Physique Statistique. Chapitre 3 Distribution de Boltzmann : distribution canonique
|
|
|
- Jean-Marie Rancourt
- il y a 8 ans
- Total affichages :
Transcription
1 Phyique Statitique Chapitre Ditribution de Boltzmann : ditribution canonique Facteur de Boltzmann Soit un ytème S en contact thermique avec un trè gro ytème R appelé réervoir. Le ytème S a une énergie ε << R + S = =Cte Avec R >> S R Energie Totale : R = -ε S S =ε L enemble a une énergie totale =Cte. Le état acceible du ytème S ont de énergie ε. L énergie du réervoir et alor -ε.. Probabilité pour que le ytème S ait l énergie ε Nombre d état acceible du ytème R+S g R+S = g R.g S Si le ytème S et dan l état pécifique d énergie ε S alor : g S ( ).g( ) = g R ( ) = donc g R+S = g R Quelle et la probabilité pour que S en équilibre thermique avec R e trouve dan l état? = Nombre.d 'état.acceible.de.r.quand.s.à.l'énergie. P P ( ) = g R g R Nombre.total.d 'état.acceible.de. R + S ( ) P ( ( ) = g R ( ) ). g R ( ) avec g R Si on choiit deux ituation de S avec le énergie repective : ε et ε. = g R ( ) g R ( ) = exp R ( ) exp ( R ( )) = ln g R ( ) = exp R ( ) = exp R ( ) R ( ) Alor : P P avec R = ln g R on aura : R donc g R P P = Cte
2 = exp R P P avec = R R R ( ) Le développement de Taylor et : f ( x a) = f ( x ) a df + d f dx x=x a +... avec a<<x dx x=x On peut donc développer de la même manière : R ( ) = R ( ) R ( +... = R ( ) ' +... car R,N R ( ) R ( ) = donc: R = R ( ) R ( ) On en déduit :,N en négligeant le terme d ordre upérieur = ' ( = (vu au chapitre ) R = Par ailleur = exp ( R) = P P exp ( ' exp ( ' Donc : P ().proportionnel.à.exp, c et la fonction de Boltzmann. Fonction de partition Si on poe Z ( ) = exp ( C et une ommation ur tou le état du ytème. Alor, P ( ) = exp Z Ceci et vrai, puique P = Donc à une température T donnée : P ( ) = exp kt Z exp ( ' = Z
3 P ( ) et la ditribution canonique ou de Boltzmann, et Z et la fonction de partition canonique du ytème.. Energie moyenne d un ytème en équilibre thermique = = P.exp = (.exp Z = ( exp ( On va montrer que : = ( ln Z ), en effet Z ln Z = Z = exp ) ( ' =.exp ) ( ' Z Z Donc = ln Z = - Preion. Expreion en fonction de, à contant Soit un ytème donné dan un état, d énergie, enfermé dan un volume à N particule en équilibre thermique T. On uppoe une légère diminution de produite par de force extérieure. La variation de volume et trè lente (réverible), ce qui fait que le ytème rete dan l état, faiant paer le volume de à -Δ avec Δ>. Pour un petit déplacement Δx réverible du piton : Δ=AΔx A et l aire du cylindre La force par unité d aire dan le cylindre et P (preion) On en déduit : = = () Le développement de Taylor : ( ) = ( ) d ( +... d ' ( ) ( ) = d ( d ' ( ) = d ( () d ' F P, T, N, A Δx
4 en identifiant () et () on en déduit : P = d d Pour avoir la preion, on fait la moyenne ur tou le état. P = P = ( avec = ' La dérivée et à contante car le nombre d état n a pa changé. L entropie et contante.. Expreion de P en fonction de à contant Pour un ytème donné à nombre de particule N contant, le nombre d état g, et donc (ou S) ne dépend que de et. Donc d (, ) = d + d Si on choiit d et d tel que le terme de droite oit nul, c et à dire = Cte, alor = ( ) + ( ) = ' ( ( donc = = ( or P = ( ' P = + + et d autre part ( ' = kt S / k Donc P = T S. Identité thermodynamique On a vu que : (, ) d = Or : = et = p d + d 4
