Module G2 Cours 2 Cisaillement, poussée - butée

Documents pareils
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

Mécanique des sols I. Chapitre I Propriétés physiques des sols. Chapitre II Hydraulique des sols. Chapitre III Déformations des sols

Oscillations libres des systèmes à deux degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

Limites finies en un point

Angles orientés et fonctions circulaires ( En première S )

F411 - Courbes Paramétrées, Polaires

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Voyez la réponse à cette question dans ce chapitre.

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Cours de tracés de Charpente, Le TRAIT

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

THÈSE DOCTEUR DE L ÉCOLE CENTRALE DE LYON. Anne-Sophie COLAS

Chapitre 2 Le problème de l unicité des solutions

Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers

Fonctions de plusieurs variables

Chapitre 2 : Caractéristiques du mouvement d un solide

Problèmes sur le chapitre 5

Déformabilité des sols. Tassements. Consolidation

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Cours IV Mise en orbite

Chapitre 6. Fonction réelle d une variable réelle

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

Les mesures à l'inclinomètre

Continuité et dérivabilité d une fonction

Mesurer les altitudes avec une carte

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

2.4 Représentation graphique, tableau de Karnaugh

Développements limités, équivalents et calculs de limites

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

1S Modèles de rédaction Enoncés

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

LES VASES DE LA LOIRE : MODELISATION DE L EFFET DE LA CONSOLIDATION SUR DES INFRASTRUCTURES EXISTANTES

Chapitre 2. Matrices

Mesure d angles et trigonométrie

Fonctions homographiques

LE PRODUIT SCALAIRE ( En première S )

I. Ensemble de définition d'une fonction

Rupture et plasticité

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Guilhem MOLLON. Polytech Grenoble Département Géotechnique, Troisième année Edition 1, V1.10

Repérage d un point - Vitesse et

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

Essais de charge sur plaque

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Michel Henry Nicolas Delorme

Angles orientés et trigonométrie

TD: Cadran solaire. 1 Position du problème

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

aux différences est appelé équation aux différences d ordre n en forme normale.

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Principes généraux de la modélisation de la dispersion atmosphérique

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Cours Fonctions de deux variables

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

FONTANOT CREE UNE LIGNE D ESCALIERS IMAGINÉE POUR CEUX QUI AIMENT LE BRICOLAGE.

INBTP-TECHNOBAT-LECON_011

DISQUE DUR. Figure 1 Disque dur ouvert

Représentation géométrique d un nombre complexe

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Raisonnement par récurrence Suites numériques

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Les indices à surplus constant

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

Une approche statique quasi-périodique de la capacité portante des groupes de micropieux

Probabilités sur un univers fini

SECTION GÉOTECHNIQUE DÉPARTEMENT DE GÉNIE CIVIL UNIVERSITÉ DE SHERBROOKE

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

UTILISATION DE LA BORNE PAR LE CLIENT

Développements limités. Notion de développement limité

1 Mise en application

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Consolidation des argiles. CUI Yu-Jun ENPC-CERMES, INSTITUT NAVIER

Premier principe : bilans d énergie

Construction d un cercle tangent à deux cercles donnés.

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Comparaison de fonctions Développements limités. Chapitre 10

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Résolution d équations non linéaires

CHAPITRE 10. Jacobien, changement de coordonnées.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Département de Génie Civil

Athénée Royal d Evere

UTILISATION D'UN RADIOCHRONOMETRE POUR DATER DES GRANITES

Exercices de géométrie

Compter à Babylone. L écriture des nombres

Dérivation : cours. Dérivation dans R

Dérivation : Résumé de cours et méthodes

Transcription:

Les ouvrages partiellement enterrés subissent la poussée des terres. Ce cours présente les différentes façon d évaluer cette poussée. Voici des exemples d ouvrages soumis à la poussée des terres MUR DE SOUTENEMENT RIDEAU DE PALPLANCHES Diapo n 1 Eric Gervreau 005

