Temps et thermodynamique quantique Journée Ludwig Boltzmann 1
Ensemble Canonique Distribution de Maxwell-Boltzmann, Ensemble canonique ϕ(a) = Z 1 tr(a e β H ) Z = tr(e β H ) 2
La condition KMS ϕ(x x) 0 x A, ϕ(1) = 1. σ t Aut(A) Im z = β iβ F(t + iβ) = ϕ(σ t (b)a) Im z = 0 0 F(t) = ϕ(aσ t (b)) F x,y (t) = ϕ(xσ t (y)) F x,y (t + iβ) = ϕ(σ t (y)x), t R. 3
Tomita (1967)+ T (cf. 7) Théorème Soit M une algèbre de von Neumann et ϕ un état normal fidèle sur M, il existe alors un unique groupe à un paramètre σ ϕ t Aut(M) qui vérifie la condition KMS pour β = 1. 4
Thèse (1972) Théorème (ac) 1 Int(M) Aut(M) Out(M) 1, La classe de σt ϕ dans Out(M) ne dépend pas du choix de l état ϕ. Donc une algèbre de von Neumann M, possède une évolution canonique R δ Out(M). Noncommutativité Evolution 5
Cette évolution est-elle reliée au temps? Rovelli 1992 : Origine thermodynamique du temps 6
1. Nous interprétons le temps comme un groupe à 1- paramètre d automorphismes de l algèbre des observables en gravitation. 2. Nous attribuons l existence et les propriétés du flot à des causes thermodynamiques. 3. Dans un contexte covariant comme celui de la relativité générale la notion de temps n est plus indépendante de l état du système comme en physique prérelativiste mais dépend explicitement de l état dans lequel le système se trouve. Quelle est l algèbre des observables en GQ?? 7
Fond infrarouge extragalactique Notre groupe local de galaxies se déplace à environ 600 km par seconde par rapport à la radiation relique. Le soleil ne se déplace qu à 370 km par seconde, à cause du mouvement relatif au groupe local. 8
Frobénius en caractéristique zéro (ac + c. Consani +m. Marcolli) 1. Thermodynamique des espaces noncommutatifs 2. Catégorie des Λ-modules = catégorie abélienne (Λ = catégorie cyclique) 3. Endomotifs 9
Thermodynamique des espaces noncommutatifs Refroidir T : E β états KMS β extrémaux, pour β > 1 ρ : A σ R S(E β R + ) L1 Distiller : Λ-module D(A, ϕ) donné par le conoyau du morphisme cyclique composition de ρ avec la trace Tr : L 1 C Action duale : sur l homologie cy- Spectre de l action de R + clique HC 0 ( D(A, ϕ)) 10
Endomotifs A est une limite inductive d algèbres réduites commutatives de dimension finie sur K et S est un semigroupe d endomorphismes ρ : A A A K = A S Endomorphismes d une variété algébrique, X s = {y Y : s(y) = }. X sr y r(y) X s. X = lim s X s ξ su (ρ s (x)) = ξ u (x) Exemple : Le groupe multiplicatif G m (Q) 11
Système BC Présentation explicite µ n, n N et e(r), pour r Q/Z, vérifiant les relations µ n µ n = 1, pour tout n N, µ k µ n = µ kn, pour tous k, n N, e(0) = 1, e(r) = e( r), et e(r)e(s) = e(r + s) pour tous r, s Q/Z, Pour tous n N et r Q/Z, µ n e(r) µ n = 1 n ns=r e(s). σ t (µ n ) = n it µ n, σ t (e(r)) = e(r). 12
Transition de phase avec BSS L unique état KMS au dessus de la température critique est ( ) ϕ β (e(a/b)) = b β 1 p β 1 1 p 1, p prime, p b et les états KMS extrémaux au dessous de la température critique sont donnés par ϕ β,ρ (e(a/b)) = Tr(π ρ(e(a/b))e βh ) Tr(e βh ) = 1 ζ(β) n=1 n β ρ(ζ n a/b ), où π ρ est la représentation de l algèbre A sur l espace de Hilbert H = l 2 (N) donnée par π ρ (µ n )ɛ m = ɛ nm, π ρ (e(a/b))ɛ m = ρ(ζ m a/b )ɛ m, où ρ Ẑ détermine un plongement dans C du corps cyclotomique Q cycl. 13
