Dérivation : cours. Dérivation dans R



Documents pareils
Continuité et dérivabilité d une fonction

Chapitre 6. Fonction réelle d une variable réelle

Nombre dérivé et tangente

Limites finies en un point

Développements limités, équivalents et calculs de limites

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Dérivation : Résumé de cours et méthodes

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Comparaison de fonctions Développements limités. Chapitre 10

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

La fonction exponentielle

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Correction du Baccalauréat S Amérique du Nord mai 2007

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Théorème du point fixe - Théorème de l inversion locale

Problème 1 : applications du plan affine

Continuité en un point

Fonctions homographiques

Fonctions de plusieurs variables

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Chapitre 2 Le problème de l unicité des solutions

Image d un intervalle par une fonction continue

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Cours Fonctions de deux variables

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Complément d information concernant la fiche de concordance

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

O, i, ) ln x. (ln x)2

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Université Paris-Dauphine DUMI2E 1ère année, Applications

Développements limités. Notion de développement limité

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Capes Première épreuve

I. Polynômes de Tchebychev

Chapitre 1 Régime transitoire dans les systèmes physiques

Exercices - Polynômes : corrigé. Opérations sur les polynômes

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Cours d Analyse. Fonctions de plusieurs variables

Correction de l examen de la première session

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Représentation géométrique d un nombre complexe

C f tracée ci- contre est la représentation graphique d une

3 Approximation de solutions d équations

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

FONCTION EXPONENTIELLE ( ) 2 = 0.

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Equations cartésiennes d une droite

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Continuité d une fonction de plusieurs variables

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

Fiche PanaMaths Calculs avec les fonctions sous Xcas

Licence Sciences et Technologies Examen janvier 2010

F411 - Courbes Paramétrées, Polaires

Calcul différentiel sur R n Première partie

Fonctions de deux variables. Mai 2011

CCP PSI Mathématiques 1 : un corrigé

Chapitre 1 : Évolution COURS

Raisonnement par récurrence Suites numériques

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

I. Ensemble de définition d'une fonction

Dérivées d ordres supérieurs. Application à l étude d extrema.

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Pour l épreuve d algèbre, les calculatrices sont interdites.

Calcul différentiel. Chapitre Différentiabilité

Chapitre 0 Introduction à la cinématique

Développement décimal d un réel

Angles orientés et trigonométrie

Chapitre VI Fonctions de plusieurs variables

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

IV- Equations, inéquations dans R, Systèmes d équations

BACCALAUREAT GENERAL MATHÉMATIQUES

Différentiabilité ; Fonctions de plusieurs variables réelles

Mais comment on fait pour...

Correction du baccalauréat ES/L Métropole 20 juin 2014

OM 1 Outils mathématiques : fonction de plusieurs variables

M2 IAD UE MODE Notes de cours (3)

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Fonctions de plusieurs variables et applications pour l ingénieur

Les indices à surplus constant

Rappels sur les suites - Algorithme

Précision d un résultat et calculs d incertitudes

Repérage d un point - Vitesse et

Correction du baccalauréat S Liban juin 2007

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Chp. 4. Minimisation d une fonction d une variable

Transcription:

TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition Soit f une fonction définie sur un intervalle I et a un réel de I. On dit que f est dérivable en a si l une des propositions suivantes équivalentes est réalisée :. La fonction f(a+) f(a) a une limite finie l en 0. 2. Il eiste un réel l et une fonction ǫ tels que pour tout réel tel que a+ I, f(a+) = f(a)+l+ǫ() avec lim 0 ǫ() = 0 Le nombre l est appelé le nombre dérivé de la fonction f en a; il est noté f (a). Si f est dérivable en tout point de I, on dit que f est dérivable sur I. La fonction qui à tout de I associe le nombre dérivé f () est la fonction dérivée de f. Remarques :. Équivalence des deu propositions : Supposons que la fonction f(a+) f(a) a une limite finie l en 0. On a donc : f(a+) f(a) lim = l 0 Pour 0, on pose ǫ() = f(a+) f(a) l. On a donc lim ǫ() = 0. 0 De plus, ǫ() = f(a+) f(a) l et par conséquent, Réciproquement, si alors pour 0, Or, lim 0 ǫ() = 0, donc f(a+) = f(a)+l+ǫ() f(a+) = f(a)+l+ǫ() avec lim 0 ǫ() = 0 f(a+) f(a) = l+ǫ() f(a+) f(a) lim = l 0 2. Soit C la courbe représentative d une fonction f dérivable en a. f(a) f()=f(+) M A Le nombre : f(a+) f(a) est appelé tau d accroissement (ou accroissement moyen) de la fonction f entre a et a+. Soient A(a;f(a)) et M(a+;f(a+)) deu points de C. La droite (AM) a pour coefficient directeur : f(a+) f(a) a+ a = f(a+) f(a) C Le coefficient directeur de (AM) est donc le tau d accroissementdef entreaeta+.lorsquetendvers0,cecoefficient directeur tend vers le nombre f (a). =a+ a Lorsque tend vers 0, le point M se rapproce du point A. La droite (AM) devient alors tangente à la courbe C au point d abscisse a. Le nombre f (a) est donc le coefficient directeur de la tangente à la courbe représentative de f au point d abscisse a. La première proposition du téorème peut donc s écrire : le tau d accroissement de f en a admet une limite finie en 0.

