face au risque - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014 Plan du cours 1. Introduction : demande de couverture et comportements induits pa 2. Représentations
Manuel de référence Options sur actions
Manuel de référence Options sur actions Groupe TMX Actions Bourse de Toronto Bourse de croissance TSX Equicom Produits dérivés Bourse de Montréal CDCC Marché climatique de Montréal Titres à revenu fixe
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Équation de Langevin avec petites perturbations browniennes ou
Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,
/ / / / www.warrants.commerzbank.com / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
warrants cb www.warrants.commerzbank.com sommaire commerzbank securities la première option sur le marché des warrants... 3 les warrants sont-ils faits pour moi?... 4 pourquoi acheter les warrants de commerzbank
Séminaire TEST. 1 Présentation du sujet. October 18th, 2013
Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de
