SUITES ET RÉCURRENCE En première : une suite ( ) est une fonction particulière : son ensemble de définition est constitué d'entiers, on peut donc parler (contrairement aux fonctions en général) de l'image suivante ou de l'image précédente. Elle se représente graphiquement comme une fonction, ou simplement sur la droite des réels. Une suite peut être définie comme une fonction, de façon explicite: n N = 2 n2 3 n 1 mais aussi, du fait de sa particularité, de façon récurrente : n N 1 7 Une définition par récurrence étant peu pratique (calcul du 15 e terme, calcul de limite..) on essaie (lorsque c'est possible) de se ramener à la forme explicite. Les suites particulières en première : Suites arithmétiques: on ajoute un même nombre (raison) Définition explicite n N =3n 7 Limites en + : Si la raison est positive, lim n = Si la raison est négative, lim n = Définition par récurrence n N =7 1 = 3 Somme des premiers termes : u 1... u p = p 1 u p 2 Suites géométriques: on multiplie par un même nombre (raison) Définition explicite Définition par récurrence n N =7 3 n n N u =7 0 1 =3 Limites en + : Si la raison q est telle que q ] 1 ;1 [ alors lim n =0 1 qet 0 alors lim n = 1 q et 0 alors lim n = q 1 alors la suite n'a pas de limite, les termes oscillent du positif aégatif. Somme des premiers termes : u 1... u p = 1 q p 1 1 q avec q 1
Table des matières I.Raisonnement par récurrence...2 II.Comportement globale d'une suite...3 II.1.Sens de variation d'une suite...3 II.2.Suite majorée, minorée, bornée...3 III.Limite d'une suite (comportement asymptotique)...3 III.1.Suites définies par récurrence...4 IV.Suites adjacentes...6 V.Rapidité de convergence...6 I. Raisonnement par récurrence On considère que le principe de récurrence est un axiome (vérité première postulat en physique) Il s agit de démontrer qu une propriété qui dépend d'un entier naturel n est vraie pour tout entier n, jusqu à l infini. On souhaite par exemple que la propriété P : «4 n 1 est un multiplie de 3» est vraie pour tout n de N. On pourrait chercher à écrire 4 n 1 = 3k, avec k un entier (je vous laisse chercher) On va utiliser un type de raisonnement très souvent utilisé appelé raisonnement par récurrence Raisonnement par récurrence: On montre que la propriété est vraie pour un cas particulier (par exemple n=0, 1,2, ce qui est facile) (initialisation) On montre le théorème suivant: (hérédité) «Si la propriété est vraie pour un certain n quelconque alors la propriété est vraie pour n+1.» On peut schématiser le raisonnement ainsi (métaphore de l escalier) : Initialisation : je réussis à atteindre la marche initiale (n=1) Hérédité : je montre que je peux monter une marche (ou que je me trouve) (pour montrer que je peux monter une marche, je suppose que je suis sur une marche quelconque!) Conclusion : je peux atteindre toutes les marches! Remarque : Pour l'hérédité, on démontre un théorème en «Si alors» pour ce faire on suppose la condition vraie, ce qui peut ne pas être le cas. On peut par exemple démontrer que le théorème suivant est correct «Si 3=8 alors 4=9» Axiome : (vérité première à la base d une théorie, les théorèmes s en déduisent) Soit P une propriété définie sur N. Si : la propriété est initialisée à un certain rang n 0 (on montre que P(n 0 ) est vraie) la propriété est héréditaire à partir du rang n 0 (on suppose que la propriété est vraie à un rang n et on montre alors que la propriété est vraie au rang n+1, id n n 0, P(n) P(n + 1)) Alors : La propriété est vraie à tout rang n plus grand que n 0 Remarque: l hypothèse «P est vraie au rang n» est appelée hypothèse de récurrence («hypothèse» est bien
