Analyse des signaux - ELE2700

Documents pareils
5. Analyse des signaux non périodiques

TD1 Signaux, énergie et puissance, signaux aléatoires

M1107 : Initiation à la mesure du signal. T_MesSig

LABO PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB

CHAPITRE V. Théorie de l échantillonnage et de la quantification

Calcul fonctionnel holomorphe dans les algèbres de Banach

Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année Cours de Génie Electrique G.

Amphi 3: Espaces complets - Applications linéaires continues

Chapitre 2 Le problème de l unicité des solutions

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Communications numériques

Equations différentielles linéaires à coefficients constants

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Fonctions de plusieurs variables. Sébastien Tordeux

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Partie 1 - Séquence 3 Original d une fonction

1.1.1 Signaux à variation temporelle continue-discrète

Chapitre 1 Régime transitoire dans les systèmes physiques

Automatique Linéaire 1 1A ISMIN

3 Approximation de solutions d équations

Systèmes de communications numériques 2

SYSTEMES LINEAIRES DU PREMIER ORDRE

Christian JUTTEN Théorie du signal

Cours d Analyse. Fonctions de plusieurs variables

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Traitement numérique du signal. Première partie : Bases mathématiques

Introduction. aux équations différentielles. et aux dérivées partielles

Traitement du signal avec Scilab : la transformée de Fourier discrète

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

Programmes des classes préparatoires aux Grandes Ecoles

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Oscillations libres des systèmes à deux degrés de liberté

Cours. Un premier pas en traitement du signal

Limites finies en un point

Les travaux doivent être remis sous forme papier.

Fonctions Analytiques

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Calcul Stochastique pour la finance. Romuald ELIE

Capes Première épreuve

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Polynômes : corrigé. Opérations sur les polynômes

3. Conditionnement P (B)

Polynômes à plusieurs variables. Résultant

F411 - Courbes Paramétrées, Polaires

Problème 1 : applications du plan affine

I. Polynômes de Tchebychev

Data first, ou comment piloter l analyse par les données

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Approximations variationelles des EDP Notes du Cours de M2

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Introduction à l analyse numérique : exemple du cloud computing

Introduction aux Communications Numériques

Correction du Baccalauréat S Amérique du Nord mai 2007

Probabilités III Introduction à l évaluation d options

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS =

Chapitre 7 : Intégration sur un intervalle quelconque

Intégration et probabilités TD1 Espaces mesurés Corrigé

Finance, Navier-Stokes, et la calibration

Transmission des signaux numériques

Continuité en un point

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Théorème du point fixe - Théorème de l inversion locale

Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation

Algorithmes pour la planification de mouvements en robotique non-holonome

Introduction au pricing d option en finance

INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS)

Précision d un résultat et calculs d incertitudes

Cours de Systèmes Asservis

C1 : Fonctions de plusieurs variables

Fonctions de plusieurs variables

Différentiabilité ; Fonctions de plusieurs variables réelles

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Quantification Scalaire et Prédictive

Continuité et dérivabilité d une fonction

Cours 7 : Utilisation de modules sous python

Complément d information concernant la fiche de concordance

Une forme générale de la conjecture abc

J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE

Introduction. Mathématiques Quantiques Discrètes

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE. Le Traitement du Signal aléatoire

Fonctions homographiques

Processus Aléatoires

Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité

Caractéristiques des ondes

Traitement du signal avec Scilab : transmission numérique en bande de base

Circuits RL et RC. Chapitre Inductance

Intérêt du découpage en sous-bandes pour l analyse spectrale

Projet de Traitement du Signal Segmentation d images SAR

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006

Chapitre 0 Introduction à la cinématique

I- Définitions des signaux.

