I. Produit scalaire de deux vecteurs du plan
|
|
|
- Germaine Chabot
- il y a 7 ans
- Total affichages :
Transcription
1 1 ère S - Chapitre 12 : PRODUIT SCALAIRE I. Produit scalaire de deux vecteurs du plan 1. Vocabulaire Dans le plan muni d'un repère orthonormé, on considère les vecteurs u( x y) ( et v x ' y '). Le produit scalaire de u par v, noté u v est le nombre réel défini par : u v = x x ' + y y '. Exemple : Soient u( 3 2) ( 1) et v 4 alors u v= ( 1)= 10 2 =8. Propriétés : Pour tous vecteurs u et v du plan, on a : v u= u v (le produit scalaire est symétrique). Pour tous vecteurs u, v et w du plan et pour tout réel α, on a : Démonstrations : triviales (voir manuel p.312) u ( α v )= α ( u v ) et u ( v + w)= u v+ u w. Exemple : Avec les vecteurs u et v précédents et w( 5 3 ) : u (2 v )= 2 u v= 2 8=16 et w u+ w v= w ( u+ v )= 5 (3+ 4)+3 (2 1)= 63. Conséquences : en combinant les deux propriétés précédentes, on obtient aussi : (α u ) v = α ( u v ) et ( u+ v ) w = u w + v w. Soit u un vecteur. Le nombre u u est appelé le carré scalaire de u et est noté u 2. Exemple : soit u( 3 2) alors u2 = u u= x 2 + y 2 = = 9+4= 13. Pour tous vecteurs u et v du plan, on a les égalités remarquables suivantes: ( u+ v ) 2 = u u v+ v 2 ; ( u v ) 2 = u 2 2 u v+ v 2 ; ( u+ v ) ( u v )= u 2 v Vecteurs orthogonaux Deux vecteurs AB et CD sont orthogonaux si, et seulement si : soit l'un des deux vecteurs est nul ; soit les droites (AB) et (CD) sont perpendiculaires. Deux vecteurs sont orthogonaux si, et seulement si, leur produit scalaire est nul. Si deux vecteurs u et v sont orthogonaux, alors on le note 2 x +3 y 7= 0 n ( a b) ax + by +c =0. SGT du LP Léo Lagrange de Bully-Les-Mines (62) Page 1/5
2 Exemple : Soient A(5 ; 2), B(-1 ; -2) et C(-3 ; 1). Graphiquement, on peut émettre une conjecture : il semble que ABC soit rectangle en B. On s'intéresse donc aux vecteurs BA et BC : BA( x x A B =5 ( 1)=5+1= 6 y A y B = 2 ( 2 )=2 + 2 = 4) BA( donc 6 4) ; y C y B = 1 ( 2 )= 1+ 2= 3 ) donc BC ( 2 BC ( x x C B = 3 ( 1)= 3+ 1= 2 3 ) ; BA BC = xx ' + yy ' =6 ( 2)+ 4 3= 12+12= 0 donc BA BC. Méthode : choisir un repère pour démontrer une orthogonalité (voir ex.3 p.313 du manuel) 3. Équations Pour tout le paragraphe, le plan est muni d'un repère orthonormé. Droites Un vecteur normal à une droite est un vecteur non nul orthogonal à un vecteur directeur de la droite. Soient a, b et c des réels tels que (a ; b) (0 ; 0). La droite d'équation ax+ by+ c= 0 admet pour vecteur normal n( a b). Toute droite ayant pour vecteur normal n( a b) équation de la forme ax+ by+ c= 0. admet une Exemple : la droite d d'équation 2 x +3 y 7 = 0 admet pour vecteur normal n( 2 3). Démonstration : La droite d'équation ax+by + c=0 a pour vecteur directeur u( b a ) ( et pour n a, u n= ba+ ab=0. b) Réciproquement : Soit une droite d admettant pour vecteur normal n( a b), A ( x A ; y A ) un point de d. Un point M ( x ; y ) appartient à d si, et seulement si, AM n=0 avec AM ( x x A y y D'où ( x x A ) (a)+( y y A ) b=0 ax+ by a x A b x B =0 ce qui est bien A) de la forme a x+ b y +c =0 avec c= a x A b x B. Méthode : Déterminer une équation de droite à partir d'un vecteur normal (voir ex.4 p.315 du manuel) Cercles Soit Γ le cercle de centre Ω (a ; b) et de rayon r. Un point M ( x ; y ) appartient au cercle Γ si, et seulement si : ( x a ) 2 + ( y b) 2 = r 2. On dit que ( x a ) 2 + ( y b) 2 = r 2 est une équation du cercle Γ. Démonstration : Par définition, un point M ( x ; y ) appartient au cercle Γ Ω M = r Ω M 2 = r 2 avec Ω M 2 =( x a ) 2 + ( y b) 2, d'où l'équation du cercle Γ : ( x a ) 2 + ( y b) 2 = r 2. SGT du LP Léo Lagrange de Bully-Les-Mines (62) Page 2/5