BATIMENT ENTERRE EXCAVATION AVEC BLINDAGE Diapo n Eric Gervreau 005

LES CALCULS DE POUSSÉE DES TERRES HYPOTHÈSES : -Un écran rigide -Un milieu homogène isotrope -Un massif entièrement en rupture (les lignes de rupture sont entièrement développées) ce qui signifie que le critère de coulomb est vérifié : τ = σ tg ϕ + C Diapo n 3 Eric Gervreau 005

Effort Q expansion compression Qplimite Qalimite Qo 0,1% 3% déformation plastique déformation élastique déformation plastique Qo : Effort exercé par les terres sur un écran à l'état de repos, (calculé avec Ko et σ' v ) Qa : Effort exercé par les terres sur un écran à l'équilibre actif, de poussée ( avec Ka et σ' v ) Qp : Effort exercé par les terres sur un écran à l'équilibre passif, de butée (avec Kp et σ' v ) Diapo n 4 Eric Gervreau 005

τ butée passive repos σ' poussée active Kp Ka Coefficient de butée des terres, état passif Coefficient de poussée des terres, état actif Diapo n 5 Eric Gervreau 005

poussée butée Diapo n 6 Eric Gervreau 005

poussée butée poussée Diapo n 7 Eric Gervreau 005

SELON LE MODE DE CONSTRUCTION ADOPTE REPOS OU POUSSEE Diapo n 8 Eric Gervreau 005

La théorie de Charles Augustin COULOMB (1773) Soit un écran rigide qui soutient une hauteur de terre. Considérons le bloc ABC de poids P qui glisse sur la surface AC La résistance au B frottement de ce i>0 C bloc de terre est P calculée par la H relation τ = σ tg ϕ + C Pour que ce bloc soit en équilibre l écran oppose une force Q δ Q β>0 Diapo n 9 Eric Gervreau 005 A R θ ϕ

Cette force Q nécessaire à retenir les terres servira de base au dimensionnement du mur. L angle θ de la surface de glissement AC par rapport à l horizontale est inconnu à priori. H δ Q β>0 B A P i>0 R θ ϕ C C.A. COULOMB propose de retenir l angle θ qui correspond à la force Q la plus importante, c est l angle critique de glissement Diapo n 10 Eric Gervreau 005

DIAGRAMME TRIANGULAIRE ÉCRAN VERTICAL Coefficient K a La répartition des contraintes de contact le long de l écran est triangulaire : K a = σv = γ z σ σ σ h v ( z) = γ z h K a z H Q a σ ( H) = γ H h K a γ H Q a = K a Diapo n 11 Eric Gervreau 005

COEFFICIENT DE POUSSÉE DE COULOMB K a Dans le cas général on calcule Q a avec la relation suivante : Q? a? = = γ H sin sin ( ϕ + β) sin( ) sin( i) sin( ) ϕ + δ ϕ β β δ 1 + sin( β δ) sin(i + β) B i>0 C avec δ compris entre 0 et ϕ H δ Q β>0 P R θ ϕ Diapo n 1 Eric Gervreau 005 A

CAS PARTICULIER D UN ÉCRAN VERTICAL NON FROTTANT δ = 0, β = π/ et i = 0 Q a = γ H sin ( ϕ + π ( 1 + sin ϕ) ) Q a = γ H cos ϕ ( 1 + sinϕ) H Q a Q a = γ H tg π 4 ϕ γ H Q a = K a Diapo n 13 Eric Gervreau 005

DÉMONSTRATION POUR LE CAS PARTICULIER ÉCRAN VERTICAL FROTTANT β = π/ et i = 0 P R L = H/tgθ Q P H δ Q θ R ϕ Diapo n 14 Eric Gervreau 005

P = γ H tgθ θ - ϕ P R P ϕ R π/ - δ θ θ Q δ Q projection horizontale des forces = 0 projection verticale des forces = 0 Diapo n 15 Eric Gervreau 005