mal choisie!) Exemple : Démontrons que 4 n 1 est un multiplie de 3 pour tout n de N Soit P la propriété : P : «4 n 1 est un multiplie de 3» Initialisation : pour n=0, on a 4 0 1 = 0 et 0 = 3 0 donc 4 0 1 est un multiple de 3. donc P est vraie au rang 0. Hérédité : (on veut montrer le théorème n 0, P est vraie au rang n P est vraie au rang n+1)) On suppose que P est vraie au rang n, c'est à dire 4 n 1 est un multiplie de 3. Il existe donc un entier k tel que 4 n 1= 3k et donc on a 4 n = 3k + 1. Montrons que P est vraie au rang n+1, c'est à dire 4 n+1 1 est un multiplie de 3. On a 4 n+1 1 = 4 4 n 1 = 4 (3k+1) 1 = 12k + 3 = 3(4k + 1) donc 4 n+1 1 est un multiple de 3 et P est vraie au rang n+1. Conclusion : la propriété est initialisée et héréditaire, donc par récurrence, la propriété est vraie pour tout entier n. Remarque : dans ce type de raisonnement, on ne démontre jamais la propriété directement. l hypothèse «P(n) est vraie» est appelée hypothèse de récurrence («hypothèse» est bien mal choisi!) récurrence forte : lorsque l on suppose, dans l hypothèse de récurrence, que P(n 0 ), P(n 0 +1),, P(n) sont vrais, on parle de récurrence forte. II. Comportement globale d'une suite II.1. Sens de variation d'une suite Définition : Soit ( ) une suite de nombres réels. On dit que ( ) est croissante lorsque, pour tout entier n, +1 ( ) est décroissante lorsque, pour tout entier n, +1 ( ) est monotone lorsque ( ) est croissante ou décroissante. Remarque : une suite étant une fonction particulière on peut montrer que la définition ci-dessus est équivalente à celle donnée pour les fonctions : x, y I² x y f x f y (fonction croissante sur I) On ne précise pas (en général) ici l'intervalle. Certaines suites ne sont ni croissantes ni décroissantes. Techniques de démonstration : Technique algébrique : signe de 1 ; comparer 1 avec 1 (avec 0) Technique fonctionnelle : si ( ) est définie de façon explicite, = f n, on étudie les variations de f sur [0 ;+ [. Raisonnement par récurrence. II.2. Suite majorée, minorée, bornée Définition : Soit ( ) une suite de nombres réels. On dit que : ( ) est majorée s il existe un réel M tel que, pour tout entier n, M ( ) est minorée s il existe un réel m tel que, pour tout entier n, m ( ) est bornée si elle est majorée et minorée.
III. Limite d'une suite (comportement asymptotique) Rappels oraux : définition de la limite finie (tout intervalle ouvert...), limite infinie, unicité de la limite. Dans la pratique, on utilise les règles opératoires (somme, produit,...) et les théorèmes de comparaison (gendarmes, majoration, minoration). Théorème (suite monotone non bornée) Si une suite est croissante et non majorée alors elle tend vers +. Démonstration ROC : Montrons que pour tout réel M, l intervalle ]M ;+ [ contient tous les termes de la suite à partir d un certain rang. Soit M un réel quelconque, comme la suite n est pas majorée, il existe un rang n 0 tel que M 0 Comme ( ) est croissante, lorsque n 0 n on a 0 et donc M Donc à partir de n 0, tous les termes de la suite appartiennent à ]M ;+ [. Théorème de la convergence monotone (suite monotone bornée) admis (la démonstration (difficile) utilise la borne supérieure) Si une suite est croissante et majorée alors elle converge. LE THÉORÈME IMPORTANT Remarque: ce théorème permet de prouver la convergence, c'est à dire l'existence de la limite, mais ne donne pas sa valeur. Corollaire : Si une suite est décroissante et minorée alors elle converge. Théorème : (facultatif) Si une suite converge alors elle est bornée. Démonstration : triviale! III.1.Suites définies par récurrence 1 = f Exemple : le cas particulier des suites arithmético-géométriques. ( f est une fonction affine) u On désire