Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre



Documents pareils
Fonctions de plusieurs variables

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Cours d Analyse. Fonctions de plusieurs variables

Théorème du point fixe - Théorème de l inversion locale

3 Approximation de solutions d équations

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Cours Fonctions de deux variables

Différentiabilité ; Fonctions de plusieurs variables réelles

Calcul intégral élémentaire en plusieurs variables

Fonctions de plusieurs variables

Continuité d une fonction de plusieurs variables

Image d un intervalle par une fonction continue

Commun à tous les candidats

Dérivées d ordres supérieurs. Application à l étude d extrema.

Chapitre VI Fonctions de plusieurs variables

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Développements limités. Notion de développement limité

I. Polynômes de Tchebychev

Planche n o 22. Fonctions de plusieurs variables. Corrigé

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Intégrales doubles et triples - M

Fonctions de plusieurs variables et applications pour l ingénieur

Continuité en un point

Optimisation des fonctions de plusieurs variables

Résolution d équations non linéaires

Calcul différentiel sur R n Première partie

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

CCP PSI Mathématiques 1 : un corrigé

Limites finies en un point

Chapitre 7 : Intégration sur un intervalle quelconque

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Continuité et dérivabilité d une fonction

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Intégration et probabilités TD1 Espaces mesurés Corrigé

Calcul Différentiel. I Fonctions différentiables 3

3. Conditionnement P (B)

Capes Première épreuve

Chapitre 2 Le problème de l unicité des solutions

Calcul fonctionnel holomorphe dans les algèbres de Banach

Cours d Analyse 3 Fonctions de plusieurs variables

Calcul différentiel. Chapitre Différentiabilité

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Correction du Baccalauréat S Amérique du Nord mai 2007

Comparaison de fonctions Développements limités. Chapitre 10

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Correction de l examen de la première session

Université Paris-Dauphine DUMI2E 1ère année, Applications

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Licence de Mathématiques 3

Développements limités, équivalents et calculs de limites

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Correction du baccalauréat S Liban juin 2007

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Théorèmes du Point Fixe et Applications aux Equations Diérentielles

Intégration sur des espaces produits

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercices et corrigés Mathématique générale Version β

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Polynômes à plusieurs variables. Résultant

Simulation de variables aléatoires

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Intégration et probabilités TD1 Espaces mesurés

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Sur certaines séries entières particulières

OM 1 Outils mathématiques : fonction de plusieurs variables

Amphi 3: Espaces complets - Applications linéaires continues

Suites numériques 4. 1 Autres recettes pour calculer les limites

La fonction exponentielle

F411 - Courbes Paramétrées, Polaires

Suites numériques 3. 1 Convergence et limite d une suite


C1 : Fonctions de plusieurs variables

Baccalauréat ES Amérique du Nord 4 juin 2008

Fonctions de plusieurs variables et changements de variables

Cours de mathématiques

CHAPITRE 10. Jacobien, changement de coordonnées.

Chapitre 0 Introduction à la cinématique

Équations non linéaires

Chapitre 1 : Évolution COURS

Complément d information concernant la fiche de concordance

Théorie de la Mesure et Intégration

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Exercices Corrigés Premières notions sur les espaces vectoriels

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Produits d espaces mesurés

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Leçon 01 Exercices d'entraînement

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME

IV- Equations, inéquations dans R, Systèmes d équations

Transcription:

IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables On rappelle ici quelques propriétés des fonctions de plusieurs variables, c est-à-dire définies sur une partie de R n et à valeurs dans R m, où n et m sont deux entiers naturels. Pour la présentation de la plupart des notions, on se restreint au cas où n = 2, les autres cas étant parfaitement similaires. Noter de plus que, au besoin, une fonction à valeurs dans R m se décompose naturellement en m fonctions à valeurs réelles, qui sont ses composantes dans la base canonique de R m. Pour p N et u = (u 1,..., u p ) R p, on note u l une des trois normes équivalentes (c est-à-dire qu elles engendrent la même topologie) : u = sup u i, u 1 = 1 i p ( p p u i, u 2 = i=1 ) 1/2 u 2 i. i=1 La limite en un point se définit de façon similaire au cas des fonctions d une variable. Définition 1 Soient A R 2, f : A R m, (x 0, y 0 ) A et l R m, alors f a pour limite l quand (x, y) tend vers (x 0, y 0 ) si ε > 0, η > 0, ( x x 0 < η et y y 0 < η ) f(x, y) l < ε. On peut aussi exprimer l implication de la manière suivante : (x, y) B ( (x 0, y 0 ), η) f(x, y) B(l, ε), où B(u, r) désigne la boule (ouverte) de centre u et de rayon r (pour la norme choisie), dans R 2 d un côté, dans R m de l autre. À partir de là on définit la notion de continuité comme dans le cas des fonctions d une variable. On dispose de fonctions de référence (polynômes, fractions rationnelles, racine carrée,...) et de théorèmes généraux (somme, produit, inverse, composée de fonctions... ). Si f est à valeurs réelles, on peut définir de manière analogue la notion de limite infinie. Exercice 1 Soit h la fonction définie de R 2 dans R par h(0, 0) = 0 et, si (x, y) (0, 0), h(x, y) = xy x 2 + y 2. Vérifier que h est continue en tout point (x, y) (0, 0). Calculer h(x, x) pour x R ; la fonction h est-elle continue en (0, 0)? 1

Étant donné (x 0, y 0 ) A, on définit les deux applications partielles associées à f en ce point par : f 1 : x f(x, y 0 ) et f 2 : y f(x 0, y). On appelle aussi f 1 et f 2 les fonctions directionnelles associées à f, de direction x pour la première, y pour la seconde. Ce sont des fonctions d une variable, que l on sait donc éventuellement dériver, ce qui permet de définir le cas échéant les dérivées partielles de f. Définition 2 f admet une dérivée partielle par rapport à x (resp. y) au point (x 0, y 0 ) si f 1 (resp. f 2 ) est dérivable en x 0 (resp. en y 0 ). Dans ce cas on note : f x (x 0, y 0 ) = f 1(x 0 ) (resp. f (x 0, y 0 ) = f 2(y 0 ) ). Si par exemple f 2 est dérivable sur A x0 = {y R, (x 0, y) A}, on obtient ainsi une nouvelle fonction de deux variables, f, définie sur A x 0. Attention à l éventuelle confusion provenant du fait qu on omet souvent de noter le couple de variables (x 0, y 0 ), ou qu on le note plus simplement (x, y), c est-à-dire qu on écrit souvent f f ou (x, y). Exercice 2 Montrer que la fonction h de l exercice précédent est dérivable par rapport à x et par rapport à y en tout point de R 2 et calculer ses dérivées partielles. Sont-elles continues en (0, 0)? Si les dérivées partielles de f existent et sont continues sur un ouvert U A de R 2, alors f est dite continûment différentiable, en abrégé C 1, sur U. L intérêt de cette notion est encore plus frappant que pour les fonctions d une variable. En effet, la continuité des applications partielles f 1 et f 2 n entraîne pas celle de f, comme on l a vu dans l exercice ci-dessus, qui montre aussi que l existence des dérivées partielles ne suffit pas plus à garantir la continuité de f. Par contre on a la propriété : f continûment différentiable sur U f continue sur U. Pour calculer les dérivées partielles d une fonction composée de manière agréable, on introduit la notion de matrice jacobienne. Plaçons-nous dans le cadre le plus général f : U R n R m, où U est un ouvert, et f admet des dérivées partielles par rapport à toutes les variables en un point u U. La matrice jacobienne de f en u est la matrice à m lignes et n colonnes égale à : ( ) fi J f (u) = (u). x j 1 i m 1 j n Lorsque n = m, on nomme jacobien de f le déterminant de la matrice jacobienne. Proposition 1 Soient f et g deux applications définies respectivement de U R n dans R m et de V R m dans R p, avec f(u) V. On suppose qu elles sont continûment dérivables respectivement aux points u U et v = f(u). Alors on a l égalité des matrices : Exercice 3 Retrouver les formules donnant f x J g f (u) = J g (v)j f (u). et f lorsque f(x, y) = F (u, v), où u = u(x, y), v = v(x, y). 2