(1) P Qsin δ R cos( θ ϕ) = 0 () Q cosδ R sin( θ ϕ) = 0 D où : R = Qcosδ sin( θ ϕ) En réinjectant dans (1) avec γ H P = on a : tgθ γ H cosδ Q sin δ + tgθ tg( θ ϕ) = 0 Diapo n 16 Eric Gervreau 005

On retient l angle θ qui donne la valeur la plus grande pour Q cosδ Q cosδ = γ H cosδ tgθ cosδ sin δ + tg( θ ϕ) H et γ étant des constantes, On pose : A = cosδ tgθ cosδ sin δ + tg( θ ϕ) Diapo n 17 Eric Gervreau 005

Valeurs de A en fonction de θ pour ϕ égal à 10, 0, 30, 40 et 50 Avec δ=ϕ 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,5 0,0 0,15 0,10 0,05 0,00 5 30 35 40 45 50 55 60 65 70 75 ϕ = 10 ϕ = 0 ϕ = 30 ϕ = 40 ϕ = 50 Diapo n 18 Eric Gervreau 005

On constate que si ϕ augmente, l angle critique de glissement θ augmente aussi : ϕ = 0 ϕ = 40 θ = 48 θ = 60 Diapo n 19 Eric Gervreau 005

On constate que si ϕ augmente, le coefficient A maximum, directement proportionnel à la poussée des terres, diminue : ϕ = 0 ϕ = 40 Diapo n 0 Eric Gervreau 005

Valeurs de A en fonction de θ pour ϕ égal à 10, 0, 30, 40 et 50 Avec δ=0 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,5 0,0 0,15 0,10 0,05 0,00 30 35 40 45 50 55 60 65 70 75 ϕ = 10 ϕ = 0 ϕ = 30 ϕ = 40 ϕ = 50 Diapo n 1 Eric Gervreau 005

On constate également que si ϕ augmente, l angle critique de glissement θ augmente : ϕ = 0 ϕ = 40 θ = 55 θ = 65 θ critique = π 4 + ϕ/ Diapo n Eric Gervreau 005

θ critique = π 4 + ϕ/ τ ϕ σ 3 θ σ 1 σ θ σ 3 Plan de glissement σ 1 Diapo n 3 Eric Gervreau 005

COEFFICIENT DE BUTÉE DE COULOMB K p Lorsque les terres retiennent le mouvement du mur on dit que l on est à l état d équilibre limite passif de butée. Cette situation est rencontrée dans les parties avals des murs enterrés : le diagramme de butée des terres n est pas uniforme, Qp il est triangulaire tel que sa résultante soit égale à Q p Cette résultant s applique au tiers inférieur. avec δ compris entre -ϕ et 0 Qp? =? = γ H sin sin ( β ϕ) sin( ) sin( i) sin( ) ϕ δ ϕ + β β δ 1 sin( β δ) sin( i + β) Diapo n 4 Eric Gervreau 005

FAIBLESSE DE LA THÉORIE DE COULOMB La théorie de COULOMB sur la poussée des terres ne tient pas compte de la courbure de la surface de glissement. Les résultats expérimentaux de poussée concordent toutefois approximativement avec les formules de COULOMB pour les cas de mur poids dans le sable (C=0). L'utilisation de la théorie de COULOMB est donc tout à fait valable pour calculer la poussée des terres dans ces cas. Diapo n 5 Eric Gervreau 005

THÉORIE DE RANKINE (1856) L'hypothèse de COULOMB (surface de rupture plane) est un moyen de simplifier les problèmes, mais elle est inexacte dans un grand nombre de cas. Dès le milieu du XIX ème Siècle plusieurs auteurs se sont efforcé d'établir une théorie plus rigoureuse, qui corresponde mieux au comportement réel d'un massif de sol derrière un mur de soutènement. La théorie de RANKINE s'appuie sur une analyse du champs de contrainte pour définir les lignes de glissement (plans de rupture), il s'agit de la théorie des états limites (ou équilibres limites). Diapo n 6 Eric Gervreau 005

