- cas d une charge isolée en mouvement et par extension d un ensemble de



Documents pareils
Les Conditions aux limites

Plan du cours : électricité 1

Chapitre 1 Régime transitoire dans les systèmes physiques

Fonctions de plusieurs variables

Cours de Mécanique du point matériel

NOTICE DOUBLE DIPLÔME

Travaux dirigés de magnétisme

Chapitre 6. Fonction réelle d une variable réelle

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

5. Les conducteurs électriques

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

Chapitre 0 Introduction à la cinématique

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

MATIE RE DU COURS DE PHYSIQUE

Champ électromagnétique?

À propos d ITER. 1- Principe de la fusion thermonucléaire

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

La fonction exponentielle

Chapitre 2 Le problème de l unicité des solutions

Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont :

Plan du chapitre «Milieux diélectriques»

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Chapitre 1 : Évolution COURS

OM 1 Outils mathématiques : fonction de plusieurs variables

Continuité d une fonction de plusieurs variables

Suites numériques 3. 1 Convergence et limite d une suite

Nombre dérivé et tangente

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

DYNAMIQUE DE FORMATION DES ÉTOILES

Théorie et codage de l information

Précision d un résultat et calculs d incertitudes

Programmes des classes préparatoires aux Grandes Ecoles

Les indices à surplus constant

PHYSIQUE 2 - Épreuve écrite

CHAPITRE VIII : Les circuits avec résistances ohmiques

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

F411 - Courbes Paramétrées, Polaires

Correction de l examen de la première session

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

Théorème du point fixe - Théorème de l inversion locale

Contrôle non destructif Magnétoscopie

Continuité et dérivabilité d une fonction

statique J. Bertrand To cite this version: HAL Id: jpa

Différentiabilité ; Fonctions de plusieurs variables réelles

Fonction inverse Fonctions homographiques

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

Chapitre 1 Cinématique du point matériel

Cours 1. Bases physiques de l électronique

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker

FUSION PAR CONFINEMENT MAGNÉTIQUE

Premier principe de la thermodynamique - conservation de l énergie

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Les transistors à effet de champ.

Equations cartésiennes d une droite

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

Développements limités, équivalents et calculs de limites

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Michel Henry Nicolas Delorme

3 Approximation de solutions d équations

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Cours 02 : Problème général de la programmation linéaire

Physique quantique et physique statistique

FONCTION EXPONENTIELLE ( ) 2 = 0.

Circuits RL et RC. Chapitre Inductance

TD 9 Problème à deux corps

PHYSIQUE Discipline fondamentale

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

I - Quelques propriétés des étoiles à neutrons

III. Transformation des vitesses

I. Ensemble de définition d'une fonction

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

PHY2723 Hiver Champs magnétiques statiques. Notes partielles accompagnant le cours.

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Algorithmes pour la planification de mouvements en robotique non-holonome

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercice 1. Exercice n 1 : Déséquilibre mécanique

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire Sébastien GERGADIER

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

108y= 1 où x et y sont des entiers

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Texte Agrégation limitée par diffusion interne

Modélisation semi-analytique d'un système de CND-CF pour la caractérisation d'un défaut dans la structure d'un matériau conducteur


Angles orientés et trigonométrie

SYSTEMES LINEAIRES DU PREMIER ORDRE

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

F1C1/ Analyse. El Hadji Malick DIA

Transcription:

Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k J = q k vk k - cas d une densité de charges ; On appelle densité de courant électrique j en un point M ( dans le seul cas où il n y a qu une espèce de porteurs de charges ) le produit de la densité de charges par leur vitesse d ensemble v ( M ) au point M ; j ( M ) = ρ ( M ) v ( M) il est parfois utile d'écrire ρ ( M ) = q n ( M ) où la densité de charges est définie comme le produit de la charge q par le nombre de particules par unité de volume n ( M ) ; Le courant passant à travers la surface ds par unité de temps est : dj = j (M ). ds ( M ) ds est un vecteur dont le module est égal à la surface ds et qui est orienté perpendiculairement à celle ci ; c est la quantité de charges passant à travers ds par unité de temps. - lignes de courant : c est une ligne qui en tout point a une tangente parallèle au vecteur courant - dans un fil électrique la densité de courant est supposée uniforme dans toute la section ; I est le courant total passant dans un fil de section S : I = dj = j S = loi de conservation du courant : loi «locale» ; - cas général ; div ( j ( M)) = - ρ ( M )/ t

