TS - Maths - Bac blanc - Correction Spécialité SVT-Physique

Documents pareils
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Continuité en un point

Probabilités conditionnelles Loi binomiale

TSTI 2D CH X : Exemples de lois à densité 1

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Commun à tous les candidats

Développements limités. Notion de développement limité

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Probabilités conditionnelles Exercices corrigés

Correction du baccalauréat ES/L Métropole 20 juin 2014

Activités numériques [13 Points]

Exercice 3 (5 points) A(x) = 1-e -0039' e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Correction du baccalauréat S Liban juin 2007

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

CCP PSI Mathématiques 1 : un corrigé

Correction du Baccalauréat S Amérique du Nord mai 2007

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Corrigé du baccalauréat S Asie 21 juin 2010

Limites finies en un point

I. Ensemble de définition d'une fonction

La fonction exponentielle

Corrigé du baccalauréat S Pondichéry 13 avril 2011

Les devoirs en Première STMG

Loi binomiale Lois normales

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

INTRODUCTION. 1 k 2. k=1

Correction de l examen de la première session

Développements limités, équivalents et calculs de limites

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Probabilités Loi binomiale Exercices corrigés

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

O, i, ) ln x. (ln x)2

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Exercices sur le chapitre «Probabilités»

Mathématiques I Section Architecture, EPFL

Comparaison de fonctions Développements limités. Chapitre 10

Dérivation : cours. Dérivation dans R

Du Premier au Second Degré

Chapitre 6. Fonction réelle d une variable réelle

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1)

Pour l épreuve d algèbre, les calculatrices sont interdites.

Simulation de variables aléatoires

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Capes Première épreuve

Leçon 01 Exercices d'entraînement

Logique. Plan du chapitre

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Raisonnement par récurrence Suites numériques

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

mathématiques mathématiques mathématiques mathématiques

Représentation géométrique d un nombre complexe

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

Coefficients binomiaux

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Chapitre 7 : Intégration sur un intervalle quelconque

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Quelques contrôle de Première S

C f tracée ci- contre est la représentation graphique d une

BACCALAUREAT GENERAL MATHÉMATIQUES

Probabilités (méthodes et objectifs)

Chapitre 2 Le problème de l unicité des solutions

Correction du baccalauréat STMG Polynésie 17 juin 2014

EXERCICES - ANALYSE GÉNÉRALE

Fonctions de plusieurs variables

Probabilités conditionnelles Loi binomiale

TESTS D'HYPOTHESES Etude d'un exemple

Résolution d équations non linéaires

Chapitre 2. Matrices

PROBLEME(12) Première partie : Peinture des murs et du plafond.

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Les travaux doivent être remis sous forme papier.

I. Polynômes de Tchebychev

Corrigé des TD 1 à 5

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Angles orientés et trigonométrie

CHAPITRE 10. Jacobien, changement de coordonnées.

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Probabilités sur un univers fini

Mais comment on fait pour...

Nombre dérivé et tangente

3 Approximation de solutions d équations

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Transcription:

TS - Maths - Bac blanc - Correction Spécialité SVT-hysique Exercice 1 5 points Des probabilités Commun à tous les candidats Dans un laboratoire, se trouve un atelier nommé «L école des souris». Dès leur plus jeune âge, les souris apprennent à effectuer régulièrement le même parcours. Ce parcours est constitué de trappes et de tunnels que les souris doivent emprunter pour parvenir à croquer une friandise. lus la souris effectue le parcours, plus elle va vite. Une souris est dite «performante» lorsqu elle parvient à effectuer le parcours en moins d une minute. Cette «école» élève des souris entraînées par trois dresseurs : 48% des souris sont entraînées par Claude, 16% par Dominique et les autres par Éric. Après deux mois d entraînement, on sait que : parmi les souris de Claude 60% sont performantes; 20% des souris de Dominique ne sont pas encore performantes; parmi les souris d Éric, deux sur trois sont performantes. On choisit au hasard une souris de cette «école». On note C, D, E et les évènements suivants : C : «la souris est entraînée par Claude»; D : «la souris est entraînée par Dominique»; E : «la souris est entraînée par Éric»; : «la souris est performante». 1. a. Déterminer pc, pe, p D et pe. On a pc = 0,48, pe = 1 0,48 0,16 = 0,6. p D = 0,2 et pe = 2. b. Traduire l énoncé à l aide d un arbre pondéré. 0,48 C 0,6 0,4 0,16 D 0,8 0,2 0,6 E 2 1 TS - Bac Blanc Spé SVT-hy Correction - age 1/8