Transcription:

Analyse des signaux - ELE2700 Transformée de Laplace et de Fourier et Spectres Continus Christian Cardinal, Ph.D Département de génie électrique École Polytechnique de Montréal 6 janvier 2009

Lignes directrices Transformée de Laplace 1 Transformée de Laplace 2 Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Usuelles

Lignes directrices Transformée de Laplace 1 Transformée de Laplace 2 Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Usuelles

s de la transformée de Laplace Deux définitions : Unilatérale et Bilatérale Transformée de Laplace Unilatérale Soit un signal représenté par une fonction x(t). La transformée de Laplace unilatérale de x(t) constitue une fonction L{x(t)} telle que L{x(t)} : C C s 0 x(t)e st dt (1) Transformée de Laplace Bilatérale Soit un signal x(t). La transformée de Laplace bilatérale de x(t) constitue une fonction X(s) telle que L{x(t)} : C C s e st dt (2)

s (suite...) Transformée de Laplace On note aussi X(s) comme la transformée de Laplace d un signal x(t) : X(s) = L{x(t)} (3) En général, nous considérons que l opérateur L désigne la transformée bilatérale Cependant, comme nous manipulons typiquement des signaux causaux, dont le support est inclus dans R +, cette transformée dégénère en transformée unilatérale Notation : s = σ + jω, i.e. R{s} = σ, I{s} = ω

Lignes directrices Transformée de Laplace 1 Transformée de Laplace 2 Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Usuelles

Région de convergence La région de convergence d une transformée de Laplace consiste en le sous-ensemble de C où X(s) est parfaitement définie, au sens où l intégrale impropre converge. il est difficile de déterminer cette région de convergence, spécifique à chaque signal cependant,il est facile de déterminer la région de convergence d une exponentielle naturelle on peut donc déterminer un sous-ensemble de la région de convergence de toute fonction absolument bornée par une exponentielle

de la région de convergence de X(s) (suite...) La région de convergence de X(s) correspond aux valeurs de s C tel que X(s) < X(s) = x(t)e st dt x(t)e st dt x(t)e (σ jω)t dt = x(t)e σt (4) dt il faut donc que x(t)e σt soit absolument intégrable il existe une plage de valeurs de σ, σ 1 < σ < σ 2 tel que X(s) <

La région de convergence de la transformée de Laplace bilatérale d un signal à support fini x(t), intégrable dans l intervalle [a, b] est C. X(s) = b l intégrale converge pour tout a < b a x(t)e st dt. (5) La région de convergence de la transformée de Laplace du signal x(t) = e at, t 0 est le demi-plan complexe : ROC = {s C R(s) > a}. (6) X(s) = e at e st dt = 0 0 e (a σ)t e jωt dt (7) Pour avoir convergence, il faut (a σ) < 0 σ > a ou R{s} > a

La région de convergence de la transformée de Laplace bilatérale d un signal à support fini x(t), intégrable dans l intervalle [a, b] est C. X(s) = b l intégrale converge pour tout a < b a x(t)e st dt. (5) La région de convergence de la transformée de Laplace du signal x(t) = e at, t 0 est le demi-plan complexe : ROC = {s C R(s) > a}. (6) X(s) = e at e st dt = 0 0 e (a σ)t e jωt dt (7) Pour avoir convergence, il faut (a σ) < 0 σ > a ou R{s} > a

X(s) = 1, ROC = {s C R(s) > a} (8) s a

Exemple : Fonction échelon La fonction marche de Heaviside ou échelon est un signal u(t) défini comme 0, si t < 0 1 u(t) = 2, si t = 0 (9) 1, si t > 0,

Exemple : Fonction échelon Pour x(t) = u(t), X(s) = 0 e st dt = e st s = 1, ROC = {s C R(s) > 0} (10) 0 s

Types de signaux et régions de convergence Un signal est dit de droite si son support est contenu dans un intervalle fermé à gauche et ouvert à droite ROC de droite Un signal est dit de gauche si son support est sous-ensemble d un intervalle fermé à droite et ouvert à gauche ROC de gauche La fonction échelon u(t) ainsi que tout signal dont la définition implique un produit par la fonction u(t) sont des signaux de droite Exemple : l exponentielle à droite est définie comme e at u(t t 0 ) (pour tout t 0 R) ; l exponentielle à gauche est définie comme e at u(t 0 t).