Pour démontrer cette loi on fait un bilan de charges dans un volume élémentaire tel qu un cube ; la variation du nombre de charges dans ce volume est la différence entre celles qui rentrent et celles qui sortent à travers les six surfaces latérales du cube comptées deux à deux. C est une loi que l on retrouve sous la même forme en hydrodynamique ou chaque fois que l on considère un fluide de particules ( neutrons, électrons, molécules, chaleur ) et que l on doit écrire la conservation de la quantité scamaire ; on ajoute souvent dans le deuxième membre un terme de «source» ( création ou disparition de particules ) par unité de volume ; ( création de neutrons dans les réacteurs, création d électrons dans les semiconducteurs par effet photoélectrique...) L étudiant voudra bien montrer que cette loi est invariante par transformation de Galilée, et il en déduira l expression de j. - cas stationnaire Par définition du cas stationnaire, toutes les dérivées des grandeurs physiques par rapport au temps sont nulles : ρ ( M )/ t = 0. Il en résulte que le courant est une quantité constante ( mais pas nécessairement uniforme ) qui obéit à la loi locale : div( j ( M ) ) = 0 avec toutes les conséquences qui se déduisent du fait que la divergence du vecteur est nulle : existence de tubes de courants, flux de courant nul à travers une surface fermée. Loi de Lorentz ; loi de Biot et Savart = Loi de Lorentz : action du vecteur «champ magnétique» sur des charges électriques élémentaires animées d une vitesse de déplacement v. - cas d une charge isolée F = q ( v B ) Cette loi qui ne suppose rien de plus que l existence de charges, «révèle» qu en plus de la force résultant d un champ électrique, si il y en a un, une charge subit une force liée à la présence d un nouveau champ appelé «champ magnétique» ; nécessairement, la charge doit être en mouvement pour subir cette nouvelle force. On notera le caractère vectoriel de cette 2

relation : les trois vecteurs nommés dans l'ordre : vitesse, champ, et force forment un trièdre direct. - force élémentaire "exercée" sur un élément de courant j ( M ) en M ; c est l' extension de la formule précédente à un élément de volume v(m ) : F( M ) = j ( M ) B v (M ) : - on particularise cette formule au cas d'un élément de fil conducteur l ( M ) en M parcouru par un courant I : F (M ) = I l ( M) B ( M) = loi de Biot et Savart : c est la loi inverse de celle de Lorentz : - création d un champ magnétique db(r) en r par une densité de courant j (r ) en r dans le petit volume dv (r ) db ( r ) = 4π c 2 3 j ( r ) ( r - r ) dv ( r ) r' - r On se souviendra que cette loi fait intervenir la vitesse de la lumière c, ce qui ne doit pas manquer d'intriguer ; mais on a vu en Deug que la relativité restreinte permettait de comprendre cette liaison. En électromagnétisme on introduit une constante nouvelle dans la loi de Biot et µ 0 Savart sous la forme 4π = 4π c 2 - par intégration de la formule précédente dans tout l espace où il y a une densité de courant on obtient une expression donnant le champ total : B ( r ) = db ( r ) = ( V ) ( V ) 4π c 2 j ( r ) ( r - r ) dv ( r ) 3 r' - r On retrouve le fait qu il y a une relation linéaire entre courant j et champ créé. - cas particulier d un fil porteur du courant I B ( r ) = I 4π c 2 r' - r 3 dl ( r ) ( r - r ) 22

l intégrale porte sur tous les éléments dl ( r ) du fil. Propriétés du champ magnétique = propriétés «locales» - en présence de densité volumique j ( M ) de courant on va démontrer les lois de Maxwell «locales» qui portent sur B( M ) : rot (B (M )) = div ( B ) =0 c 2 j (M)= µ 0 j (M) : pour démontrer la première équation on part de l expression de B ( r ) et on utilise l égalité vectorielle : rot (b). a = b. rot ( a ) - div ( b a ) que l on reporte dans l intégrale en ( ) identifiant la densité de courant j ( r' ) au vecteur b et le vecteur 3 au vecteur a ; dans la mesure où l'opérateur divergence porte sur la variable r, rot r ( b ) =0 ( aucune dépendance en r ) ; par ailleurs comme : rot r [ ( ) 3 ] = 0 ; on en déduit bien que div ( B ( r ) ) =0 : la démonstration de la deuxième équation de Maxwell part de l expression de Biot et Savart : B ( r ) = = - j ( r ) ( r - r ) dv ( r ) 2 ( V ) 4π c ( V ) 4π c 2 j ( r ) r' ( ) dv ( r ) on profite alors d une autre identité : rot (f a ) = f rot ( a ) - a ( f ) ; en identifiant le vecteur a à j(r'), et la fonction f à on peut écrire : 23