2. Déterminer la probabilité de l évènement «la souris est entraînée par Claude et est performante». La probabilité cherchée est : pc = 0,48 0,6 = 0,288.. Démontrer que la probabilité pour une souris d être performante est de 0, 656. C, D et E forment une partition de l univers, d après la loi des probabilités totales : p = pc +pd +pe = 0,288+0,16 0,8+0,6 2 = 0,656. our les questions suivantes, on arrondira les résultats au millième. 4. On choisit au hasard une souris parmi celles qui sont performantes. Quelle est la probabilité que cette souris soit entraînée par Dominique? p D On cherche p D = = 0,128 pd 0,656 0,195. 5. our cette question, toute trace de recherche même incomplète sera prise en compte. On choisit maintenant au hasard quatre souris de cette «école». On assimile ce choix à un tirage avec remise. Quelle est la probabilité d obtenir au moins une souris performante? On considère l évènement on tire une souris. On a deux issues : Le succès S, la souris est performante avec ps = 0,656 L echec S, la souris n est pas performante avec ps = 1 0,656 On répète quatre fois ce tirage de façon identique, les expériences étant indépendantes entre elles tirage avec remise Soit X la variable aléatoire qui compte le nombre de succès. X suit la loi binomiale de paramètres n = 4 et p = 0.656 px 1 = 1 px = 0. Avec la calculatrice on trouve : px 1 0,986. La probabilité d obtenir au moins une souris performante est d environ 0, 986. TS - Bac Blanc Spé SVT-hy Correction - age 2/8

Exercice 2 5 points Des complexes our les candidats n ayant pas choisi la spécialité maths On désigne par E l équation d inconnue complexe z. z 4 +4z 2 +16 = 0 1. Résolution dans C de l équation Z 2 +4Z +16 = 0 : On a une équation du second degré à coefficients réels. = 4 2 4 16 = 16 = 4i 2 ; < 0 donc cette équation a deux solutions complexes conjuguées. Z 1 = 4+4i 2 = 2+2i et Z 2 = 2 2i 2. On désigne par a le nombre complexe égal à 2 +2i i. Calculer a 2 sous forme algébrique. On a a = 2 +2i = 2 +2i +i i i +i = 6+2 i+2 i 2 4 On a alors a 2 = 1+ i 2 = 1+2 i = 2+2i = 4+4 i 4 = 1+ i En déduire les solutions dans C de l équation z 2 = 2+2i. On écrira les solutions sous forme algébrique. On remarque que z 2 = 2+2i z 2 = a 2 z = a ou z = a Les solutions de cette équation sont donc : - 2 + 2i et 2 2i.. Restitution organisée de connaissances On suppose connu le fait que pour tout nombre complexe z = x + iy où x R et y R, le conjugué de z est le nombre complexe z défini par z = x iy. Démontrer que : our tous nombres complexes z 1 et z 2, z 1 z 2 = z 1 z 2. z 1 z 2 = x 1 +iy 1 x 2 +iy 2 = x 1 iy 1 x 2 iy 2 = x 1 x 2 y 1 y 2 ix 1 y 2 +x 2 y 1 z 1 z 2 = x 1 +iy 1 x 2 +iy 2 = x 1 x 2 y 1 y 2 +ix 1 y 2 +x 2 y 1 = x 1 x 2 y 1 y 2 ix 1 y 2 +x 2 y 1 Ainsi : z 1 z 2 = z 1 z 2 1. Démontrer que : our tout nombre complexe z et tout entier naturel non nul n, z n = z n. Soit n la propriété : z n = z n Initialisation On a z 1 = z = z 1, donc 1 est vraie. TS - Bac Blanc Spé SVT-hy Correction - age /8

