Série STI2D-STL. Les réponses aux questions seront à écrire au stylo et uniquement dans les cadres des documents réponses prévues à cet effet.



Documents pareils
PROBABILITES ET STATISTIQUE I&II

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

EXERCICE 4 (7 points ) (Commun à tous les candidats)

TSTI 2D CH X : Exemples de lois à densité 1

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

O, i, ) ln x. (ln x)2

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Commun à tous les candidats

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Développements limités, équivalents et calculs de limites

Ressources pour le lycée général et technologique

Chapitre 2 Le problème de l unicité des solutions

Correction du baccalauréat ES/L Métropole 20 juin 2014

La fonction exponentielle

Correction du Baccalauréat S Amérique du Nord mai 2007

Complément d information concernant la fiche de concordance

mathématiques mathématiques mathématiques mathématiques

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

Développements limités. Notion de développement limité

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Amérique du Nord 4 juin 2008

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1)

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Cours Fonctions de deux variables

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Capes Première épreuve

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Statistique : Résumé de cours et méthodes

Continuité en un point

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

TESTS D'HYPOTHESES Etude d'un exemple

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Loi binomiale Lois normales

BACCALAURÉAT PROFESSIONNEL SUJET

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Chapitre 7 : Intégration sur un intervalle quelconque

Comparaison de fonctions Développements limités. Chapitre 10

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Correction du baccalauréat STMG Polynésie 17 juin 2014

Corrigé du baccalauréat S Pondichéry 12 avril 2007

PROBABILITÉS CONDITIONNELLES

LES GENERATEURS DE NOMBRES ALEATOIRES

Exercice 3 (5 points) A(x) = 1-e -0039' e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

BACCALAUREAT GENERAL MATHÉMATIQUES

Les devoirs en Première STMG

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Probabilités conditionnelles Exercices corrigés

Précision d un résultat et calculs d incertitudes

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

C f tracée ci- contre est la représentation graphique d une

Chapitre VI Fonctions de plusieurs variables

EXERCICES - ANALYSE GÉNÉRALE

Nombre dérivé et tangente

Probabilités Loi binomiale Exercices corrigés

INTRODUCTION. 1 k 2. k=1

Etude de fonctions: procédure et exemple

Probabilités conditionnelles Loi binomiale

SÉLECTION DE CONSULTANTS

Limites finies en un point

Dérivation : cours. Dérivation dans R

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Correction du baccalauréat S Liban juin 2007

Leçon 01 Exercices d'entraînement

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Fonctions de plusieurs variables

Chapitre 6. Fonction réelle d une variable réelle

Terminale SMS - STL

Maple: premiers calculs et premières applications

CCP PSI Mathématiques 1 : un corrigé

Estimation: intervalle de fluctuation et de confiance. Mars IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Baccalauréat ES L intégrale d avril à novembre 2013

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 2. Eléments pour comprendre un énoncé

BTS BAT 1 Notions élémentaires de chimie 1

3 Approximation de solutions d équations

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Chaînes de Markov au lycée

Continuité et dérivabilité d une fonction

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Correction du bac blanc CFE Mercatique

Quelques contrôle de Première S

DYNAMIQUE DE FORMATION DES ÉTOILES

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions de deux variables. Mai 2011

Dérivation : Résumé de cours et méthodes

Problème 1 : applications du plan affine

Cours d Analyse. Fonctions de plusieurs variables

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système

Transcription:

NOM : PRÉNOM : Centre d'écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série STI2D-STL Mercredi 11 mai 2016 1 Nous vous conseillons de répartir équitablement les 3 heures d épreuves entre les sujets de mathématiques et de physique-chimie. La durée conseillée de ce sujet de mathématiques est de 1h30. L usage d une calculatrice est autorisé. Les réponses aux questions seront à écrire au stylo et uniquement dans les cadres des documents réponses prévues à cet effet. Tout échange de calculatrices entre candidats, pour quelque raison que ce soit, est interdit. Aucun document n est autorisé. L usage d un téléphone ou de tout objet communiquant est interdit. 2 3 4 TOTAL Vous ne devez traiter que 3 exercices sur les 4 proposés. Chaque exercice est noté sur 20 points. Le sujet est donc noté sur 60 points. Si vous traitez les 4 exercices, seules seront retenues les 3 meilleures notes.