Revenons au cas f : U R 2 R m de classe C 1. Les dérivées partielles étant des fonctions de deux variables, on peut considérer leurs dérivées partielles, à nouveau par rapport à x et par rapport à y, si elles existent. On obtient ainsi les dérivées partielles secondes de f, qui sont au nombre de 3 puisque le théorème de Schwarz stipule que l ordre dans lequel sont prises les dérivées partielles par rapport à différentes variables n importe pas, en clair : 2 f x = f x = f x = 2 f x. La fonction f est dite de classe C k sur U si toutes ses dérivées partielles à l ordre k existent et sont continues. (Question : combien y en a-t-il?) Celles d ordre 2 sont particulièrement importantes pour déterminer les extrema des fonctions à valeurs réelles. Supposons donc f : U R 2 R de classe C 2 et (x 0, y 0 ) U. On pose : p = f x (x 0, y 0 ), q = f (x 0, y 0 ), r = 2 f x 2 (x 0, y 0 ), s = 2 f x (x 0, y 0 ), t = 2 f 2 (x 0, y 0 ) et on appelle ( r s s t ) la matrice hessienne de f. On dit que f admet un extremum local en (x0, y 0 ) appartenant à U si f(x, y) f(x 0, y 0 ) garde un signe constant au voisinage de (x 0, y 0 ). Il s agit d un maximum local si ce signe est négatif, d un minimum local sinon. Théorème 2 Pour que f admette un extremum local en (x 0, y 0 ), il est nécessaire que p = q = 0. Pour que f admette un extremum local en (x 0, y 0 ), il suffit que la condition précédente soit remplie (on parle alors de point critique) et que s 2 rt < 0. Dans ce cas, on aura un minimum local si r > 0, un maximum local si r < 0. Noter que r 0, et que t est du même signe que r, si s 2 rt < 0. On peut montrer de plus qu on obtient un point col si s 2 rt > 0 ; si s 2 rt = 0, on ne peut rien dire. En fait, on a le développement de Taylor-Young suivant pour f au voisinage du point (x 0, y 0 ) : f(x 0 + h, y 0 + k) = f(x 0, y 0 ) + (ph + qk) + 1 2 (rh2 + 2shk + tk 2 ) + (h 2 + k 2 )ε(h, k), où ε(h, k) tend vers 0 quand (h, k) tend vers 0. Donc, si p = q = 0, f(x 0 + h, y 0 + k) f(x 0, y 0 ) est pour (h, k) au voisinage de (0, 0) de même signe que l image de (h, k) par la forme quadratique de matrice la hessienne de f. Exercice 4 On revient à la fonction h du premier exercice. a) Montrer que, pour (x, y) (0, 0), h h x (x, y) = (x, y) = 0 si et seulement si x = ±y. b) Montrer que, pour tout (x, y) R 2, 1 2 h(x, y) 1 2 ; qu en déduit-on pour les points de coordonnées (x, ±x) avec x 0? c) Calculer les dérivées secondes de h en (x, y) (0, 0). Quels renseignements donne la matrice hessienne de h aux points de coordonnées (x, ±x) avec x 0? 2 Intégrales multiples Maintenant que l on connaît les fonctions de plusieurs variables, comment les intégrer? Nous allons dessiner les contours de la construction de l intégrale de Riemann de ces fonctions, dont on 3