signaux non bornés La région de convergence d un signal non borné est une de bande complexe parallèle à l axe jω Exemple : La région de convergence de la transformée de Laplace de la somme de l exponentielle à droite e at u(t t 0 ) et de l exponentielle à gauche e bt u(t 1 t), a < b R est la bande complexe ROC = {s C a < R(s) < b}. (11)

signaux fini La région de convergence d un signal fini dans un intervalle [a, b] constitue tout le plan complexe C Exemple La transformée de Laplace de la fonction de Dirac, δ(t t o ) est δ(t t o )e st = e sto (12) La région de convergence est donc tout le plan complexe

Forme rationnelle de la Transformée de Laplace : Pôles et Zéros Dans plusieurs applications X(s) prend la forme d une fonction rationnelle : X(s) = b 0 + b 1 s + b 2 s 2 +... + b M s M M a 0 + a 1 s + a 2 s 2 +... + a N s N = k=0 b ks k N k=0 a ks k = N(s) D(s) (13) Les Zéros de X(s) sont les valeurs de s tel que X(s) = 0 : i.e les M racines, s i, i = 1, 2, 3...M de N(s) Les Pôles de X(s) sont les valeurs de s tel que X(s) = : i.e. les N racines, s i, i = 1, 2, 3...N de D(s)

Forme rationnelle de la Transformée de Laplace : ROC Soit les N pôles, s i C, i = 1, 2, 3...N. On définit : σ max = max {R(s i )}, et (14) σ min = min {R(s i )} (15) pour une signal de droite : ROC = {s C R(s) > σ max } (16) Pour un signal de gauche : ROC = {s C R(s) < σ min } (17) pour un signal non borné : ROC = {s C σ min < R(s) < σ max } (18)

Le tableau suivant résume ce qu il faut retenir au sujet des régions de convergence. signaux Forme Finie Plan complexe : ROC = {s C} À droite Demi-plan de droite : ROC = {s C R(s) > σ max } À gauche Demi-plan de gauche : ROC = {s C R(s) < σ min } non borné Bande du plan : ROC = {s C σ min < R(s) < σ max }

Principales propriétés de la transformée de Laplace Linéarité, Décalage temporel, Dérivation, compression,... Signal Transformée Région de convergence ROC x(t) X(s) R x 1 (t) X 1 (s) R 1 x 2 (t) X 2 (s) R 2 ax 1 (t) + bx 2 (t) ax 1 (s) + bx 2 (s) R 1 R 2 x(t t o ) e sto X(s) R e sot x(t) X(s s o ) Décalage de R x(at) 1 a X(s a ) Compression de R x( t) X( s) de R x 1 (t) x 2 (t) X 1 (s)x 2 (s) R 1 R 2 d dt x(t) sx(s) au moins R d tx(t) ds X(s) R t x(τ)dτ 1 s X(s) au moins R {R(s) > 0}

Lignes directrices Transformée de Laplace 1 Transformée de Laplace 2 Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Usuelles

Transformée inverse de Laplace de la transformée de Laplace inverse x(t) = 1 2iπ σ+i σ i X(s)e st ds (19) le choix de σ ne change pas la valeur de l intégrale ; il faut cependant prendre une telle droite complexe dans la région de convergence de X(s) Généralement, la solution de cette intégrale est complexe SOLUTION DÉCOMPOSITION EN FRACTIONS PARTIELLES TABLE DE TRANSFORMÉES DE LAPLACE

Transformée inverse de Laplace de la transformée de Laplace inverse x(t) = 1 2iπ σ+i σ i X(s)e st ds (19) le choix de σ ne change pas la valeur de l intégrale ; il faut cependant prendre une telle droite complexe dans la région de convergence de X(s) Généralement, la solution de cette intégrale est complexe SOLUTION DÉCOMPOSITION EN FRACTIONS PARTIELLES TABLE DE TRANSFORMÉES DE LAPLACE