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page 3 Un verre d eau est sorti du réfrigérateur et placé dans une pièce dont la température ambiante est constante et égale à 25 C. A la sortie du réfrigérateur, la température de l eau est égale à 5 C et 20 minutes plus tard, elle est montée à 15 C. Pour tout t 0, on désigne par f(t) la température de l eau au bout d un temps t après sa sortie du réfrigérateur. La durée t est exprimée en minutes et la température f(t) est exprimée en degrés Celsius. La fonction f vérifie l équation différentielle suivante : (E) : f (t) kf(t) = 25k, où k est une constante réelle non nulle. I-1- Donner les valeurs de f(0) et de f(20). I-2-a- On considère l équation différentielle : (H) : f (t) kf(t) = 0. Les solutions f de l équation différentielle (H) vérifient : pour tout t 0, Donner la valeur du réel a. f(t) = Ce at, où C est un réel quelconque. I-2-b- Les solutions f de l équation différentielle (E) vérifient : pour tout t 0, f(t) = Ce kt + B. Montrer que B = 25. I-2-c- En utilisant la valeur de f(0), déterminer la constante C. Justifier la réponse. I-2-d- En utilisant la valeur de f(20), justifier que : Dans toute la suite, on admet que : k = ln2 20. pour tout t 0, f(t) = 25 20e ln2 20 t. I-3- I-4- I-5- I-6- Déterminer la température θ de l eau 30 minutes après sa sortie du réfrigérateur. On donnera une valeur approchée de θ à 10 1 près. Détailler le calcul. Au bout de quelle durée D, la température de l eau atteindra-t-elle 20 C? Donner la valeur exacte de D. Détailler le calcul. La température de l eau atteindra-t-elle 25 C? Justifier la réponse. Déterminer lim f(t). Justifier la réponse. t + 2/9 Geipi Polytech 2016

NE RIEN INSCRIRE ICI REPONSES A L EXERCICE I I-1- f(0) = f(20) = I-2-a- a = I-2-b- B = 25, en effet : I-2-c- C = en effet : I-2-d- k = ln2 20, en effet : I-3- θ, en effet : I-4- D =, en effet : I-5- La température de l eau... 25 C, en effet : I-6- lim f(t) = en effet : t + Geipi Polytech 2016 3/9

EXERCICE II Donner les réponses à cet exercice dans le cadre prévu à la page 5 On considère la fonction f définie par : pour tout x ]0; + [, f(x) = 2 lnx 1 x On note C f la courbe représentative de f dans le plan rapporté à un repère orthogonal (O; ı, j).. II-1-a- Donner lim x 0 f(x). lnx II-1-b- Que vaut lim x + x? En déduire lim f(x). Justifier la réponse. x + II-1-c- On en déduit que C f admet deux asymptotes 1 et 2. Donner une équation de chacune d elles. II-2- f désigne la dérivée de f. Justifier que : pour tout x ]0; + [, f (x) = 3 2lnx x 2. II-3-a- Dresser le tableau des variations de f. II-3-b- La fonction f présente un maximum y M atteint en x M. Donner les valeurs exactes puis des valeurs approchées à 10 1 près de x M et y M. Dans la suite, on note M le point de coordonnées (x M, y M ). II-4-a- Donner les valeurs de f(1) et f (1). II-4-b- Soit A le point de la courbe C f d abscisse 1 et T la tangente à C f au point A. Donner une équation de T. II-5- Soit B le point d intersection de la courbe C f et de l axe des abscisses. On note (x B, y B ) ses coordonnées. Donner les valeurs exactes de x B et de y B, puis une valeur approchée de x B à 10 1 près. II-6- Placer les points A, B et M. Tracer les tangentes à la courbe C f aux points A et M et les asymptotes 1, 2. Puis tracer C. 4/9 Geipi Polytech 2016

NE RIEN INSCRIRE ICI REPONSES A L EXERCICE II II-1-a- II-1-b- lim f(x) = x 0 lnx lim x + x = donc lim f(x) =, en effet : x + II-1-c- 1 : 2 : II-2- Soit x > 0. Détail du calcul de f (x) : II-3-a- x 0 + f (x) f(x) II-3-bx M = y M = x M y M II-4-a- f(1) = f (1) = j II-4-b- Equation de T : O ı II-6- II-5- x B = x B y B = Geipi Polytech 2016 5/9

EXERCICE III Donner les réponses à cet exercice dans le cadre prévu à la page 7 La concentration de CO 2 dans l atmosphère se mesure en ppm (partie par million). 1 Une concentration de 1 ppm signifie que l atmosphère contient 10 = 0,0001 = 0,0001% de CO 6 2. 100 Une concentration de 100 ppm signifie donc que l atmosphère contient 0,01% de CO 2. Partie A Les scientifiques ont étudié l évolution de la concentration de CO 2 en Europe et ils ont établi que : - à 10 2 près, la concentration annuelle moyenne de CO 2 en 2010 valait C 0 386,90 ppm. - de 2010 à 2012, l augmentation annuelle était de 0,4% par an. - à 10 2 près, la concentration annuelle moyenne de CO 2 en 2013 valait C 3 393,51 ppm. C 1 et C 2 désignent respectivement les concentrations annuelles moyennes de CO 2, en ppm, en 2011 et en 2012. III-A-1- III-A-2- III-A-3- Déterminer une valeur approchée à 10 2 près de C 1. Justifier la réponse. Justifier que C 2 390 ppm. p désigne le pourcentage d augmentation de la concentration annuelle moyenne de CO 2 entre 2012 et 2013. Déterminer la valeur exacte de p. Justifier la réponse. Que remarquez-vous? Partie B Les experts ont étudié ce qui se passerait si l augmentation de la concentration annuelle moyenne de CO 2 en Europe se poursuivait au même rythme annuel qu elle le fit entre 2012 et 2013. Pour tout entier n, u n désigne la concentration annuelle moyenne de CO 2, en ppm, en Europe à l année 2012 + n, calculée avec cette hypothèse-là. III-B-1- Donner des valeurs approchées à 10 2 près de u 0, u 1, u 2. III-B-2- Justifier que, pour tout entier n, u n = 390 1,009 n. III-B-3- III-B-4- Déterminer une valeur approchée à 10 2 près de la concentration annuelle moyenne de CO 2, en ppm, prévue en 2050. Justifier la réponse. On sait que la valeur de 1000 ppm pour la concentration de CO 2 représente un seuil critique en terme de santé (fréquence accrue d asthme dans la population par exemple) et les experts estiment que ce seuil pourrait être atteint avant la fin du siècle. III-B-4-a- Déterminer la plus petite valeur n 0 de l entier n tel que : u n 1000. Justifier soigneusement la réponse. III-B-4-b- En quelle année la concentration annuelle moyenne de CO 2 dépasserait-elle 1000 ppm? III-B-4-c- La prévision des experts sur le fait que le seuil de 1000 ppm pourrait être atteint avant la fin du siècle est-elle justifiée? 6/9 Geipi Polytech 2016

