Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices



Documents pareils
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Image d un intervalle par une fonction continue

Développement décimal d un réel

Continuité en un point

Limites finies en un point

Intégration et probabilités TD1 Espaces mesurés Corrigé

Problèmes de Mathématiques Filtres et ultrafiltres

Université Paris-Dauphine DUMI2E 1ère année, Applications

Structures algébriques

Commun à tous les candidats

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

I. Ensemble de définition d'une fonction

3 Approximation de solutions d équations

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Equations cartésiennes d une droite

Premiers exercices d Algèbre. Anne-Marie Simon

1 Définition et premières propriétés des congruences

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Cours de mathématiques

Théorie de la Mesure et Intégration

Fonctions de plusieurs variables

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Calcul fonctionnel holomorphe dans les algèbres de Banach

Cours d Analyse. Fonctions de plusieurs variables

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Continuité d une fonction de plusieurs variables

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

La mesure de Lebesgue sur la droite réelle

Capes Première épreuve

DOCM Solutions officielles = n 2 10.

Chapitre 2 Le problème de l unicité des solutions

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Axiomatique de N, construction de Z

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Théorème du point fixe - Théorème de l inversion locale

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Marc HINDRY. Introduction et présentation. page 2. 1 Le langage mathématique page 4. 2 Ensembles et applications page 8

La fonction exponentielle

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Mathématiques Algèbre et géométrie

Probabilités sur un univers fini

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Raisonnement par récurrence Suites numériques

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Le produit semi-direct

Calcul différentiel sur R n Première partie

I. Polynômes de Tchebychev

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Logique. Plan du chapitre

Calcul intégral élémentaire en plusieurs variables

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Calcul différentiel. Chapitre Différentiabilité

Extrait du poly de Stage de Grésillon 1, août 2010

Intégration et probabilités TD1 Espaces mesurés

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1

Programmation linéaire et Optimisation. Didier Smets

Correction du Baccalauréat S Amérique du Nord mai 2007

Suites numériques 3. 1 Convergence et limite d une suite

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Correction du baccalauréat S Liban juin 2007

Moments des variables aléatoires réelles

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

3. Conditionnement P (B)

Fonction inverse Fonctions homographiques

CHAPITRE IV. L axiome du choix

Une forme générale de la conjecture abc

F1C1/ Analyse. El Hadji Malick DIA

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

Polynômes à plusieurs variables. Résultant

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Problème 1 : applications du plan affine

Approximations variationelles des EDP Notes du Cours de M2

Cours d Analyse I et II

CCP PSI Mathématiques 1 : un corrigé

Cours arithmétique et groupes. Licence première année, premier semestre

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

Deux disques dans un carré

Cours d arithmétique Première partie

Chapitre VI - Méthodes de factorisation

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Résolution d équations non linéaires

Chapitre VI Fonctions de plusieurs variables

Chapitre 7 : Intégration sur un intervalle quelconque

Les indices à surplus constant

Fibonacci et les paquerettes

La Longue Marche à travers la théorie de Galois, Part Ib, 26-37

NOMBRES COMPLEXES. Exercice 1 :

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Fonctions de plusieurs variables et applications pour l ingénieur

Suites numériques 4. 1 Autres recettes pour calculer les limites

Transcription:

Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation binaire suivante sur FE,R + ) : [ ] f,g) FE,R + ) FE,R + ), f g x E, fx) gx). 1. Montrer que définit une relation d ordre sur FE,R + ). 2. L ordre ainsi défini est-il total? 3. Montrer que, pour c ordre, FE,R + ) possède un plus pit élément à préciser. Exercice 2. [Ordre lexicographique sur R 2 ] Soit R la relation binaire définie sur R 2 par a,b)ra,b ) [ ] a < a ou a = a b b ). 1. Montrer que R définit une relation d ordre total sur R 2. 2. Ordonner 1,5), 3,6), 1, 2) 4,6). 3. En utilisant l identification canonique de R 2 C, montrer que cte relation d ordre total n est pas compatible avec la structure d anneau de C. Une relation d ordre sur C est compatible avec la structure d anneau si i) z 1,z 2,z) C 3, z 1 z 2 z 1 +z z 2 +z ii) z 1,z 2,z) C 3, 0 C z z 1 z 2 ) zz 1 zz 2 ). 4. Démontrer qu il n existe aucune relation d ordre total sur C compatible avec sa structure d anneau. Pour cela, on supposera qu il en existe une, que l on notera. Si 0 i, on montrera alors que 0 1 0 1 ce qui conduit à une contradiction à préciser. Si i 0, on raisonnera de manière analogue pour aboutir à une contradiction. Attention : la contradiction avec 0 1 0 1 est subtile. En eff, 0 1 donne 0+1 1+1 soit 1 0 or 0 1 donc, par antisymétrie de la relation d ordre, 1 = 0, d où une contradiction. Exercice 3. On rappelle qu une application u : E F entre les ensembles ordonés E, E ) F, F ) est croissante si, x,y) E 2, x E y ux) F uy), décroissante si, x,y) E 2, x E y uy) F ux). Les applications, f : n 2n, g : n 2n+1 sont-ellescroissantesdes ensembles ordonnés, ) dans, ), de, ) dans, ), de, ) dans, )? qu en est-il de leurs restrictions au départ à? Exercice 4. Soit E un ensemble non vide. Soit A PE) fixé quelconque. 1. Les applications PE) PE), P P A PE) PE), P P A sont-elles croissantes de l ensemble ordonné PE), ) dans PE), ). 2. Les applications PE) PE) PE), P,Q) P Q PE) PE) PE), P,Q) P Q sont-elles croissantes de l ensemble ordonné PE) PE), ) dans PE), ) où la relation d ordre sur PE) PE) est définie de manière analogue à l ordre lexicographique. Exercice 5. Soit f une bijection d un ensemble ordonné E, ) sur un ensemble F. 1. Définir une relation binaire sur F qui serait induite par la relation d ordre sur E. 2. Démontrer qu il s agit d une relation d ordre. 3. La fonction f est-elle croissante pour les relations d ordre au départ à l arrivée définies précédemment. 4. L ordre ainsi obtenu sur F est-il total ou partiel? 1

5. Si f est seulement injective au lieu d être bijective, peut-on adapter la construction précédente pour obtenir un ordre sur F? quel sera son défaut majeur dû à la perte de la surjectivité? Exercice 6. Soit E, ) un ensemble totalement ordonné. 1. Prouver que, pour tout x,y) E 2, l obj max{x,y}) est bien défini on le notera maxx,y)). { E E E 2. Montrer que l application définit une LCI sur E. x,y) x y := maxx,y) 3. Montrer que cte LCI est associative commutative. 4. Déterminer une CS pour que cte LCI admte un élément neutre l illustrer par des exemples. 5. Si la LCI possède un neutre, quels sont les éléments inversibles? Éléments remarquables des ensembles ordonnés. Exercice 7. Soit E, ) un ensemble ordonné. Soit A une partie non vide de E admtant un plus pit élément un plus grand élément. 1. Montrer que mina maxa. 2. Que dire de A si mina = maxa? Exercice 8. Soit E, ) un ensemble ordonné. Montrer que si A B sont deux parties de E telles que supa), supb) sup{supa), supb)} existent, alors supa B) existe le calculer on pourra essayer sur des exemples pour avoir une idée du résultat à prouver.) Exercice 9. Montrer que dans Q, ), l ensemble {x Q x 2 2} n adm pas de borne supérieure. Exercice 10. Soient A B deux parties non vides bornées d un ensemble totalement ordonné E, )) typiquement, R, )). 1. Montrer que A B implique, sous réserve d existence de supa) supb), supa) supb). Cte inégalité peut-elle être stricte, peut-elle être une égalité? 2. MontrerqueA B implique, sousréserved existencedemax{infa),infb)}infa B), max{infa),infb)} infa B). Cte inégalité peut-elle être stricte, peut-elle être une égalité? 3. Montrer que A B implique, sous réserve d existence de supa B) min{supa),supb)}, supa B) min{supa),supb)}. Cte inégalité peut-elle être stricte, peut-elle être une égalité? Exercice 11. Soient A,B) PR) 2 telles que A, B A B majorées. On pose A+B = {a+b R a A, b B}. 1. Montrer que supa+b) = supa+supb. 2. En remplaçant l hypothèse A B majorées par A B minorées, que devient le résultat de la question précédente? On admtra que toute partie non vide majorée de R adm une borne supérieure. Exercice 12. Considérons le plan euclidien rapporté au repère orthonormé direct canonique O, i, j). Si un point M a pour coordonnées x, y) R 2 si un point M a pour coordonnées x, y ) R 2, on définit la relation binaire R par MRM si x > x ou x = x y y). 1. Montrer que R définit une relation d ordre sur l ensemble des points du plan. C ordre est-il total? 2. Soit ρ 0 le quadrupl de points 0, A, B, C) définis de la manière suivante : O est l origine, A a pour coordonnées 2, 0), B 2, 1) C 0, 1). Soit θ [ π, π]. On désigne par ρ θ le quadrupl déduit de ρ 0 par la rotation centrée en l origine d angle orienté θ. Calculer, s ils existent les max, min, sup inf de ρ 0 puis de ρ θ. 3. Construire, sur un dessin avec des couleurs, les ensembles parcourus par maxρ θ minρ θ lorsque θ varie dans [ π, π]. 4. Une partie non vide majorée a-t-elle toujours, pour l ordre R, une borne supérieure? 5. Question analogue pour une partie non vide minorée sa borne inférieure? 2