3. f(a+) = f(a)+f (a) +ǫ() avec lim 0 ǫ() = 0 est appelé développement limité à l ordre de la fonction f en a. 4. En posant le cangement de variable = a+, les deu propositions équivalentes s écrivent : 5. Cette dernière égalité peut s écrire f() f(a) lim = l a a f() = f(a)+f (a)( a)+( a)ǫ( a) avec lim a ǫ( a) = 0 f() f(a) = f (a)( a)+( a)ǫ( a) avec lim a ǫ( a) = 0 Avec les notations des pysiciens, à savoir = a et y(a) = f() f(a), cette égalité s écrit : y(a) = f (a) + ǫ( ) Or, lim ǫ( ) = 0. Lorsque devient infinitésimal, on écrit symboliquement cette égalité sous la forme : 0 Cette écriture est appelée notation différentielle. dy = f (a)d ou encore f (a) = df dy (a) = d d (a) 6. Si f représente la loi oraire d un mobile en déplacement,la vitesse moyenne du mobile entre les instants t 0 et t 0 + est : variation de la distance variation du temps = f(t 0 +) f(t 0 ) La vitesse instantannée du mobile est alors obtenue en faisant tendre vers 0. Cette vitesse instantannée est donc : f(t 0 +) f(t 0 ) lim = f (t 0 ) 0 Donc si f est la loi oraire d un mouvement, f (t 0 ) représente la vitesse instantannée à l instant t 0. Savoir-faire : page 03 Eercice : À l aide de la définition, montrer que la fonction racine carrée est dérivable sur ]0;+ [ et que la fonction valeur absolue est dérivable sur R. 2 Tangente. Si la fonction f est dérivable en a, la tangente à la courbe représentative de f au point d abscisse a a pour équation : Lorsque f (a) = 0, la tangente est orizontale. y = f (a)( a)+f(a) f() f(a) 2. Si lim = + ou, alors f n est pas dérivable en a, mais la droite d équation = a est tangente a a verticale à la courbe représentative de f au point d abscisse a. f() f(a) 3. Si lim a une limite finie à droite (resp. à gauce), on dit alors que f est dérivable à droite (resp. à gauce). a a On a alors une demi-tangente (comme la fonction valeur absolue qui admet deu demi-tangentes à l origine). 4. La fonction f(a)+f (a) ( a) est une approimation affine de f

C. f(a+) f (a)+f(a) f(a) A (T) Quand on se place au voisinage du point A d abscisse a (proce du point A), la courbe représentative C de f et la tangente (T) semblent proces. La tangente est la représentation grapique de la fonction f(a)+f (a) ( a). La fonction f(a) + f (a) ( a) est donc une approimation affine de f. Lorsque est proce de a, c est la meilleure approimation affine de f. On dit que la tangente est la meilleure approimation affine de f au voisinage de a. a a+ Savoir-faire : 2 page 03. Eemple : Etude de la fonction f : (+) 3 au voisinage de 0 Pour tout réel, f(0+) f(0) = (+) 3 = +3+3 2 + 3 = 3+(3+ 2 ) = 3+ǫ() avec ǫ() = 3+ 2 et lim 0 ǫ() = 0. f est donc dérivable en 0 et f (0) = 3. Le développement limité à l ordre de f en 0 est alors : +3+ǫ(). La meilleure approimation affine de f en 0 est donc : f(0)+f (0) = +3. L équation de la tangente à la courbe représentative de f au point d abscisse a est alors : y = +3.,248 3 = (+0,248) 3 +3 0,248,3744. 3 Quelques compléments de formules Téorème : Soient u une fonction dérivable et strictement positive sur un intervalle I. Alors la fonction f = u est dérivable sur I et f = u 2 u. Eemple : Soit f la fonction définie par f() = 2 +. La fonction u : 2 + est dérivable et strictement positive sur R. Par conséquent, la fonction f est dérivable sur R. Pour tout réel, on a : f () = u () 2 u() = 2 2 2 + = 2 + Démonstration (ROC) : Soit I et soit un réel non nul tel que + I. Le tau d accroissement de f entre et + est : τ() = f(+) f() () u(+) u() () τ() = L idée est de faire apparaître le tau d accroissement de u entre et +, c est-à-dire u(+) u(). On veut donc se débarasser des( racines. L idée, fort classique, est d utiliser la quantité conjuguée : u(+) ) ( u(+)+ ) u() u() () τ() = ( u(+)+ ) u()