Hérédité On suppose qu à un rang k fixé, k est vraie c est à dire que z k = z k, montrons alors que k+1 est vraie c est à dire que z k+1 = z k+1 On a z k+1 = z k z d après la propriété précédente. z k+1 = z k z d après l hypothèse de récurrence. D où z k+1 = z k z = z k+1 Donc k+1 est vraie Conclusion D après le principe de récurrence, pour tout nombre complexe z et tout entier naturel non nul n : z n = z n. 4. Démontrer que si z est une solution de l équation E alors son conjugué z est également une solution de E. si z est une solution de l équation E alors z 4 +4z 2 +16 = 0 donc z 4 +4z 2 +16 = 0 donc z 4 +4z 2 +16 = 0 car le conjugué d une somme est la somme des conjugués. On a alors z 4 +4z 2 +16 = 0 donc z 4 +4z 2 +16 = 0 d après la propriété précédente. D où z 4 +4z 2 +16 = 0 d après la propriété 1 donc z est solution de E. Donc si z est une solution de l équation E alors son conjugué z est également une solution de E. En déduire les solutions dans C de l équation E. On admettra que E admet au plus quatre solutions. On a établi à la question 2. que les nombres a et a sont tels que a 2 = Z 1 et a 2 = Z 1. Comme par ailleurs on a dit que Z 1 est solution de l équation Z 2 +4Z +16 = 0, cela signifie que a 2 2 +4a 2 +16 = 0, donc que a 4 +4a 2 +16 = 0, donc a est solution de E et de la même façon, a est aussi une solution de cette équation. En appliquant la propriété démontrée au début de cette question, on en déduit que les nombres a et a sont également des solutions à cette équation. Nous avons donc 4 solutions à l équation, qui sont distinctes : a = 1+i ; a = 1 i ; a = 1 i et a = 1+i, donc puisqu il y a au maximum 4 solutions à l équation, celle-ci ne peut avoir d autre solution que celles trouvées, et donc l équation E a été résolue. TS - Bac Blanc Spé SVT-hy Correction - age 4/8

Exercice 5 points Des suites Commun à tous les candidats Soit v n la suite définie par v 1 = ln2 et, pour tout entier naturel nnon nul, v n+1 = ln 2 e vn. On admet que cette suite est définie pour tout entier naturel n non nul. On définit ensuite la suite S n pour tout entier naturel n non nul par : S n = n v k = v 1 +v 2 + +v n. k=1 Le but de cet exercice est de déterminer la limite de S n. artie A Conjectures à l aide d un algorithme 1. Recopier et compléter l algorithme suivant qui calcule et affiche la valeur de S n pour une valeur de n choisie par l utilisateur : Variables : n, k entiers S, v réels Initialisation : Saisir la valeur de n v prend la valeur ln2 S prend la valeur v Traitement : our k variant de 2 à n faire v prend la valeur ln2 e vn S prend la valeur S +v Fin our Sortie : Afficher S 2. A l aide de cet algorithme, on obtient quelques valeurs de S n. Les valeurs arrondies au dixième sont données dans le tableau ci-dessous : n 10 100 1000 10000 100000 1000000 S n 2,4 4,6 6,9 9,2 11,5 1,8 En expliquant votre démarche, émettre une conjecture quant au comportement de la suite S n. D après les valeurs affichées il semble que la suite S n soit croissante. artie B Etude d une suite auxiliaire our tout entier naturel n non nul, on définit la suite u n par u n = e vn. 1. Vérifier que u 1 = 2 et que, pour tout entier naturel n non nul, u n+1 = 2 1 u n. On a u 1 = e v 1 = e ln2 = 2. our tout entier naturel n, u n+1 = e v n+1 = e ln2 e vn = 2 e v n donc u n+1 = 2 1 e vn = 2 1 u n. TS - Bac Blanc Spé SVT-hy Correction - age 5/8