3 Exemple : Le cercle de Ω (3 ; 2) et de rayon r = 4 admet pour équation ( x 3) 2 + ( y+ 2) 2 = 4 2. Un point M appartient au cercle de diamètre [AB] si, et seulement si, MA. MB=0. Démonstration : Il s'agit de reprendre une propriété caractéristique d'un triangle inscrit dans un cercle, vue en classe de 4ème. M est un point du cercle de Diamètre [AB] équivaut à M =A ou M = B ou AMB est rectangle en M, ce qui équivaut à MA = 0 ou MB= 0 ou MA MB. Ce qui équivaut donc à MA MB = 0. II. Norme d'un vecteur et applications Soit u un vecteur et A et B deux points tels que u= AB. On appelle norme de u le nombre réel positif ou nul, noté u, défini par u = AB. Dans un repère orthonormé, si u( x y) alors u = x2 + y 2. Pour tout vecteur u, u 2 = u 2. En particulier AB 2 = AB 2 = AB 2. Pour tout vecteur u et tout réel k, k u = k u. Démonstration : Pour M ( x ; y ), u= OM et u = OM = x 2 + y 2. Soient u et v deux vecteurs colinéaires non nuls. Si u et v sont de même sens, alors u v = u v ; si u et v sont de sens opposés, alors u v = u v. (Démonstration : ex.58 p.329) Si u et v sont deux vecteurs du plan, alors u v= 1 2 [ u + v 2 u 2 u 2 ]. Démonstration : u + v 2 = u u v+ v 2 2 u v= u + v 2 u 2 v 2. Théorème : De la médiane Soient A et B deux points du plan et I le milieu de [AB]. Pour tout point M du plan, on a : MA 2 + MB 2 = 2 MI 2 + AB 2 2. Démonstration : MA 2 + MB 2 = MA 2 + MB 2 = MA 2 + MB 2 En appliquant la relation de Chasles, puis en développant : MA 2 + MB 2 = ( MI + IA) 2 +( MI + IB) 2 = MI MI IA+ IA 2 + MI MI IB+ IB 2 = 2 MI MI ( IA+ IB )+ IA 2 + IB 2 avec I milieu de [AB] donc IA+ IB= 0 = 2 MI 2 + ( AB 2 ) 2 + ( AB 2 ) 2 et IA= IB= AB 2 Donc MA 2 + MB 2 = 2 MI 2 + AB 2 2. SGT du LP Léo Lagrange de Bully-Les-Mines (62) Page 3/5
4 III.Autres expressions du produit scalaire 1. Projeté orthogonal Définition et propriété : Soient A, B et C trois points du plan avec A B et A C. On appelle projeté orthogonal de C sur (AB) le point d'intersection de (AB) avec la droite perpendiculaire à (AB) et passant par C. Si H appartient à la demi-droite [AB) : Si H n'appartient pas à la demi-droite [AB) : alors : AB AC = AB AH = AB AH. alors : AB AC = AB AH = AB AH. Démonstration : AB AC = AB ( AH + HC )= AB AH + AB HC avec AB HC = 0 car (AB) (HC). Donc AB AC = AB AH où AB et AH sont colinéaires. Cas général : du cas particulier précédent, on peut en déduire que : si A B, AB CD= AB C ' D ' où C' et D' sont les projetés orthogonaux de C et D sur (AB). Dans ce cas, on dit que C ' D ' est le projeté orthogonal de CD sur (AB). 2. Avec un cosinus Théorème : Soient u et v deux vecteurs non nuls. Alors : u v = u v cos ( u, v ). Soient A, B et C trois points distincts : AB AC = AB AC cos BAC. Exemple : Si AB= 6 cm, AC = 4 cm et BAC =60, alors AB AC =6 4 cos (60 )= =12. Application : Calculer un angle à l'aide du produit scalaire Soient les points A(2 ; -1), B(6 ; 2) et C(1 ; 3) dans un repère orthonormé. On peut calculer l'angle ( AB, AC ) : AB ( 4 3) et AC ( 1 4 ) donc AB= = 25=5 et AC = ( 1) = 17 AB AC = xx ' + yy ' = 4 ( 1)+3 4= 4+12=8 et AB AC = AB AC cos ( AB, AC ) 8 =5 17 cos ( AB, AC ) cos ( AB, AC ) = À la calculatrice, ( AB, AC ) =cos ( ) ( AB, AC ) 67,2. 3. Formules d'addition des cosinus et sinus Ces formules ont déjà été énoncés et en partie démontrées au chapitre «Trigonométrie». SGT du LP Léo Lagrange de Bully-Les-Mines (62) Page 4/5