5 Donc d = d + p d et ds = T d + p d car T =S/ k et = kt d = d + pd TdS = d + pd d = TdS pd TdS=dQ et dw = pd On retrouve la première loi de la thermodynamique : d = dq + dw dq > i le ytème reçoit de la chaleur dw > i le ytème reçoit du travail Energie libre de Hemoltz Soit la fonction : F = TS F et appelée l énergie libre de Hemoltz. Cette fonction a le rôle de en phyique tatitique à température contante dan le proceu mécanique ordinaire qui ont à entropie contante (pa de changement interne autorié). L énergie libre règle le conflit entre minimum d énergie et maximum d entropie pour un ytème S en contact thermique avec un réervoir R i le volume de S rete contant. Extremum de F Soit le ytème S à l équilibre thermique avec un réervoir R. R+S forment le ytème total iolé. Il y a tranfert réverible de chaleur de R ver S. df = d d à ou T contant Pour avoir un extremum, il faut df = à T et contant, ce qui permet de trouver l extremum. 4 Relation différentielle 4. Preion en fonction de F. F = donc : df = d d d or d = d pd d où df = pd d df = pd SdT de même df = F d + F d On en déduit : p = F ( ' F = et = F ( ' 5
6 donc p = F ( ' = ( + ( ' ' p = ( + ( ' ' Si et contant, on retrouve : P = ( ', 4. F en fonction de Z F = ou F = TS avec = F ( ' = F F ( ' F / = ( ' F / Démontration : ( ' Donc : = F / ( ' Or = ln Z Par identification : d où F = + F d où F = ln Z F ( F = ' = F F ( ' = F / ( ' = ( ln Z ) = F = ln Z = kt ln Z 5 Gaz parfait monoatomique (première approche) 5. Sytème à un atome (monoatomique) C et un ytème an vibration, ni rotation, an pin. Il n exite que le mouvement de tranlation. Soit un atome de mae m dan une boîte cubique de côté L, libre de y déplacer. H = E Nou avon vu au chapitre que pour le ca d une particule dan une boîte : m +(x, y, z) () = E) ' 6
7 Ici (x,y,z)= donc E = m On démontre que = Ain n x x L.in n y y L.in n z z L On démontre en mécanique quantique que : n = n x + n ( y + n z ) m L avec n x, n y, n z entier > Comme =L, Le niveaux e rapprochent quand augmente. Fonction de partition d un atome dan une boîte (N=) Z = exp n ( = exp n x + n ((( ( ( y + n z )) kt n. n x n y n z avec = m L kt Si le pectre et trè dene, on remplace le omme par de intégrale : Z = dn x dn y dn z.exp n x + n y + n z ( ) Mai comme le ytème et iotrope dan le troi direction : ' Z = exp ( n x )dn x ) ( On poe Donc : Z = Z = nx= X donc dn x = dx L dx ' ex ) ( Z = ( / mkt ) / or e X dx = Le volume = L et la concentration pour un eul atome era On poe n q = mkt / = Cte à T=Cte Z = n q n n= n q = Concentration quantique, dépend de la nature de particule, et et indépendant du volume. n q = un atome dan un volume de dimenion Broglie Démontration : B = longueur d onde de de Broglie B avec B la longuer d onde de de 7
8 p = mv = k = d où B = B mv Or mv = k B T v = / k BT m B = 4 ( mk B T ) / = mk BT B 4 B = / mk B T n q et du même ordre de grandeur que B On peut donc écrire que : n q B Exemple : Ca de l hélium à la preion atmophérique et température ambiante ne mole occupe,4 litre, oit 6. atome. n = 6., 4. =.9 / cm n q = = mkt B 4 / ' 5 / cm B 8 cm Donc : n n q 6 on et donc dan le condition d un gaz parfait, pa d intéraction entre le atome. En général i n n q <<on et dan le régime de gaz parfait Quelle et l énergie d un atome en mouvement de tranlation? Nou avon vu au. que : = = ln Z./ m Nou avon que Z = n q or n q = m Donc : Z = ln Z = ln = / Donc = = kt kt par degré de liberté 8
9 5. Sytème à N particule Particule dicernable différente On conidère N boîte avec chacune une particule N La fonction de partition de N boîte différente era : Z N = Z ( )..Z ( )...Z Donc l énergie totale era la omme de énergie : N = () + ( ) +... ( N) () Si à la place on a N particule qui n interagient pa entre elle, et qui ont dicernable, la fonction de partition era identique, puiqu il n y a pa de différence entre de particule dan de boîte éparée ou ce même particule dan une eule boîte, et an interaction entre elle. Donc : Z N = Z ( )..Z ( )...Z ( ) () De même : N = ( ) + ( ) +... ( N) (4) Si toute le particule ont la même mae, alor : Particule indicernable identique n de état era comme précédemment : N = Z N = Z N + ( ) +... ( ) Si on invere et il n y a pa de différence entre le deux état d énergie : N = Au total, on compte N état de trop. On doit donc corriger avec le facteur de Gibb Donc : Z N = Z N N + ( ) +... ( ) N 5. Energie moyenne de N particule identique (mouvement de tranlation) N = ln Z N avec Z N = Z N N = ( N ln Z ln N ) = N ln Z Or ( ln N ) = N ln N 9