EQUILIBRES LIMITES DE RANKINE (1856) RANKINE cherche à représenter les contraintes qui règnent dans le massif pulvérulent au moment de l équilibre limite : ds β z β σ v A B σ V = γ z ds ds cosβ = γ z cosβ Diapo n 7 Eric Gervreau 005

Il existe deux états d équilibre limite possibles sur la facette AB : L équilibre limite de poussée active L équilibre limite de butée passive τ B A β σ E A partir de cette contrainte σ v représentée par le point E, il ne passe que deux cercles tangents aux droites de COULOMB. Ce sont les cercles C1 et C Diapo n 8 Eric Gervreau 005

Le plus petit cercle correspond à l équilibre limite de poussée Le plus grand correspond à l équilibre limite de butée. τ B ϕ A β σ E Diapo n 9 Eric Gervreau 005

On va déterminer la contrainte σ qui agit sur les facettes verticales. z σ v Dans le plan physique, pour passer de l orientation de la facette AB à une facette verticale CD on doit tourner d un angle égal à 70 + β (pour la poussée) ou 70 - β (pour la butée) Diapo n 30 Eric Gervreau 005

Poussée : rotation de ¾ π + β Butée : rotation de ¾ π - β Dans le plan de Mohr on devra donc tourner le long des cercles d un angle égal au double et dans le sens inverse (avec la convention de signe du poly): Diapo n 31 Eric Gervreau 005

τ Module G Cours Cisaillement, poussée - butée F O F 3π + β 3π -β β σ E Les contraintes qui s appliquent sur une facette verticale ont pour intensité OF (pour la poussée) et OF (pour la butée) OF = Ka OE Autrement dit : OF = K p OE Diapo n 3 Eric Gervreau 005

Remarque : Ces contraintes OF et OF ne sont pas normales aux écrans verticaux. Il y a donc une composante de cisaillement et l inclinaison de la résultante est égale à la pente du terrain. Sur l écran vertical en poussée : σ n = σ v Ka cos β τ = σ v Ka sin β Diapo n 33 Eric Gervreau 005

Nous pouvons déterminer l expression des coefficients K a et K p par des calculs trigonométriques assez simples mais fastidieux. Je vous laisse le soin de la trouver. L expression qui en résulte est assez longue, elle est peu utilisée. On lui préfère des tableaux de valeurs numériques de ces coefficients (qui dépendent de ϕ). N.B. On peut compléter le sujet en envisageant une facette non verticale inclinée d un angle λ. Diapo n 34 Eric Gervreau 005

CAS SIMPLE D ÉCRAN VERTICAL AVEC SURFACE LIBRE HORIZONTALE (β=0) τ K a = tg (π/4 - ϕ/) K p = tg (π/4 + ϕ/) O F E F σ Diapo n 35 Eric Gervreau 005

Dans le cas général d une surface libre inclinée et d un écran non vertical avec un frottement du sol sur l écran de δ on a pour expression + de la poussée σ élémentaire : p a = h γ Ka h + δ θ ω = sin θ Arc sin sin ϕ + λ Ka = cosθ sin ω cosδ sin( ω + θ) [ 1 (sin ϕ cos( ω θ + λ)) ] Diapo n 36 Eric Gervreau 005

FAIBLESSES DE LA THÉORIE DE RANKINE La théorie de RANKINE sur la poussée des terres ne tient pas compte de la cohésion du sol (C = 0). De plus la théorie de RANKINE impose, à priori l orientation de la contrainte qui s applique sur les écrans : parallèle à la pente. Or il est bien connu que c est le déplacement relatif du mur avec le sol qui impose l obliquité δ de cette contrainte. Enfin la théorie de RANKINE, comme celle de COULOMB du reste, présuppose des glissements rectilignes. Diapo n 37 Eric Gervreau 005