verra qu ils rappellent fortement ce qu on fait pour les fonctions d une variable. On traite le cas des fonctions à valeurs réelles, étant entendu que le cas des fonctions à valeurs dans R m s en déduit en les traitant composante par composante. On donnera ensuite deux procédés permettant de calculer les intégrales multiples dans un certain nombre de cas. 2.1 Construction de l intégrale Plaçons-nous dans R n pour un entier n 2. On appelle pavé de R n le produit cartésien Π = I 1 I n de n intervalles I 1,..., I n de R. Le pavé Π est borné (resp. compact) si tous les I k le sont ; la mesure de Π est le produit µ(π) des longueurs des I k ; deux pavés sont quasi-disjoints si la mesure de leur intersection (qui est un pavé) est nulle. Si Π est un pavé compact, P = (Π 1,..., Π r ) est un pavage de Π si les Π k sont deux à deux quasi-disjoints, d union égale à Π. On vérifie alors que la mesure de Π est égale à la somme des mesure des Π k. On peut aussi définir la notion de pavage plus fin que deux pavages donnés P et P de Π. Soit Π un pavé. Une fonction ϕ : Π R est en escalier s il existe un pavage P de Π tel que, pour tout P P, ϕ P est constante ; P est alors dit adapté à ϕ. En notant χ P la fonction indicatrice d un pavé P, on voit qu il existe des réels λ P pour P P tels que ϕ = P P λ P χ P et on peut définir l intégrale de ϕ en posant : I(ϕ) = P P λ P µ(p ), en vérifiant que ceci ne dépend pas du pavage adapté à ϕ choisi (grâce à la notion de pavage plus fin). Notons E le R-espace vectoriel des fonctions en escalier définies sur Π. Pour f : Π R bornée, on peut alors définir I (f) = sup{i(ϕ) : ϕ f, ϕ E}, I (f) = inf{i(ϕ) : ϕ f, ϕ E}, et décider (avec Riemann) que f est intégrable si I (f) = I (f), auquel cas on note cette valeur : f = f(x 1,..., x n ) dx 1... dx n. Π Π Enfin, une partie bornée A de R n est dite mesurable si sa fonction indicatrice χ A est intégrable sur un pavé Π contenant A. Si tel est le cas, et si f : A R est bornée, alors f est intégrable sur A si fχ A est intégrable sur un pavé Π contenant A, auquel cas on pose : f = fχ A. A On montre en particulier que toute fonction continue sur une partie mesurable A est intégrable sur cette partie. 2.2 Théorème de Fubini On voit maintenant un théorème essentiel pour le calcul des intégrales multiples, puisqu il permet de découper celui-ci en plusieurs calculs d intégrales de fonctions d une variable. Sa preuve suit le cheminement effectué ci-dessus pour la construction de l intégrale (pour les fonctions en escalier, puis pour les fonctions intégrables). Π 4

Théorème 3 Soit A une partie mesurable de R p R q et f : A R une fonction intégrable. On suppose que, pour tout x R p : A x = {y R q (x, y) A} est mesurable ; y f(x, y) est intégrable sur A x. On suppose de plus que x A x f(x, y)dy est intégrable sur R p. Alors on a l égalité : Exercice 5 En déduire la valeur de A A f(x, y)dxdy = On pourra commencer par représenter la partie A. R p ( ) f(x, y)dy dx. A x xy x 2 + y 2 dxdy, où A = {(x, y) R 2 : x 0, y 0, x 2 + 2y 2 1}. Il est parfois plus pratique d utiliser ce résultat sous la forme suivante. Corollaire 4 En supposant de plus, pour tout y R q : A y = {x R p (x, y) A} est mesurable ; x f(x, y) est intégrable sur A y ; et y A y f(x, y)dx est intégrable sur Rq, on a l égalité : R p 2.3 Changement de variable ( ) f(x, y)dy dx = A x R q ( A y f(x, y)dx Le théorème de changement de variables classique, pour les fonctions de la variable réelle, se généralise aux intégrales multiples. Théorème 5 Si ϕ : U V est un C 1 -difféomorphisme mesurable entre deux ouverts U et V de R n, dont on note ϕ le jacobien, et f : V R une fonction intégrable, alors x f ( ϕ(x) ) ϕ (x) est intégrable sur U et f(y)dy = f ( ϕ(x) ) ϕ (x) dx. V U Un exemple d application très utile de ce résultat est le passage des ( coordonnées cartésiennes ) aux polaires, donné par le C 1 -difféomorphisme φ : R + ] π, π[ R 2 \ ], 0[ {0} tel que φ(ρ, θ) = (ρ cos θ, ρ sin θ). ) dy. Exercice 6 1. Déterminer la matrice jacobienne de φ. En déduire, pour f : R 2 R intégrable, f(x, y)dxdy = R 2 2. Établir l égalité R + [ π,π] R 2 e (x2 +y2) dxdy = π. 5 f(ρ cos θ, ρ sin θ)ρ dρ dθ.