10 Donc N = N ln Z N = NkT = N Soit N foi l énergie d une particule 5.4 Energie libre F = TS = Or, F = ln Z N et Z N = Z N Donc : F = ln Z N + ln N Pour N grand, la formule de Sterling : ln N N ln N N Or Z = n q avec n q = mkt / / m = Donc F = N ln Z + ln N ( m F = N * ln ' )* / N + + ln-+ N ln N N,- 5.5 Preion d un gaz parfait p = F ( = N ' Donc : p = N = NkT Pour une mole, N= Nombre d Abogadro=6. k=,8. - J/K On a R=Nk=8, J/K.mole, on retrouve pour une mole : p = RT 5.6 Entropie d un gaz parfait-equation de Sakur-Tetrode = F ( ' F = ln Z N + ln N / m avec Z = n q = ' / m * = N ln), () +, + N - ' - ln / m ) + ln () / *, +,. N ln N + N
11 = N ln n q n + 5 avec n = N la concentration On peut écrire aui : ' m S = kn ) ln ) ( / n + 5 *,, Chaleur pécifique d un gaz parfait (mouvement de tranlation) On a d=tds-pd Et d=dq+dw Si on maintient le autre variable contante, i on apporte Q, la température va varier de T a) Première loi d=dq+dw=dq-pd Si le volume et contant alor Q = C = Q T = T = ' 'T donc : C = T b) Gaz parfait monoatomique à dimenion C = T NkT ' = Nk, cela correpond au mouvement de tranlation Pour une mole d un gaz parfait : C = R =, 5J / K / mole c) Degré de liberté = kt par degré de liberté de tranlation Dan le ca général : = kt + rotation + vibration
8 Ensemble grand-canonique
Physique Statistique I, 007-008 8 Ensemble grand-canonique 8.1 Calcul de la densité de probabilité On adopte la même approche par laquelle on a établi la densité de probabilité de l ensemble canonique,
Premier principe de la thermodynamique - conservation de l énergie
Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse
EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian
1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul
Le paiement de votre parking maintenant par SMS
Flexibilité et expanion L expanion de zone de tationnement payant ou la modification de tarif ou de temp autorié peut e faire immédiatement. Le adree et le tarif en vigueur dan le nouvelle zone doivent
Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you.
Erwan, d une mae de 65 kg, fait un aut de Bungee. Il tombe de 0 m avant que la corde du bungee commence à étirer. Quel era l étirement maximal de la corde i cette dernière agit comme un reort d une contante
Physique : Thermodynamique
Correction du Devoir urveillé n o 8 Physique : hermodynamique I Cycle moteur [Véto 200] Cf Cours : C P m C V m R relation de Mayer, pour un GP. C P m γr γ 29, 0 J.K.mol et C V m R γ 20, 78 J.K.mol. 2 Une
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Ventilation à la demande
PRÉSENTATION Ventilation à la demande Produit de pointe pour ventilation à la demande! www.wegon.com La ventilation à la demande améliore le confort et réduit le coût d exploitation Lorque la pièce et
1 Thermodynamique: première loi
1 hermodynamique: première loi 1.1 Énoncé L énergie d un système isolé est constante, L énergie de l univers est constante, de univers = de syst + de env. = 0 1 L énergie d un système est une fonction
EXERCICES - ANALYSE GÉNÉRALE
EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par
Caractérisation de l interface Si/SiO 2 par mesure C(V)
TP aractériation de l interface Si/SiO par meure (V) aractériation de l interface Si/SiO par meure (V) Introduction p I Effet de champ à l interface Si/SiO p Fonctionnement d une capacité MOS p Principe
Progressons vers l internet de demain
Progreon ver l internet de demain COMPRENDRE LA NOTION DE DÉBIT La plupart de opérateur ADSL communiquent ur le débit de leur offre : "512 Kb/", "1 Méga", "2 Méga", "8 Méga". À quoi ce chiffre correpondent-il?
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Parcours Hydrologie-Hydrogéologie. Apport des méthodes d infiltrométrie à la compréhension de l hydrodynamique de la zone non-saturée des sols.