représenter la suite (u ) définie sur N par n N 0 =1 n 1 = 1 2 3 (situation : Antonin a dans sa tirelire 1. Chaque jour, il dépense la moitié de ce qu'il a et chaque soir ses parents lui donne 3.) Principe de construction : On trace la fonction f. On place sur l'axe des abscisses. On détermine u 1, image de par f. Par construction u 1 se trouve sur l'axe des ordonnées. On utilise alors la droite d 'équation y=x pour «ramener» u 1 sur l'axe des abscisses. On détermine u 2, image de u 1 par f. Par construction Remarque : pour déterminer la formule explicite d'une suite arithmético-géométrique, on s'appuie généralement sur une suite géométrique. Soit ( ) la suite arithmético-géométrique telle que 1 =a b On considère alors une suite (w n ) définie par w n = avec et qui vérifie b= a 1 Cette suite est géométrique de raison a
y 7 6 u 4 u 3 5 u 2 4 u 1 3 2 u1 0-1 0 1 2 3 4 5 6 7 8 9 10 x u 1 u 2 u 3 u 4 Autre exemple : la suite ( ) définie sur N par n N = 1 8 1 = 2 y 1 u 4 u 3 u 2 u 1 0 1 u 1 u 2 u 3 u 4 x Théorème (admis) Soit une suite définie par récurrence par 1 = f, avec f une fonction définie sur I et I Si converge vers un réel l et f est continue sur I alors l vérifie l = f(l) Remarque : ce théorème s'utilise fréquemment avec le théorème de la convergence monotone, qui établi la convergence de la suite sans en donner la limite. (il ne reste qu'à vérifier la la continuité de f )
IV. Suites adjacentes Introduction : (mesurer l'aire sous une courbe) On désire mesurer l'aire sous une courbe, par exemple l'aire sous la courbe de la fonction carré entre 0 et 3. On peut utiliser les suites. On découpe l'intervalle [0;3] en n intervalles (chaque intervalle a pour longueur rectangles sous la courbe. Soit ( ) la suite qui mesure l'aire des rectangles sous la courbe : = 3 n f 0 3 n 3 n f 1 3 n... 3 n f n 1 3 n 3 n ) et on insère des Plus n est grand, plus l'approximation est bonne, mais par défaut. (inférieure à la valeur réelle de l'aire) De même on peut insérer des rectangles pour obtenir une approximation par excès (supérieure) Soit (v n ) la suite qui mesure l'aire des rectangles qui passent au dessus de la courbe : v n = 3 n f 1 3 n 3 n f 1 3 n... 3 n f n 3 n Ces 2 suites sont dites adjacentes, elles convergent vers la même limite, l'aire de la sous la courbe. fichier geogebra aire sous la courbe Représentation des suites adjacentes : Représentation suites adjacentes Définition On dit que 2 suites ( ) et (v n ) sont adjacentes lorsque : est décroissante. v n est croissante. lim n v n =0 Exercice : démontrons que n N v n Par l absurde, s il existait k tel que u k < v k alors. Théorème suites adjacentes (admis : équivalent aux théorèmes de la convergence des suites croissantes et majorées) Si ( ) et (v n ) sont 2 suites adjacentes alors elles convergent vers une même limite l. Remarque : n N v n l V. Rapidité de convergence Introduction:certains résultats, notamment en informatique, sont obtenus comme limite de suite. Il est donc souhaitable que les suites considérées converge rapidement vers le résultat. Lorsqu'une suite ( ) converge vers l, on étudie la vitesse à laquelle les termes l tendent vers 0. Exemple : On considère les 3 suites définie sur N: 1 =1 1 v, 0 w 0 v n 1 = v n 1 et w n 1 = w 2 n 1 2 w n 1 Ces 3 suites convergent vers le nombre d'or qui vaut 1,618 033 988 749 894 8. 1 5 2 dont une approximation décimale est
L'idée est de calculer à l'aide d'un tableur les valeurs approchées à quinze décimales de, v n et w n et de s'arrêter dès qu'on obtient 0. fichier pdf tableur Conclusion : le premier terme cherché est u 35 pour, v 29 pour v n et w 5 pour c n. (c n ) converge beaucoup plus rapidement.