Table de transformées de Laplace Signal Transformée Région de convergence ROC δ(t) 1 pour tout s C 1 u(t) s R(s) > 0 1 u( t) s R(s) < 0 t n 1 (n 1)! u(t) 1 s n R(s) > 0 t n 1 (n 1)! u( t) 1 s n R(s) < 0 e αt 1 u(t) s+α R(s) > α e αt 1 u( t) R(s) < α s+α t n 1 (n 1)! e αt 1 u(t) (s+α) n t n 1 (n 1)! e αt u( t) 1 (s+α) n R(s) > α R(s) < α

Table de transformées de Laplace (suite...) Signal Transformée Région de convergence ROC δ(t T ) e st pour tout s C cos(ω 0 t)u(t) s R(s) > 0 sin(ω 0 t)u(t) e αt cos(ω 0 t)u(t) e αt sin(ω 0 t)u(t) s 2 +ω0 2 ω 0 s 2 +ω0 2 s+α (s+α) 2 +ω0 2 ω 0 (s+α) 2 +ω0 2 R(s) > 0 R(s) > α R(s) > α

Lignes directrices Transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us 1 Transformée de Laplace 2 Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Usuelles

INTRODUCTION Transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us La transformée de Fourier constitue la décomposition d un signal dans une base d exponentielles complexes comportant un nombre infini et non dénombrable d éléments. Produit Scalaire : Pour les signaux R C en général (pas nécessairement périodique), on définit le produit scalaire de signaux x(t) et y(t) comme x(t), y(t) = x(t)y (t)dt. (20)

INTRODUCTION Transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us La transformée de Fourier constitue la décomposition d un signal dans une base d exponentielles complexes comportant un nombre infini et non dénombrable d éléments. Produit Scalaire : Pour les signaux R C en général (pas nécessairement périodique), on définit le produit scalaire de signaux x(t) et y(t) comme x(t), y(t) = x(t)y (t)dt. (20)

INTRODUCTION Transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us La transformée de Fourier constitue la décomposition d un signal dans une base d exponentielles complexes comportant un nombre infini et non dénombrable d éléments. Produit Scalaire : Pour les signaux R C en général (pas nécessairement périodique), on définit le produit scalaire de signaux x(t) et y(t) comme x(t), y(t) = x(t)y (t)dt. (20)

Lignes directrices Transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us 1 Transformée de Laplace 2 Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Usuelles

s Transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us de la La transformée de Fourier d un signal x(t) représenté par une fonction R C est la fonction X(f ) : R C f F{x(t)} = x(t), e 2jπft = x(t)e j2πft dt (21) inverse La transformée de Fourier inverse d une fonction X(f ) est x(t) = F 1 {X(f )} = X(f ), e j2πft = X(f )e j2πft df (22) Note : Le spectre fréquencielle d un signal x(t) est simplement la transformée de Fourier X(f ) = F{x(t)}, f étant la fréquence en [Hz]

s Transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us de la La transformée de Fourier d un signal x(t) représenté par une fonction R C est la fonction X(f ) : R C f F{x(t)} = x(t), e 2jπft = x(t)e j2πft dt (21) inverse La transformée de Fourier inverse d une fonction X(f ) est x(t) = F 1 {X(f )} = X(f ), e j2πft = X(f )e j2πft df (22) Note : Le spectre fréquencielle d un signal x(t) est simplement la transformée de Fourier X(f ) = F{x(t)}, f étant la fréquence en [Hz]

s Transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us de la La transformée de Fourier d un signal x(t) représenté par une fonction R C est la fonction X(f ) : R C f F{x(t)} = x(t), e 2jπft = x(t)e j2πft dt (21) inverse La transformée de Fourier inverse d une fonction X(f ) est x(t) = F 1 {X(f )} = X(f ), e j2πft = X(f )e j2πft df (22) Note : Le spectre fréquencielle d un signal x(t) est simplement la transformée de Fourier X(f ) = F{x(t)}, f étant la fréquence en [Hz]

Conditions de définition Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us Pour que la transformée de Fourier X(f ) d un signal x(t) existe, il faut que ce signal satisfasse les deux conditions suivantes : 1 x(t) doit être absolument intégrable i.e. x(t) dt <. 2 Tout intervalle fini (ou support du signal) doit comporter un nombre fini de discontinuités et d extrema.

Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us Autres s : fréquences angulaires de la transformée de Fourier dans le domaine des fréquences angulaires La transformée de Fourier d un signal x(t) peut aussi s éxprimer dans le domaine de la fréquence angulaire ω = 2πf rad/s : X(ω) = x(t)e jωt dt (23) inverse dans le domaine des fréquences angulaires La transformée de Fourier inverse d une fonction X(ω) est x(t) = F 1 {X(ω)} = 1 X(ω)e jωt dω (24) 2π

Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us Autres s : fréquences angulaires de la transformée de Fourier dans le domaine des fréquences angulaires La transformée de Fourier d un signal x(t) peut aussi s éxprimer dans le domaine de la fréquence angulaire ω = 2πf rad/s : X(ω) = x(t)e jωt dt (23) inverse dans le domaine des fréquences angulaires La transformée de Fourier inverse d une fonction X(ω) est x(t) = F 1 {X(ω)} = 1 X(ω)e jωt dω (24) 2π

Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us Autres s : fréquences angulaires de la transformée de Fourier dans le domaine des fréquences angulaires La transformée de Fourier d un signal x(t) peut aussi s éxprimer dans le domaine de la fréquence angulaire ω = 2πf rad/s : X(ω) = x(t)e jωt dt (23) inverse dans le domaine des fréquences angulaires La transformée de Fourier inverse d une fonction X(ω) est x(t) = F 1 {X(ω)} = 1 X(ω)e jωt dω (24) 2π

Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us REMARQUES Dans le reste de ce cours nous utiliseront la définition dans le domaine des fréquences en Hz Cependant, occasionnellement nous utiliseront la définition dans le domaine des fréquences angulaires uniquement par facilité d écriture et de développement mathématique

Lignes directrices Transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us 1 Transformée de Laplace 2 Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Usuelles

Lien avec la transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us Soit un signal x(t) ayant pour transformée de Laplace X(s) et une région de convergence R x par définition, on a : On peut aussi écrire : X(s) = x(t)e st dt (25) X(σ + jω) = x(t)e (σ+jω)t dt (26) On constate que si l axe {jω} = {j2πf } R x, la transformée de Fourier X(f ) s obtient par : X(σ + j2πf ) σ=0 = X(f ) = x(t)e j2πft dt (27)

Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us Lien avec la transformée de Laplace (suite...) REMARQUES : 1 Cela revient donc à poser s = j2πf dans X(s) : X(f ) = X(s) s=j2πf si l axe jω est dans la région de convergence (ROC) de X(s) Cas des signaux convergents 2 X(f ) n existe pas si l axe jω n est pas dans la ROC et n est pas une borne de la ROC Cas des signaux divergents 3 X(f ) existe et comporte des Dirac, (δ(f f i )) si l axe jω est une borne de la région de convergence de X(s) Cas des signaux oscillants (sinus, cosinus) ou stagnants (fonction échelon)

Lignes directrices Transformée de Laplace Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us 1 Transformée de Laplace 2 Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Usuelles

Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us Principales Propriétés de la Les propriétés de la transformée de Fourier decoulent de celles de la transformée de Laplace Signal T.F. (fréq., Hz) T.F.(fréq. angulaire, rad/s) x(t) X(ω) X(f ) y(t) Y (ω) Y (f ) ax(t) + by(t) ax(ω) + by (ω) ax(f ) + by (f ) x(t t o ) e jωto X(ω 0 ) e j2πfto X(f ) e jω0t x(t), e j2πf0t x(t) X(ω ω 0 ) X(f f 0 ) x (t) X ( ω) X ( f ) x( t) X( ω) X( f ) 1 x(at) a X(ω a ) 1 a X( f a ) x(t) y(t) X(ω)Y (ω) X(f )Y (f )

Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us Propriétés de la (suite...) Signal T.F. (fréq., Hz) T.F.(fréq. angulaire, rad/s) 1 x(t)y(t) 2π X(ω) Y (ω) X(f ) Y (f ) d dt x(t) jωx(ω) j2πfx(f ) t x(τ)dτ 1 jω X(ω) + πx(0)δ(ω) 1 j2πf X(f ) + 1 2 X(0)δ(f ) d tx(t) j dω X(ω) j d 2π df X(f ) x(t) réel X(ω) = X ( ω) X(f ) = X ( f ) R{X(ω)} = R{X( ω)} R{X(f )} = R{X( f )} I{X(ω)} = I{X( ω)} I{X(f )} = I{X( f )} X(ω) = X( ω) X(f ) = X( f ) X(ω) = X( ω) X(f ) = X( f )

Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us Propriétés de la (suite...) Dualité : f (t) F(t) F F(ω) F 2πf ( ω) Relation de Parseval pour les signaux apériodiques : x(t) 2 dt = 1 2π x(t) 2 dt = X(ω) 2 dω X(f ) 2 df

Table des Transformées de Fourier Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us x(t) X(ω) X(f ) e αt 1 u(t) α+jω 1 α+j2πf te αt 1 1 u(t) (α+jω) 2 t 2 ω 2 (α+j2πf ) 2 2 (2πf ) 2 δ(t) 1 1 1 2πδ(ω) δ(f ) u(t) πδ(ω) + 1 1 jω 2 δ(f ) + 1 j2πf cos(ω 0 t)u(t) π 2 [δ(ω ω 0) + δ(ω + ω 0 )] 1 4 [δ(f f 0) + δ(f + f 0 )] + j2πf sin(ω 0 t)u(t) + jω (ω 2 0 ω2 ) π 2j [δ(ω ω 1 0) δ(ω + ω 0 )] + ω 0 (ω 2 0 ω2 ) ((2πf 0 ) 2 (2πf ) 2 ) 4j [δ(f f 0) δ(f + f 0 )] 2πf + 0 ((2πf 0 ) 2 (2πf ) 2 )

Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us Table des Transformées de Fourier (suite...) x(t) X(ω) X(f ) cos(ω 0 t) π[δ(ω ω 0 ) + δ(ω + ω 0 )] 1 2 [δ(f f 0) + δ(f + f 0 )] sin(ω 0 t) jπ[δ(ω + ω 0 ) δ(ω ω 0 )] j 2 [δ(f + f 0) δ(f f 0 )] e at ω sin(ω 0 t)u(t) 0 2πf 0 (a+jω) 2 +ω0 2 (a+j2πf ) 2 +(2πf 0 ) 2 ω 0 2π Sa ( ω 0 ) t 2, rect[ ω0 /2,ω 0 /2](ω) rect [ f0 /2,f 0 /2](f ) rect [ τ/2,τ/2] (t) τsa ( ) ωτ 2 τsa (πf τ) Λ [ τ,τ] (t) τ [ Sa ( )] ωτ 2 τ [Sa (πf τ)] 2 e a t 2a 2 a 2 +ω 2 2a a 2 +(2πf ) 2 e t 2 /2σ 2 σ 2πe σ2 ω 2 /2 σ 2πe σ2 (2πf ) 2 /2

Relation entre la transformée de Fourier et la transformée de Laplace Propriétés de la et Table des transformées de Fourier Us de Signaux périodiques Soit x(t) un signal périodique de période T : x(t) = X n e j 2πnt T n Z La transformée de Fourier de x(t) est : X(f ) = { X n F n Z e j 2πnt T } = n Z X n δ(f n/t ) Dans le domaine des fréquences angulaires : X(ω) = { } X n F e j 2πnt T n Z = 2π n Z X n δ(ω 2πn/T )