u(+) u() () τ() = ( u(+)+ ) u() () τ() = u(+) u() ( u(+)+ u() ) Or, la fonction u est dérivable sur I, donc lim 0 u(+) u() = u (). De plus, lim u(+) = (car la fonction 0 2 u(). racine carrée est continue sur [0 ; + [), donc par somme et quotient, lim = 0 u(+)+ u() Par conséquent, lim 0 τ() = u () 2 u(). Téorème : Soient u une fonction dérivable sur un intervalle I et soit n un entier naturel non nul. Alors la fonction f = u n est dérivable sur I et f = nu u n. Eemple : Soit f la fonction définie par f() = ( 3 +2 8) 7. La fonction u : 3 +2 8 est dérivable sur R. Par conséquent, la fonction f est dérivable sur R. Pour tout réel, on a : f () = 7 u () u 7 () = 7 ( 3 2 +2 ) ( 3 +2 8 ) 6 Démonstration (ROC) : Montrons ce rśultat par récurrence. Soit P la propriété : la fonction f = u n est dérivable sur I et f = nu u n, n N. Initialisation : n =. Alors f = u. La fonction u étant dérivable sur I, f l est aussi. De plus, nu u n = u. La propriété est donc vraie au rang n =. Hérédité : Supposons que la propriété P soit vraie pour un entier naturel n. Montrons alors qu elle est vraie au rang (n+), c est-à-dire que ( u n+) = (n+) u u n. On a : u n+ = u u n. Or, les fonctions u et u n sont dérivables sur I donc par produit, la fonction u n+ l est aussi. De plus, pour tout réel de l intervalle I, on a : ( u n+ ) = (u u n ) (2) (2) ( u n+) = u u n +u nu u n (d après la formule de dérivation d un produit et d après l ypotèse de récurrence). (2) ( u n+) = u u n +nu u n + (2) ( u n+) = u u n +nu u n (2) ( u n+) = (n+)u u n + (2) ( u n+) = (n+)u u n La propriété P est donc vrie au rang (n+). Conclusion : La propriété P est vraie au rang n = et est éréditaire. Donc, d après l aiome de la récurrence, elle est vraie sur N. Par conséquent, pour tout entier naturel n non nul, la fonction f est dérivable et f = nu u n. Conséquence : Soient u une fonction dérivable et ne s annulant pas sur un intervalle I et soit n un entier naturel non nul. Alors la fonction f = u n est dérivable sur I et f = nu u n+. Eemple : Soit f la fonction définie par f() = (cos 3 ()+2) 5. La fonction cos() est dérivable sur R. Donc la fonction u : cos 3 () + 2 est dérivable et ne s annule pas sur R (pour tout réel, cos() ). Par conséquent, la fonction f est dérivable sur R. Pour tout réel, on a : f () = 5 3( sin())cos2 () (cos 3 ()+2) 5+ = 5sin()cos2 () (cos 3 ()+2) 6 Démonstration (ROC) : D après le téorème précédent, la fonction u n est dérivable sur I. De plus, par ypotèse, elle ne s annule pas sur I, donc la fonction est dérivable sur I (inverse d une fonction dérivable ne s annulant pas sur un un intervalle) et on a : pour tout I : ( ) u n = (un ) (u n ) 2 = nu u n u 2n = nu nu = u2n (n ) u n+