5 cos (a b)= cos (a ) cos (b )+sin (a ) sin (b) (1) cos (a + b)= cos (a ) cos (b ) sin (a ) sin (b) (2) sin (a b)=sin (a) cos (b) cos (a ) sin (b ) (3) sin (a + b)=sin (a) cos (b)+cos (a ) sin (b ) (4) Démonstration de la relation (1) : Soit (O ; i, j ) un repère orthonormé. Soient A et B deux points du cercle trigonométrique tes que ( i, OA)= a (2 π ) et ( i, OB) =b (2 π). On va calculer le produit scalaire OA OB de deux façons différentes : Avec les coordonnées : Par définition, on A (cos (a ), sin (a )) et B (cos (b), sin (b )) D'où OA OB = xx ' + yy ' = cos (a) cos (b )+sin (a) sin (b). Avec normes et cosinus : OA OB =OA OB cos ( OA, OB )=cos ( OA, OB) car OA= OB=1. De plus ( OA, OB) =b a donc OA OB =cos (b a)= cos (a b ) car cos ( x)= cos ( x). Donc on obtient cos (a b)= cos (a ) cos (b )+sin (a ) sin (b) ; 4. Côtés et angles d'un triangle quelconque Dans un triangle ABC, on adopte les notations suivantes : Théorème : Dit d'al-kashi : Â= BAC, B = ÂBC, Ĉ= ÂCB, a= BC, b = AC et c= AB. Pour tout triangle ABC, on a : a 2 = b 2 +c 2 2 b c cos  b 2 =a 2 +c 2 2 a c cos B c 2 = a 2 + b 2 2 a b cos Ĉ Démonstration : a 2 = BC 2 = BC 2 =( BA+ AC ) 2 = BA BA AC + AC 2 = AC 2 + BA 2 2 AB AC Comme AB AC = AB AC cos BAC =c b cos Â, on en déduit que a 2 = b 2 +c 2 2 b c cos Â. Ce théorème est aussi appelé Pythagore généralisé. Il permet de : calculer une longueur connaissant deux longueurs et l'angle adjacent ; calculer un angle connaissant les trois longueurs. Exemple : Soit ABC un triangle tel que AB= 4 cm, AC = 5 cm et BC =6 cm. Avec la formule d'al-kashi, on peut désormais calculer les trois angles de ce triangle. Pour l'angle  : a 2 = b 2 +c 2 2 b c cos  62 = cos  cos  = = = 5 40 = 1 8 d'où Â= cos 1 ( 1 8) et à la calculatrice, on obtient  82,8. Et on peut faire de même pour les deux autres angles du triangle. SGT du LP Léo Lagrange de Bully-Les-Mines (62) Page 5/5
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Séquence 10. Géométrie dans l espace. Sommaire
Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Exercices de géométrie
Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Seconde MESURER LA TERRE Page 1 MESURER LA TERRE
Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En
Du Premier au Second Degré
Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés :
LM323 Envoi 2 2009-2010 Contenu de cet envoi Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigé du devoir 1. Un exercice de révision sur le chapître 1. Exercices sur l inversion. Corrigés
Construction d un cercle tangent à deux cercles donnés.
Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
Chapitre 2 : Vecteurs
1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Paris et New-York sont-ils les sommets d'un carré?
page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2
Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.
Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Géométrie dans l espace
Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Comment démontrer que deux droites sont perpendiculaires?
omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Nombres complexes. cours, exercices corrigés, programmation
1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
2.4 Représentation graphique, tableau de Karnaugh
2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Livret de liaison Seconde - Première S
Livret de liaison Seconde - Première S I.R.E.M. de Clermont-Ferrand Groupe Aurillac - Lycée Juin 2014 Ont collaboré à cet ouvrage : Emmanuelle BOYER, Lycée Émile Duclaux, Aurillac. Patrick DE GIOVANNI,
Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-
Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une
Le contexte. Le questionnement du P.E.R. :
Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Vecteurs. I Translation. 1. Définition :
Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Trois personnes mangent dans un restaurant. Le serveur
29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE
4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