Univerité Pierre et Marie Curie, École de Mine de Pari & École Nationale du Génie Rural de Eaux et de Forêt Mater Science de l Univer, Environnement, Ecologie Parcour Hydrologie-Hydrogéologie Apport de
Premier principe : bilans d énergie
MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie
BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007
BAREME ur 40 point Informatique - eion 2 - Mater de pychologie 2006/2007 Bae de donnée PRET de MATERIEL AUDIO VISUEL. Remarque : Le ujet comporte 7 page. Vérifier qu il et complet avant de commencer. Une
Dossier. Vtech, leader en France. Lexibook, leader en Europe
Doier Par Yoan Langlai La tablette pour enf Si 6 million de tablette devraient e vendre cette année en France (préviion GfK), on etime à 1 million le nombre de vente de tablette pour enfant en 2013. Sur
Cours de Physique Statistique. Éric Brunet, Jérôme Beugnon
Cours de Physique Statistique Éric Brunet, Jérôme Beugnon 7 octobre 2014 On sait en quoi consiste ce mouvement brownien. Quand on observe au microscope une particule inanimée quelconque au sein d un fluide
a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov
V. Les réactions r thermonucléaires 1. Principes a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov 2. Taux de réactions r thermonucléaires a. Les sections
TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION
P6 : ALIMNAION A DCOUPAG : HACHUR SRI CONVRISSUR SAIQU ABAISSUR D NSION INRODUCION Le réeau alternatif indutriel fournit l énergie électrique principalement ou de tenion inuoïdale de fréquence et d amplitude
La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création
Doier : Getion d entreprie 42 La Getion de filiale dan une PME : Bonne Pratique et Piège à éviter Certaine PME ont tout d une grande. entreprie. A commencer par la néceité d avoir de filiale. Quel ont
H 1000. Le système de bridage. multifonctionnel
Le ytème de ridage mutifonctionne 2 Rapidité, préciion et fidéité de répétition Le ytème de ridage et une innovation interne de a maion Meuurger. Avec a vou avez non euement avantage de travaier vite et
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
Compte rendu des TP matlab
Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer
MESURE DE LA TEMPERATURE
145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les
Projet. Courbe de Taux. Daniel HERLEMONT 1
Projet Courbe de Taux Daniel HERLEMONT Objectif Développer une bibliothèque en langage C de fonction relative à la "Courbe de Taux" Valeur Actuelle, Taux de Rendement Interne, Duration, Convexité, Recontitution
Chapitre 4 Le deuxième principe de la thermodynamique
Chapitre 4 Le deuxième principe de la thermodynamique 43 4.1. Evolutions réversibles et irréversibles 4.1.1. Exemples 4.1.1.1. Exemple 1 Reprenons l exemple 1 du chapitre précédent. Une masse est placée
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
Introduction aux algorithmes de bandit
Mater MVA: Apprentiage par renforcement Lecture: 3 Introduction aux algorithme de bandit Profeeur: Rémi Muno http://reearcher.lille.inria.fr/ muno/mater-mva/ Référence bibliographique: Peter Auer, Nicolo
Introduction au pricing d option en finance
Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés
RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ
LETTRE MENSUELLE DE CONSEILS DESTINÉS À MAXIMALISER LE FLUX DE REVENUS RETIRÉS DE VOTRE SOCIÉTÉ OPTIMALISATION DU MOIS Déterminer le taux du marché... Si votre ociété vou vere un intérêt, elle doit de
Précis de thermodynamique
M. Hubert N. Vandewalle Précis de thermodynamique Année académique 2013-2014 PHYS2010-1 Thermodynamique 2 Ce précis a été créé dans le but d offrir à l étudiant une base solide pour l apprentissage de
Trilax. Données Faits. La spécificité de ce siège tient à la découverte qu il faut trois points d articulation
Donnée Fait La pécificité de ce iège tient à la découverte qu il faut troi point d articulation pour aurer au corp un outien ergonomique efficace dan toute le poition. vou relaxe et vou accompagne comme
Logistique, Transports
Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Fonctions de plusieurs variables et applications pour l ingénieur
Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
Dérivées d ordres supérieurs. Application à l étude d extrema.
Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Dérivation : Résumé de cours et méthodes
Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers
MATHS FINANCIERES. [email protected]. Projet OMEGA
MATHS FINANCIERES [email protected] Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM
Cap Math CP 2 cycle Guide de l eneignant Nouveaux programme SOUS LA DIRECTION DE Roland CHARNAY Profeeur de mathématique en IUFM Marie-Paule DUSSUC Profeeur de mathématique en IUFM Dany MADIER Profeeur
OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF
OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice
Plan du chapitre «Milieux diélectriques»
Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation
Professeur Eva PEBAY-PEYROULA
3-1 : Physique Chapitre 8 : Le noyau et les réactions nucléaires Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Finalité du chapitre
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
À propos d ITER. 1- Principe de la fusion thermonucléaire
À propos d ITER Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 8 juin 005, les pays engagés dans le projet
3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels
3ème séance de Mécanique des fluides Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait 1 Généralités 1.1 Introduction 1.2 Équation d Euler 1.3 Premier théorème de Bernoulli 1.4
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Cours de Physique statistique
Licence de Physique Fondamentale et Appliquée Année 2014-2015 Parcours Physique et Applications UNIVERSITÉ PARIS-SUD mention Physique ORSAY Cours de Physique statistique Compilation de textes de A. Abada,
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
DYNAMIQUE DE FORMATION DES ÉTOILES
A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome
PHYSIQUE-CHIMIE Ce sujet traite de quelques propriétés de l aluminium et de leurs applications. Certaines données fondamentales sont regroupées à la fin du texte. Partie I - Propriétés de l atome I.A -
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015
BT V 2015 (envoyé par Frédéric COTTI - Professeur d Electrotechnique au Lycée Régional La Floride Marseille) Document 1 - Etiquette énergie Partie 1 : Voiture à faible consommation - Une étiquette pour
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Méthodes de Caractérisation des Matériaux. Cours, annales http://www.u-picardie.fr/~dellis/
Méthodes de Caractérisation des Matériaux Cours, annales http://www.u-picardie.fr/~dellis/ 1. Symboles standards et grandeurs électriques 3 2. Le courant électrique 4 3. La résistance électrique 4 4. Le
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Chapitre 5 : Noyaux, masse et énergie
Chapitre 5 : Noyaux, masse et énergie Connaissances et savoir-faire exigibles : () () (3) () (5) (6) (7) (8) Définir et calculer un défaut de masse et une énergie de liaison. Définir et calculer l énergie
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
Cadeaux d affaires, cadeaux d entreprises, objets publicitaires www.france-cadeaux.fr - [email protected]
Siège France Cadeaux 84 rue de Courbiac 17100 Sainte 00 33 (0)5 46 74 66 00 RC.424 290 211 00012 Cadeaux d affaire, cadeaux d entreprie, objet publicitaire www.france-cadeaux.fr - [email protected]
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2
Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
PHY2723 Hiver 2015. Champs magnétiques statiques. [email protected]. Notes partielles accompagnant le cours.
PHY2723 Hiver 2015 Champs magnétiques statiques [email protected] otes partielles accompagnant le cours. Champs magnétiques statiques (Chapitre 5) Charges électriques statiques ρ v créent champ électrique
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
unenfant Avoir en préservant ses droits
Avoir unenfant en préervant e droit Guide adreant aux travailleue et travailleur du ecteur public du réeau de la anté et de ervice ociaux Le comité de condition féminine de la La mie à jour de ce guide
Systèmes asservis non linéaires
Christian JUTTEN Systèmes asservis non linéaires Université Joseph Fourier - Polytech Grenoble Cours de troisième année du département 3i Options Automatique Août 2006 1 Table des matières 1 Introduction
Le compte épargne temps
2010 N 10-06- 05 Mi à jour le 15 juin 2010 L e D o i e r d e l a D o c 1. Définition Sommaire 2. Modification iue du décret n 2010-531 3. Principe du compte épargne temp Bénéficiaire potentiel Alimentation
Les mathématiques de la finance Université d été de Sourdun Olivier Bardou [email protected] 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des
N à voir Date moi Année Nom_source Type_source Auteur Titre Url_bdd Langue_ Pays Texte_original Texte_traduit. Computers
N à voir Date moi Année Nom_ource Type_ource Auteur Titre Url_bdd Langue_ Pay Texte_original Texte_traduit 1 11/15/2013 11 2013 Blog_Bit_New_York_Time Expert_blog Quentin_Hardy Amazon Bare It http://bit.blog.nytime.com/20
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Produire moins, manger mieux!
Raak doier d Alimentation : o Produire moin, manger mieux! Nou voulon une alimentation de qualité. Combien de foi n entendon-nou pa cette revendication, et à jute titre. Mai i tout le monde et d accord
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY
T.P. FLUENT Cours Mécanique des Fluides 24 février 2006 NAZIH MARZOUQY 2 Table des matières 1 Choc stationnaire dans un tube à choc 7 1.1 Introduction....................................... 7 1.2 Description.......................................
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Aucune frontière entre. Jean-Louis Aimar
Jean-Louis Aimar Aucune frontière entre la Vie et la Mort 2 2 «Deux systèmes qui se retrouvent dans un état quantique ne forment plus qu un seul système.» 2 3 42 Le chat de Schrödinger L expérience du
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