Remarque : Sous les ypotèses du téorème, on peut donc dire que, pour tout entier relatif n non nul, la fonction u n est dérivable sur I et que (u n ) = nu u n. La formule est la même que n soit positif ou négatif. Téorème : Soient f une fonction dérivable sur R et soient a et b deu réels. Alors la fonction g : f(a+b) est dérivable sur R et pour tout réel, g () = af (a+b). Eemple : Soit g la fonction définie par g() = sin(3 ). La fonction sin est dérivable sur R. Par conséquent, la fonction g est dérivable sur R. Pour tout réel, on a : g () = 3cos(3 ) Démonstration (ROC) : Deu cas peuvent se présenter : a = 0 et a 0. Si a = 0 : alors, pour tout réel, g() = g(b). g est donc une fonction constante. Elle est dérivble sur R et sa dérivée est nulle. On a donc bien : g () = af (a+b) = 0. Si a 0 : Soit un réel et soit un réel non nul. Le tau d accroissement de g entre et + est : τ() = g(+) g() (3) (3) τ() = f(a(+)+b) f(a+b) (3) τ() = f(a+b+a) f(a+b) Posons alors X = a+b et H = a. Donc = H a. (3) τ() = /disf Ha (3) τ() = a H Or, la fonction f est dérivable sur R, donc lim = f (X). H 0 H = lim = f (X) = f (a+b). On peut donc écrire : H 0 H De plus, lim H = 0 donc lim 0 0 H lim τ() = 0 af (a+b). La fonction g est donc dérivable en et donc sur R et pour tout réel, g () = af (a+b). Savoir-faire : 3 et 4 page 05. 4 Généralisation : la composée de fonctions Eemples : Voir TP. Définition : Soit u une fonction définie sur un intervalle I. Soit v une fonction définie au-moins sur l intervalle u(i). Alors la fonction I R v(u()) est appelée la composée de v et u et notée v u (lire v rond u). ( ) Eemple : Soit f la fonction définie par f() = cos. La fonction u : est définie sur R. La fonction v : cos() est définie( sur) R. Donc la fonction f = v u : cos est définie sur R. Téorème : Soient u une fonction dérivable sur un intervalle I et v une fonction dérivable au-moins sur u(i). Alors la fonction f = v u est dérivable sur I et f = u (v u). En notation différentielle, on a : df d = dv du dud. Eemple : Soit f la fonction définie sur R par f() = sin( 2 ). Alors f = v u avec u() = 2 et v() = sin(). u et v sont définies et dérivables sur R. Donc f est dérivable sur R. De plus, u () = 2 et v () = cos(). Donc f () = 2 cos( 2 ) pour tout réel.

Démonstration : Cette démonstration n est pas au programme et ne pourra être comprise dans sa totalité qu après le cours sur les limites. Soit 0 I. Supposons que pour proce de 0 et tel que I, u() u( 0 ). Le tau d accroissement de v u en 0 est alors : v u() v u( 0 ) = v(u()) v(u( 0)) u() u( 0) 0 u() u( 0 ) 0 u étant continue sur I (car dérivable sur I), lim 0 u() = u( 0 ). v étant dérivable au-moins sur u(i), lim y y 0 v(y) v(y 0 ) y y 0 v(u()) v(u( 0 )) téorème de composition des limites, lim = v (u( 0 )). 0 u() u( 0 ) u étant dérivable sur I, lim 0 u() u( 0 ) 0 = u ( 0 ). = v (y 0 ). De plus u() et u( 0 ) sont dans u(i), donc, d après le v(u()) v(u( 0 )) Donc, lim u() u( 0) = v (u( 0 )) u ( 0 ). La fonction v u est donc dérivable en 0 et 0 u() u( 0 ) 0 (v u) ( 0 ) = u ( 0 ) v u( 0 ). Supposons que u est constante dans un voisinage de 0, c est-à-dire que pour proce de 0, u() = u( 0 ). Alors; le tau d accroissement de v u en 0 est : v u() v u( 0) = 0. Donc v u est dérivable en 0 et (v u) ( 0 ) = 0. De plus, 0 puisque u est constante au voisinage de 0, u ( 0 ) = 0, donc u ( 0 ) v u( 0 ) = 0 = (v u) ( 0 ). On a donc montré que pour tout point 0 de I, la fonction v u est dérivable en 0. Donc, v u est dérivable sur I et (v u) = u (v u). 5 Primitive Définition Une primitive d une fonction f définie sur un intervalle I de R est une fonction F dérivable sur I telle que F = f. Eemples :. Soit F() = 2. Alors F est dérivable sur R et pour tout réel, F () = 2. F est donc une primitive de la fonction f définie sur R par f() = 2. 2. Soit G() = 2 +8. Alors G est dérivable sur R et pour tout réel, G () = 2. G est donc une primitive de la fonction f définie sur R par f() = 2. Quelques propriétés sur les primitives. Si une fonction f admet une primitive F sur un intervalle I alors elle en admet une infinité et les primitives de f sont les fonctions G = F +k, où k est une constante réelle. 2. Soit f une fonction admettant une primitive F sur un intervalle I et soit k un réel. Alors la fonction kf admet une primitive ur I et une primitive de la fonction kf sur I est la fonction kf. 3. Soient f et g deu fonctions admettant cacune une primitive sur un intervalle I (F et G). Alors la fonction f +g admet une primitive sur I et une primitive de la fonction f +g sur I est la fonction F +G. 4. Soit f une fonction admettant des primitives sur I. Soit 0 un réel de I et soit y 0 un réel quelconque. Alors, il eiste une unique primitive F de f sur I vérifiant F( 0 ) = y 0. 5. Une condition suffisante pour que f admette une primitive sur I est que f soit dérivable sur I (en fait, continue sur I suffit). Démonstration :. La fonction F étant dérivable sur I, G l est aussi. De plus, G = F = f. Donc G est une primitive de f sur I. Soit G une primitive de f sur I. Alors la fonction G F est dérivable sur I comme somme de fonctions dérivables sur I et (G F) = 0. Donc G F est constante sur I, donc G F = k, avec k réel. 2. Soit G = kf. F est dérivable sur I donc G l est aussi et G = kf = kf. Donc G est une primitive de kf sur I. 3. À faire. 4. Soit G une primitive de f sur I. Alors toutes les primitives de f sur I sont de la forme : F = G+k, avec k réel. On veut que F( 0 ) = y 0, soit G( 0 )+k = y 0, soit k = y 0 G( 0 ). La fonction F : G() +y 0 +G( 0 ) répond donc bien à la question. De plus, si une autre fonction H répond aussi à la question, alors F H =constante. Or, (F H)( 0 ) = 0. Donc F = H. 5. Démonstration faite plus tard dans le cours sur l intégration.