2. Calculer u 2, u et u 4. Les résultats seront donnés sous forme fractionnaire. D après le résultat précédent : u 2 = 2 1 2 = 2 ; u = 2 2 = 4 ; u 4 = 2 4 = 5 4.. Démontrer que, pour tout entier naturel n non nul, u n = n+1 n. Soit n la propriété : u n = n+1 n Initialisation : la relation est vraie pour n = 1 car u 1 = 1+1 1 Hérédité : Supposons qu à un rang k fixék non nul, k est vraie c est à dire que u k = k +1 k montrons alors que k+1 est vraie c est à dire que u k+1 = k +2 k +1. On a u k+1 = 2 1 u k = 2 k k +1 = 2k +2 k k +1 = k +2 k +1 donc k+1 est vraie. Conclusion : On a donc démontré par récurrence que pour tout entier naturel n non nul, u n = n+1 n. artie C Etude de S n 1. our tout entier naturel n non nul, exprimer v n en fonction de u n, puis v n en fonction de n. our tout entier naturel n non nul, u n = e vn v n = lnu n. De la question précédente on peut écrire : v n = ln n+1 = lnn+1 lnn. n 2. Vérifier que S = ln4. S = v 1 +v 2 +v = ln2 ln1+ln ln2+ln4 ln = ln4 ln1 = ln4.. our tout entier naturel n non nul, exprimer S n en fonction de n. En déduire la limite de la suite S n. ; S n = v 1 +v 2 + +v n S n = ln2 ln1+ln ln2+ln4 ln+ +lnn lnn 1+lnn+1 lnn = lnn+1. On a lim n + 1 = + et lim lnn = + donc par composition lim S n = + La suite n + N + n + S n est divergente. TS - Bac Blanc Spé SVT-hy Correction - age 6/8

Exercice 4 5 points Q.C.M. Commun à tous les candidats Cet exercice est un QCM. Il n y a qu une réponse exacte. Aucune justification n est demandée. Sur votre copie, vous indiquerez le numéro de la question et la réponse choisie. 1 point sera attribué pour une bonne réponse, 0 point sera attribué pour une réponse fausse ou une absence de réponse. Les questions 1., 2. et sont indépendantes. 1. our tout réel x l expression e 5x e x est égale à : e 4x e x e 4x 1 e5x e x reuve : e 5x e x = e x+4x e x = e x e 4x e x = e x e 4x 1. 2. Dans le tétraèdre régulier ABCD on place I milieu de [AB], J sur [AC] tel que AJ = 2 AC et K milieu de [BD]. La section de ABCD par IJK forme un : Triangle Quadrilatère entagone reuve :. On considère la fonction f définie sur R par fx = x cos a. f est périodique de période : 2π 2π f n est pas périodique reuve : x+2π i. fx+2π = x+2πcos fx. Donc f n est pas 2π-périodique. ii. fx+ 2π = x+ 2πcos + 2π 9 fx. Donc f n est pas 2π -périodique. b. La dérivée de la fonction f sur R, notée f x est égale à : x sin cos x sin cos x sin reuve : f est dérivable sur R comme composée et produit de fonctions dérivables sur R. x On a f x = 1 cos +x 1 sin = cos x sin c. Soit F la primitive de la fonction f sur R qui vérifie F0 = 0. Son expression pour tout réel x est : Fx =... x2 x 2 sin 9cos +x sin autre proposition reuve : TS - Bac Blanc Spé SVT-hy Correction - age 7/8

i. gx = x2 x 2 sin est dérivable sur R comme composée et produit de fonctions dérivables sur R. On a g x = x sin + x2 2 1 cos fx. x ii. hx = 9cos +x sin est dérivable sur R comme composée, produit et somme de fonctions dérivables sur R. On a h x = 9 1 sin + sin +x 1 cos = x cos = fx. De plus h0 = 9 cos0+0 = 9 0. TS - Bac Blanc Spé SVT-hy Correction - age 8/8