Corrections. Exo 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation binaire suivante sur FE,R + ) : f,g) FE,R + ) FE,R + ), f g 1. Soit g FE,R + ) fixée quelconque. Soit x E fixé quelconque. Alors fx) fx). par réflexivité de la relation sur R + On en déduit que x E, fx) fx) si bien que f f. Par conséquent, est réflexive. [ ] x E, fx) gx). Soient f,g) FE,R + ) FE,R + ) fixées quelconques telles que f g g f. Soit x E fixé quelconque. Alors f g g f fx) gx) gx) fx) fx) = gx) par antisymétrie de la relation sur R + On en déduit que x E, fx) = gx) si bien que f = g. Par conséquent, est antisymétrique. Soient f,g,h) FE,R + ) 3 fixées quelconques telles que f g g h. Soit x E fixé quelconque. Alors f g g h fx) gx) gx) hx) fx) hx) par transitivité de la relation sur R + On en déduit que x E, fx) hx) si bien que f g. Par conséquent, est transitive. Ainsi définit une relation d ordre sur FE,R + ). 2. FixonsabdeuxélémentsdistinctsdeE considéronslesapplicationsf a E { R + f b 1 si x = b, x 0 si x E \{b},.. E { R + 1 si x = a, x 0 si x E \{a}, Puisque f b a) = 0 < 1 = f a a), nonf a f b ) puisque f a b) = 0 < 1 = f b b), nonf b f a ) si bien que f a f b ne sont pas comparables. L ordre défini sur FE,R + ) par n est pas total. 3. Posons 0 : Alors E R + x 0. 0 FE,R + ), Soit f FE,R + ) fixée quelconque. x E, fx) 0 = 0x) donc 0 f. Ainsi f FE,R + ), 0 f. Ainsi, FE,R + ), ) possède un plus pit élément minfe,r + ) = 0. Exo 3. Exo 6. Soit E, ) un ensemble totalement ordonné. 3