+ 3. En déduire la valeur de e x2 dx à l aide du théorème de Fubini. 0 Dans le même genre d idée, on pourra calculer l aire de la portion de plan D = {(x, y) [0, 1] 2, x 2 + y 2 1}, après l avoir représentée, en utilisant la symétrie de cet ensemble par rapport à la diagonale. Il y a bien sûr d autres changements de variables possibles, à adapter selon les circonstances, par l exemple dans l exercice suivant. Exercice 7 Soit f la fonction définie de C = [0, 1] 2 dans R par f(x, y) = { xy x+y si (x, y) (0, 0) 0 sinon. a) Montrer que f(x, y) x pour tout (x, y) [0, 1] 2. En déduire que f est continue et intégrable. b) Montrer que I = C f(x, y)dxdy = 2 T f(x, y)dxdy, où T = {(x, y) C, y x}. c) On note T = {(x, y) ]0, 1[ 2, y < x} l intérieur de T. Montrer que l application φ : C C, (u, v) (u, uv), définit un C -difféomorphisme de ]0, 1[ 2 dans T, de jacobien φ (u, v) = u. d) En déduire, à l aide du théorème de changement de variable, que I = 2 3 (1 ln 2). 3 Intégrales dépendant d un paramètre En guise d illustration de la théorie des fonctions de plusieurs variables, voici deux théorèmes extrêmement utiles en analyse, et à connaître parfaitement pour pouvoir en vérifier les hypothèses avant de les appliquer. Théorème 6 Soient I un intervalle de R, a b deux nombres réels et K une fonction numérique définie et continue sur I [a, b]. Alors la fonction f définie sur I par f(x) = b a K(x, t) dt est continue. Noter que c est la continuité de K en tant que fonction de deux variables qui doit être satisfaite. Théorème 7 On conserve les hypothèses du théorème précédent et on suppose de plus que la dérivée partielle de K par rapport à x existe et est continue sur I [a, b]. Alors la fonction f définie sur I par f(x) = b a K(x, t) dt est de classe C1 et pour tout x I : f (x) = b a K (x, t) dt. x Ces théorèmes ne s étendent pas aux intégrales généralisées. Ainsi on montre, par des changements de variables adéquats, que + sin(xt) 0 t dt vaut π 2 pour x > 0 et π 2 pour x < 0, donc n est pas continue en 0, bien que K(x, t) = sin(xt) t si t > 0, x si t = 0, soit continue sur R [0, + [. Exercice 8 1 e (1+t2 )x 2 On considère la fonction f(x) = 0 1 + t 2 dt. 1. Justifier que f est définie dérivable sur R et exprimer sa dérivée à l aide de g(x) = x 0 e t2 dt (à laquelle on pourra appliquer le changement de variable u = t x lorsque x 0). 6

2. En déduire que f(x) = π 4 g2 (x) pour tout x R. 3. Établir que pour t [0, 1] et x assez grand, e (1+t2 )x 2 1 ; en déduire que lim f(x) = 0. x 2 x + 4. Montrer la formule : + e t2 dt = 0 π 2. 7