Eemples :. Déterminer une primitive F de f : cos() sur R, vérifiant F( π 2 ) = 0. Toute primitive de f sur R est de la forme F : sin()+k, avec k réel. La condition F( π 2 ) = 0 fournit alors k =. Par suite, F() = sin(). 2. Soit g la fonction définie sur R par g() = 2 3 5 2 +3 4. g est dérivable sur R donc g admet des primitives sur R. Ces primitives sont de la forme : G() = 2 4 5 3 3 + 3 2 2 4+k (k R) 3. Soit f la fonction définie sur ]0;+ [ par f() = 2 3. f est dérivable sur ]0;+ [ donc elle admet des primitives sur ]0;+ [. On a : f() = 2 3. Donc les primitives de f sur ]0;+ [ sont de la forme : F() = 2 3+ 3+ +k = +k (k R) 2 4. Soit la fonction définie sur R par () = (3 ) 6. est dérivable sur R donc admet des primitives sur R. On a () = 3 3(3 )6 = 3 u ()u 6 () avec u() = 3. Donc ses primitives sont de la forme : 5. Soit k la fonction définie sur R par k() = H() = 3 7 u7 = 2 (3 )7 (k R) 2. k est dérivable sur R donc k admet des primitives sur R. 2 + On a k = u = u u 2 avec u() = 2 +. Donc ses primitives sont de la forme : u K() = 2 2 + = 2 u+c = 2 2 ++c (c R) +u On obtient le tableau des primitives en lisant le tableau des dérivées à l envers. Voir ci-après Savoir-faire : 2 page 207; 3 page 209.

f est une fonction définie sur un intervalle I; F est une primitive de f sur I. f() F() I k réel k+c R 2 2 +C R r (r ) R si r N r+ r+ +C ] ;0[ ou ]0;+ [ sir r Z ]0;+ [ si r R\Z 2 (cas r = 2) +C ] ;0[ ou ]0;+ [ (cas r = 2 ) 2 +C ]0;+ [ ln +C ] ;0[ ou ]0;+ [ e e +C R sin cos+c R cos sin R +tan 2 = cos 2 tan+c ] π 2 +kπ; π 2 +kπ[, k Z

u et v sont des fonctions dérivables sur un intervalle I. Fonction f Primitive F Commentaires au (a réel) au u +v u+v u u r (r ) u r+ r+ sur tout intervalle I où u 0 et où u > 0 pour r / Z u u (cas r = 2 ) 2 u sur tout intervalle I où u > 0 u (cas r = 2) u2 u sur tout intervalle I où u 0 u u ln u lnu si u > 0 sur I ln( u) si u < 0 sur I u e u e u u(a+b) (a 0) a U(a+b) U primitive de u sur I