1. Pour tout x,y) E 2, {x,y} est une partie finie, non vide de l ensemble E totalement ordonné donc elle adm un ppe un pge. Ainsi, le pge max{x,y}) est bien défini. { E E E 2. Pour montrer que l application définit une LCI sur E, il suffit de x,y) x y := maxx,y) vérifier que, pour tout x,y) E 2, maxx,y) existe est un élément de E, ce qui est vrai d après la question précédente. 3. Montrer que cte LCI est associative commutative. L ensemble étant totalement ordonné, x,y) E 2 étant fixés quelconques, on est nécessairement dans l une des deux situations ci-dessous : donc x y = maxx,y) = maxy,x) = y x. Ainsi, est commutative. maxx, y) maxy, x) x y y y y x x x L ensemble étant totalement ordonné, x,y,z) E 3 étant fixés quelconques, on est nécessairement dans l une des six situations ci-dessous : maxx, maxy, z)) maxmaxx, y), z) x y z z z y x z z z x z y y y z x y y y z y x x x y z x x x donc x y z) = maxx,maxy,z)) = maxmaxx,y),z) = x y) z. Ainsi, est associative. 4. Montrons que la LCI adm un élément neutre E adm un ppe. Supposons que adm un élément neutre noté e. Alors, x E, x e = x donc maxx,e) = e. On en déduit que e me), or e E donc E adm un ppe mine = e. Supposons que E adm un ppe. Alors, x E, maxx,mine) = x donc x mine = x. De plus, la LCI est commutative donc x E, x mine = x = mine x si bien que adm mine comme élément neutre. Ainsi, adm un élément neutre si seulement si E adm un ppe. 5. Supposons que la LCI possède un neutre e, alors E adm un ppe mine = e. Soit x E un élément symétrisable pour. Alors, x x 1 = e maxx,x 1 ) = e donc x e, or e = mine donc e x si bien que x = e par antisymétrie de. Par conséquent, le seul élément suceptible d être symétrisable est le neutre e. Réciproquent, le neutre est symétrisable vrai dans tout ensemble muni d une LCI admtant un neutre) : e e = maxe,e) = e Ainsi, si la LCI possède un neutre e, alors e est le seul élément symétrisable. Exo 7. Soit E, ) un ensemble ordonné. Soit A une partie non vide de E admtant un plus pit élément un plus grand élément. 1. Par définition d une part mina A d autre part a A, a maxa donc en particularisant la relation ci-dessus pour a = mina, on obtient mina maxa. 4

2. Supposons que mina = maxa = b. Alors A car b A. Soit a A fixé quelconque. Par définition de mina maxa, on de la relation d ordre, a = b. Ainsi, A est réduit au singlon {b}. a maxa =b a mina =b donc, par antisymétrie Exo 8. Soit E, ) un ensemble ordonné. Montrer que si A B sont deux parties de E telles que supa), supb) sup{supa), supb)} existent, alors supa B) existe le calculer on pourra essayer sur des exemples pour avoir une idée du résultat à prouver.) Commençons par étudier quelques exemples pour proposer une conjecture : Dans l ensemble ordonné R, ), pour A = {0,1} B =]0,1[ {2}. On a supa = 1, supb = 2, supa B) = sup[0,1] {2}) = 2 sup{supa,supb} = sup{1,2} = 2. Dans l ensemble ordonné PR), ), pour A = {{0},]1,3]} B = {]0,1[,{1},]1,2[,{4}}. On a supa = {0} ]1,3], supb =]0,2[ {4}, supa B) = sup{{0},]1,3],]0,1[,{1},]1,2[,{4}}= [0,3] {4} sup{supa,supb} = sup{{0} ]1,3],]0,2[ {4}}= [0,3] {4}. Ainsi, les exemples précédents suggèrent que supa B) = sup{supa), supb)}. Soit x A B fixé quelconque. Si x A, x supa, or supa sup{supa), supb)} car sup{supa), supb)} est un majorant de {supa), supb)}) donc, par transitivité de la relation d ordre, x sup{supa), supb)}. Si x B, x supb, or supb sup{supa), supb)} donc, par transitivité de la relation d ordre, x sup{supa), supb)}. Par conséquent, x A B, x sup{supa), supb)} donc sup{supa), supb)} MA B). Soit M MA B) fixé quelconque. Alors x A B, x M donc d une part a A, a M donc M MA) donc supa M, d autre part b B, b M donc M MB) donc supb M. Par conséquent, M M{supA,supB}) si bien que sup{supa), supb)} M. Ainsi, sup{supa), supb)} est le plus pit des majorants de A B donc supa B) = sup{supa), supb)}. Exo 9. Raisonnons par l absurde supposons que A adm une borne supérieure dans Q que l on note r 0. r 0 Q donc p,q) Z : r 0 = p q. De plus, 1 Q 1 2 < 2 donc 1 A donc r 0 1. En particulier p > 0. Supposons que r 2 0 < 2. Brouillon. Idée, si r 2 0 < 2, pour assez grand, 1 r 0 + 1 ) 2 < 2 Or r 0 + 1 ) 2 = r0 2 + 2r 0 + 1 2 r 2 }{{} 0 + 2r 0 + 1 }{{} r0 2 + 2r 0 + r 0 r2 0 + 3r 0 r 0 1 Par conséquent, il suffit de choisir tel que r0 2 + 3r 0 < 2. 3r0 Posons = 2 r0 2 +1 de sorte que > 3r 0 2 r0 2 soit 2 r0 2 > 3r 0. 5