Interprétation Cohomologique de la réalisation spectrale G m (Q), le système BC (A, ϕ) avec action du groupe de Galois absolu Gal( Q/Q). Caractère χ de Gal( Q/Q) projection p χ. Théorème La représentation de R + dans M = HC 0 (p χ D(A, ϕ)) donne la réalisation spectrale des zéros de la fonction L χ. 14
15
Formule Explicite = Formule de Trace (ac + rm + cc +mm) Trace H 1(h) = ĥ(0) + ĥ(1) v où v K v h(u 1 ) 1 u K v d u est l intersection Z(h) h(u 1 ) 1 u d u Trace H 1(h) = ĥ(0) + ĥ(1) h(1) v (K v,e Kv ) h(u 1 ) 1 u d u 16
Extensions non-ramifiées K K Fq F q Analogue pour Q de K K Fq F q Corps Global K Facteur M Mod K R + Mod M R + K K Fq F q n M M σt Z K K Fq F q M M σ R Points C( F q ) Γ X Q 17
KMS et la transition de phase électrofaible Le potentiel effectif à température T est le même que le potentiel effectif à température nulle dans le produit par un cercle S 1 de longueur β = T 1., dk 0 2πT dk 0 2πT n Z n Z+ 1 2 18
A une boucle on obtient V (φ c ) = V 0 (φ c )+ 2 T n Z log(k 2 +(2πnT ) 2 +V 0 (φ c)) d3 k (2π) 3+O( 2 ) et T 4 2π 2 0 log ( Cela rajoute V T (φ c ) = V T =0 (φ c )+ 1 exp[ x 2 + V 0 (φ c)/t 2 ] 11 360 π2 T 4 + 1 24 V 0 (φ c) T 2 +... pour les bosons et 7 180 π2 T 4 + 1 12 V 0 (φ c) T 2 +... pour les fermions. ) x 2 dx 19
Brisure de symétrie spontanée En fait la transition de phase électrofaible est un cas particulier de la brisure de symétrie provenant de la géométrie 20
Q-réseaux (ac + mm) Un Q-réseau dans R n est un couple (Λ, φ), où Λ est un réseau dans R n, et φ : Q n /Z n QΛ/Λ un homomorphisme de groupes abeliens. Deux Q-réseaux (Λ 1, φ 1 ) et (Λ 2, φ 2 ) sont commensurables si les réseaux le sont (i.e. QΛ 1 = QΛ 2 ) et φ 1 φ 2 mod Λ 1 + Λ 2. Système BC = espace des Q-réseaux de dimension 1 modulo changement d échelle et commensurabilité. Dimension 2 transition double 21
Q-Réseaux GQ? Couples de Q-réseaux commensurables Correspondance Spectrale Changement d échelle D λd Composition des couples de Q-réseaux Composition des correspondances Unités du groupoide Triplets spectraux réels γ γ 1 Correspondance contragrédiente C -algèbre de groupoide Algèbre de Hecke des fonctions de correspondances Séries d Eisenstein D Tr(D n ) Q-réseaux inversibles Variété de Shimura Triplets spectraux à dualité de Poincaré 22 Espace des modules d opérateurs D
Redshift Les radiations émises dans l ultraviolet (10 14 cycles par seconde) sont observées dans l infrarouge (10 12 cycles par seconde) : facteur 100 (!) 23
24
Références A. Connes, Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. (4) 6 (1973), 133 252. A. Connes, M. Marcolli, From physics to number theory via noncommutative geometry, Part I : Quantum statistical mechanics of Q-lattices, math.nt/0404128. A. Connes, M. Marcolli, Noncommutative geometry, from quantum fields to motives (tentative title), book in preparation. To appear as a co-publication of the American Mathematical Society, Colloquium Publications Series, and Hindustan Book Agency, Texts and Readings in Mathematics Series. A. Connes, C. Consani, M. Marcolli, Noncommutative geometry and motives : the thermodynamics of endomotives, math.qa/0512138. A. Connes and C. Rovelli. von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories. Classical Quantum Gravity, 11 (1994) N.12, 2899 2917. C. Rovelli. Statistical mechanics of gravity and the thermodynamical origin of time. Classical Quantum Gravity, 10 (1993) N.8, 1549 1566. M. Takesaki, Tomita s theory of modular Hilbert algebras and its applications. Lecture Notes in Math., 28, Springer, 1970. 25