NE RIEN INSCRIRE ICI REPONSES A L EXERCICE III III-A-1- C 1, en effet : III-A-2- C 2 390 ppm. En effet : III-A-3- p = en effet : On remarque que III-B-1- u 0 u 1 u 2 III-B-2- Pour tout entier n, u n = 390 1,009 n, en effet : III-B-3- Concentration annuelle moyenne de CO 2 prévue en 2050 : En effet : III-B-4-a- n 0 = en effet : III-B-4-b- Le seuil de 1000 ppm serait atteint en... III-B-4-c- La prévision des experts...justifiée. En effet : Geipi Polytech 2016 7/9

EXERCICE IV Donner les réponses à cet exercice dans le cadre prévu à la page 9 Les trois parties de cet exercice sont indépendantes. Dans tout l exercice, pour chaque probabilité demandée, on donnera une valeur approchée à 10 3 près. Une usine fabrique des bonbons de saveurs différentes (fraise, orange, menthe, anis,...). Chaque bonbon est emballé dans un papier qui ne mentionne pas le goût du bonbon. Ensuite, les bonbons sont conditionnés dans des sachets. Partie A Une étude a montré que la variable aléatoire représentant la masse, exprimée en grammes, d un sachet de bonbons choisi au hasard dans l ensemble de la production suit une loi normale d espérance m = 305 et d écart-type σ = 2. Le service qualité effectue un contrôle et choisit au hasard un sachet dans l ensemble de la production. IV-A-1- Donner la probabilité P 1 que la masse de ce sachet soit inférieure à 300 g. IV-A-2- Donner la probabilité P 2 que la masse de ce sachet soit comprise entre 302 g et 308 g. Partie B La fraise étant la saveur la plus appréciée des consommateurs, l usine a décidé que la moitié des bonbons fabriqués auraient un goût de fraise. Pour remplir un sachet, chaque bonbon est choisi au hasard dans l ensemble de la production et la production est suffisamment importante pour que l on puisse considérer que les choix successifs se font de façon identique et indépendante. Un client achète un sachet contenant 40 bonbons. X désigne la variable aléatoire représentant le nombre de bonbons, parmi les 40, au goût de fraise. IV-B-1- X suit une loi binomiale. Donner les paramètres de cette loi. IV-B-2- Donner la probabilité P 3 que la moitié des bonbons du sachet aient un goût de fraise. IV-B-3- Donner la probabilité P 4 que le sachet contienne au plus 20 bonbons au goût de fraise. IV-B-4- Donner la probabilité P 5 que le sachet contienne strictement plus de 23 bonbons au goût de fraise. Partie C La responsable de production affirme que la proportion p de bonbons au goût de fraise dans l ensemble de la production est égale à 0,5. Pour vérifier son propos, elle fait un contrôle. IV-C-1- L intervalle de fluctuation asymptotique au seuil de 95% de la fréquence de bonbons au goût de fraise [ contenus dans un échantillon de n bonbons est : ] p(1 p) p(1 p) I = p 1,96 ; p + 1,96. n n Donner l intervalle I pour un échantillon de 40 bonbons. Les bornes de I seront arrondies à 10 3 près. IV-C-2- La responsable de production prélève au hasard un sachet de 40 bonbons dans la production. Elle remarque que 17 bonbons exactement ont le goût de fraise. Au vu de l intervalle I précédent, l affirmation de la responsable de production est-elle à rejeter ou non? Expliquer pourquoi. 8/9 Geipi Polytech 2016

NE RIEN INSCRIRE ICI REPONSES A L EXERCICE IV IV-A-1- P 1 IV-A-2- P 2 IV-B-1- X suit une loi binomiale de paramètres : IV-B-2- P 3 IV-B-3- P 4 IV-B-4- P 5 IV-C-1- I = [ ; ] IV-C-2- L affirmation de la responsable... à rejeter. En effet : Geipi Polytech 2016 9/9

Ne rien inscrire sur cette page

Ne rien inscrire sur cette page