Calculons r 0 + 1 ) 2 = r0 2 + 2r 0 + 1 2 r 2 0 + 2r 0 + 1 car 1 r 2 0 + 3r 0 car r 0 1 < 2 car 3r 0 < 2 r2 0 Ainsi, r 0 + 1 A r 0 + 1 > r 0 = supa ce qui contredit la définition de r 0. Supposons que r 2 0 > 2. Brouillon. Idée, si r 2 0 > 2, pour assez grand, r 0 1 ) 2 > 2 Or r 0 1 ) 2 = r0 2 2r 0 + 1 2 r }{{} 1 2 0 Par conséquent, il suffit de choisir tel que r0 2 2r 0 > 2. 2r0 Posons = r0 2 2 +1 de sorte que > 2r 0 r0 2 2 soit r2 0 2 > 2r 0. Calculons r 0 1 ) 2 = r0 2 2r 0 + 1 2 2 0 2r 0 r 2 0 2r 0 car 1 2 0 > 2 car r 2 0 2 > 2r 0 Soit x A fixé quelconque. Alors x 2 < 2 < r 0 1 ) 2 donc or r 0 1 r 2 = 0 1 ) 2 r 0 + 1 x < r 0 1 > 0 car r0 2 > 2 1 1 1) donc 2 x x < r 0 1 si bien que r 0 1 majore A. Ainsi, r 0 1 majore A donc r 0 1 supa = r 0 ce qui est faux d où une contradiction. Conclusion. Par conséquent, r 2 0 = 2. Or nous savons exo) que l équation x2 = 2 n a aucune solution rationnelle, ce qui est la constradiction cherchée. Exo 10. partie de R, 1. A resp. B) est une non vide, majorée, donc supa resp. supb) existe. a,b) A B, a+b supa+supb donc A+B est une partie de R, non vide, majorée, donc supa+b) existe. 6

Méthode 1 : directe, sans ε. ous avons vu que supa + supb est un majorant de A + B, or supa + B) est le plus pit des majorants de A+B si bien que Soient a,b) A B fixés quelconques. Par définition de supa+b), donc supa+b) supa+supb 1) a+b supa+b) a supa+b) b Cela étant vrai pour tout a A pour le b fixé quelconque, a A, a supa+b) b donc supa+b) b majore A, or supa est le plus pit des majorants de A si bien que Or cela est vrai pour tout b B, donc supa supa+b) b. b B,,b supa+b) supa donc supa+b) supa majore B, or supb est le plus pit des majorants de B si bien que supa+supb supa+b) 2) Méthode 2 : preuve par la caractérisation de la borne supérieure. ous avons vu que supa+supb est un majorant de A+B. Soit ε R + fixé quelconque. Appliquons la caractérisation de la borne supérieure de A en remplaçant le ε de la caractérisation par ε 2 : a A : a supa < a+ ε 2. 3) Appliquons la caractérisation de la borne supérieure de B en remplaçant le ε de la caractérisation par ε 2 : b B : b supb < b+ ε 2. 4) Posons c = a+b. Par conséquent, en sommant les inégalités 3) 4), c A+B : c supa+supb < c+ε. Les deux points ci-dessus permtent de conclure en utilisant la caractérisation de la borne sup de A+B. Ainsi, 1) 2) conduisent à supa+b) = supa+supb. 2. En remplaçant l hypothèse A B majorées par A B minorées, on peut utiliser le lemme du cours construction de la propriété de la borne inférieure) pour justifier que infa infb existent valent infa= supâ infb = Â. 5) De plus les parties de R  B sont non vides, majorés vérifient  B si bien qu en leur appliquant le résultat de la première question, En observant alors que Â+ B = Â+B, supâ+ B) = supâ+sup B. supâ+b = supâ+sup B. si bien qu en utilisant 5) le lemme?? appliqué à la partie non vide minorée A + B qui perm d affirmer que supâ+b = infa+b), on obtient infa+b) = infa infb d où infa+b) = infa+infb. 7