B ( r ) = rot r [ 4π c 2 (V) r' - r 3 j ( r ) dv ( r ) ] Il reste alors à prendre une nouvelle fois le rotationnel par rapport à r des deux membres de cette équation en se souvenant, autre égalité, que rot ( rot ( a )) (div(a)) (a) ; si a est identifié à ( j(r') ) l'intégrale sur le grand volume de la divergence tend vers zéro et il ne reste que l'équation voulue après utilisation des propriétés de la distribution ( r ) - conséquence de la deuxième équation de Maxwell puisque : div ( rot ( vecteur ) ) = 0, après identification vecteur = B ( M ) on trouve que div ( j ) = 0 ρ/ t= 0 ; c est bien la loi de conservation des charges avec des courants permanents ; cette conséquence est cohérente avec le cadre de la magnétostatique qui préside à ces calculs. - conséquence de div ( B ) =0 noter la différence de nature entre B et E puisque div ( B ) est toujours nulle au contraire de div ( E ) ; les propriétés déduites pour E du fait que div ( E ) =0 seront également valables pour B ; en particulier, comme il n y a pas de charges magnétiques libres, le flux de B à travers une surface fermée est nul en toutes circonstances ; ( en électrostatique on avait le théorème de Gauss ). = loi d Ampère ; propriétés globales ; comparaison avec la loi de Gauss En appliquant en sens inverse le théorème on a : rot ( B ( M ) ) ds (M) = B ( M ) dl ( M ) = (S) (C) c 2 j ( M). ds ( M ) (S) en d autres termes, la circulation du champ sur le contour fermé qui limite une surface ( S ) est égal au flux du courant qui la traverse ; ou encore, en particularisant au cas d'un fil de courant : B ( M ) dl ( M ) = µ I 0 (C) c est la loi d Ampère ; I est la somme algébrique des courants qui traversent la surfacesur laquelle s'appuie le contour (C). 24

- application : champ dans un solénoïde infiniment long parcouru par un courant I et avec un enroulement de n tours par unité de longueur : B = n I c 2 = µ 0 I n La démonstration est plus subtile qu il n y paraît car il faut considérer plusieurs applications du théorême d Ampère sur des circuits dans et extérieurs à la bobine ; on retrouvera cette démonstration dans les cours de Deug. Potentiel vecteur = Définition On appelle «potentiel vecteur» un vecteur A (M) tel que : B ( M ) = rot ( A ( M ) ) on notera que ce choix entraine, en toutes circonstances, que div ( B ) est toujours nulle ; pour autant, le choix de A ( M ) reste partiellement arbitraire puisque l équation de définition précédente laisse div( A ) indéterminée. = Expression du potentiel vecteur créé par une distribution de courant - expression différentielle ( locale ) En partant de la deuxième équation de Maxwell on écrit successivement : rot ( B ( M ) ) = c 2 j ( M ) rot ( rot ( A ( M ) ) ) = c 2 j ( M ) 25

(. A ( M ) ) - ( A ( M) ) = c 2 j ( M ) tout l art ici consiste à simplifier cette équation ; un choix possible et recommandé en magnétostatique consiste à prendre :. A ( M ) = 0 ; on dit que l on a fait un choix de «jauge» : c est la jauge qui convient le mieux en magnétostatique. Ce choix est licite puisque la divergence du potentiel vecteur n est pas fixée par sa définition ; une fois ce choix effectué, A est alors fixé sans ambiguité et il conduit à l équation suivante relative à A ( A ( M) ) = - c 2 j ( M ) = -µ 0 j ( M ) C est une équation vectorielle dont la forme algébrique est absolument identique à l'équation de Poisson. - expression intégrale ( ou solution de cette équation ): A (r ) = j ( r' ) ( V ) µ 0 4π r - r' dv ( r' ) Telle est la solution formelle relative au potentiel vecteur A ; ( voir analogie avec l équation de Poisson de l electrostatique ) ; on retiendra de cette formule qu il s agit d une somme vectorielle, ou plutôt, que cette équation comporte trois équations découplées qu'il faut résoudre. On en tire quelques conséquences : si j à une orientation constante, A lui sera parallèle ; si j est toujours parallèle à un même plan A le sera également ; si j est toujours parallèle à une même direction, A sera parallèle à la même direction. - cas particulier du fil électrique portant un courant I A (r ) = I 4π c 2 dl ( r ) r - r' = Propriétés du potentiel vecteur ; elles résultent toutes des deux mêmes fameux théorèmes ; - circulation de A( M ) 26

A ( M ) dl ( M ) = ( C ) ( C ) rot ( B ( M)) dl ( M ) = B ( M ) ds ( M ) : ( S ) la circulation du potentiel vecteur est égale au flux de B à travers ( S ) - conservation du flux de A. A ( M ) = 0 flux S A = O : à travers une surface fermée quelconque le flux de A est toujours nul car sa divergence est nulle en toutes circonstances ; ( choix de jauge en magnétostatique ). - continuité du potentiel vecteur : cette continuité est vraie en toutes circonstances ; c est une conséquence mathématique de l expression de Biot et Savart - cas particulier d une densité superficielle de courant : si il y a continuité du potentiel vecteur il y a discontinuité de la composante tangentielle de l induction magnétique au travers d une couche superficielle de courant ; ( c est la conséquence de la deuxième équation de Maxwell ; examiner ici analogie et différence avec le cas électrostatique d une densité superficielle ou la discontinuité du champ electrique résulte de la première équation de Maxwell.). B( M )= db ( M ) = ( S ) ( S ) 4π c 2 M' - M 3 j S ( M ) ( M - M )ds ( M ) [ ] = 0 n ( M ) B + ( M ) - B - ( M ) n ( M ) [ B+ ( M ) - B- ( M )] = c 2 j S ( M ) 27