TRAVAUX DE RESAL En 1910, Jean RESAL admet comme RANKINE que les argiles peuvent perdre leur cohésion, mais il doit y avoir beaucoup de cas où la cohésion peut être considérée comme un élément permanent de la résistance. Il est donc revenu au critère de rupture énoncé par COULOMB et a repris les calculs de RANKINE en considérant que la résistance de rupture par glissement est exprimée par la somme de deux termes. L'un est proportionnel à l'étendue de la surface de rupture qui représente la force de cohésion, et l'autre, proportionnel à la pression normale mutuelle des deux parties disjointes, qui représente la force de frottement. Diapo n 38 Eric Gervreau 005

THÉORIE DE BOUSSINESQ (188) MÉTHODE DES ÉQUILIBRES LIMITES FORMULES DE CAQUOT (1934) Des expériences ont été faites vers 1870 en Angleterre par M. DARWIN et en France par M. GOBIN, elles ont montré que les valeurs expérimentales trouvées étaient notablement inférieures à celles que donnaient la théorie de RANKINE, avec des écarts allant jusqu'à 50%, en particulier pour les sols cohérents. Plusieurs auteurs se sont attachés à lever cette approximation, comme Résal en France. C'est en fait BOUSSINESQ, en 188, qui propose une théorie de poussée des terres plus juste. Il pose les équations différentielles de tous les équilibres de poussée sur un parement quelconque avec une obliquité quelconque entre +ϕ et -ϕ donnant ainsi la solution du problème dans tous les cas de déplacement relatif du mur par rapport au massif et de rugosité du mur sur le sol Diapo n 39 Eric Gervreau 005

Boussinesq détermine l'équation de ces courbes, mais ses calculs l'ont conduit à des équations différentielles non intégrables. Jean Resal(1910), mathématicien également donna quelques valeurs numériques de coefficient à partir des équations de Boussinesq, mais ce fut Albert Caquot en 1934, après avoir réécrit les équations de Boussinesq en coordonnées polaires, qui donna la méthode d intégration complète. En 1948, Caquot et Kerisel rassemblent des tables de coefficients de poussée et de butée des terres qui sont encore utilisée aujourd hui. Diapo n 40 Eric Gervreau 005

D une façon pratique, on déterminera l action des terre derrière un écran en distinguant trois actions : ACTION DU POIDS PROPRE zb expansion za compression σ'h (za) = σ 'v(za). Kpγ σ'h (zb) = σ 'v(zb). Kaγ Diapo n 41 Eric Gervreau 005

ACTION DE LA SURCHARGE charge uniformément répartie pb charge uniformément répartie pa compression e xpa nsion σ'h = pa. Kpq σ'h = pb. Kaq Diapo n 4 Eric Gervreau 005

En butée σ'h = C/tgϕ (Kpq - 1) = C/tgϕ. Kpc, qui est supérieure à zéro c'est à dire que la cohésion pousse l'écran vers l'amont En poussée σ'h = C/tgϕ (Kaq - 1) = C/tgϕ. Kac, qui est inférieure à zéro c'est à dire que la cohésion tire l'écran vers l'amont C/tgϕ ACTION DE LA COHESION C/tgϕ expansion compression c/tgϕ C/tgϕ. Kpq C/tgϕ. Kaq c/tgϕ Diapo n 43 Eric Gervreau 005

tables de Poussée-butée tables de COULOMB + i L σ(l) + δ σ (L) = K L γ + λ=90 -β λ Diapo n 44 Eric Gervreau 005

tables de RANKINE + θ σ (h) = K h γ h σ + δ + λ Diapo n 45 Eric Gervreau 005

tables de CAQUOT-KERISEL (EQUILIBRES LIMITES) + β L σ(l) + δ + σ (L) = K L γ λ Diapo n 46 Eric Gervreau 005

Diapo n 47 Eric Gervreau 005