: Theory and Practice of Structural Models Pierre GARREAU University Paris-1 Panthéon Sorbonne 9 Juillet 2008 P. Garreau
Press Review Les Enjeux Mise en Bouche Définitions Press Review Volkswagen, Europe s biggest carmarker, and Gas natural, Spain s largest natural gaz provider, are among companies for which the increase in Credit Protection costs has been disproportionate relative to the move in their equity prices and stock volatility. ABN Amro Holding NV, 14 Février, 2008 Credit Default Swaps for Wolfsburg have increased 155% this year. The stock is down 4% in 2008 and the implied volatility has decreased to 26% from 32% at the start of the year. Bloomberg, 22 Février, 2008 Telecom Italia s stock price and Credit Default Swap seem to be increasingly correlated, suggesting arbitrage opportunities. Exane BNP Paribas - Equity Research, 31 Mars, 2008 P. Garreau
Press Review Les Enjeux Mise en Bouche Définitions Fig.: 5Y CDS spread on Volkswagen SNR (light blue) - Equity (light purple) - 6 months put implied volality (dark blue) P. Garreau
Press Review Les Enjeux Mise en Bouche Définitions : Stratégie exploitant les divergences de prix entre des produits dérivés basés sur la structure du Capital d une même entreprise. P. Garreau
Press Review Les Enjeux Mise en Bouche Définitions Mise en Bouche Différence de prix - Reproduction du comportement des marges de Crédit grâce aux informations du marché action Structure du Capital - Eclaircissement de la littérature existante sur les modèles structurels Stratégie - Developement d un algorithme de Capital Structure Arbitrage systématique P. Garreau
Press Review Les Enjeux Mise en Bouche Définitions Le risque de Crédit La valeur du contrat au pair est telle que les deux jambes soient égales, m(t, T) = (1 R) 1 T t e r(t t) dp(u) T t e r(t u) P(u)du P. Garreau
Merton s Framework Temps de Passage et Barrière Mobile Modèle d évaluation de l entreprise (Modigliani-Miller) Actif Valeur de l entreprise V t Passif Actions S t Valeur de la Dette B t La valeur de l entreprise à maturité Dette B T, remboursée au pro-rata si V T < B Dette B + Action S T si V T B P. Garreau
Merton s Framework Temps de Passage et Barrière Mobile Modèle d évaluation et Théorie des options V t = S t + [ B t S t = E Q e ] r u du (V T B) + F t [ B t = E Q e ] r u du (B (B V T ) + ) F t 12 Valeur de la dette (rouge) Valeur de l action (bleu) 10 8 6 4 2 0 0 5 10 15 20 Valeur de l entreprise P. Garreau
Merton s Framework Temps de Passage et Barrière Mobile Modèle de Défaut de Black-Scholes-Merton - 1973 La valeur de l entreprise est un processus d itô sous la probabilité risque neutre Puis la probabilité de défaut dv t V t = rdt + σ t dw t ( ) P(V T B V t ) = P(σW T t σ2 Be r(t t) (T t) ln V t ) 2 V t ( ) = Φ ln Be r(t t) V t + 1 2 σ2 (T t) σ T t On pourra introduire le ratio d endettement l t = Be r(t t) V t P. Garreau
Merton s Framework Temps de Passage et Barrière Mobile P. Garreau
Merton s Framework Temps de Passage et Barrière Mobile Modèle de Défaut de Black-Scholes-Merton - 1973 Marge de Crédit Ecart de rendement entre la dette sans risque et la dette risquée de l entreprise. m(t, T) = 1 ( ) T t log B t e r(t t) B [ ( ) = 1 T t log 1 ln(lt ) 1 2 Φ σ2 (T t) l t σ T t ( )] ln(1/lt ) 1 2 + Φ σ2 (T t) σ T t l t 1 lim t T m(t, T) = 0. l t 1 lim t T m(t, T) =. P. Garreau
Merton s Framework Temps de Passage et Barrière Mobile P. Garreau
Merton s Framework Temps de Passage et Barrière Mobile Modèle de Temps de passage de Black-Cox - 1976 Temps de défaut Temps d arrêt τ tel que le processus V t tombe en dessous de la barrière B τ B = inf{s t V s B} Relaxer l hypothèse de Merton selon laquelle le défaut n est possible qu à Maturité Modélisation des temps de passage P. Garreau
Merton s Framework Temps de Passage et Barrière Mobile Theorème Theorem Pour un processus X t = at + bw t, (a, b) R 2, et pour x t = min s [0,t] X s alors P(x t x) = Φ( at x b t ) 2Φ( at + x e2ax/b b t ) où Φ est la fonction de répartition d une loi normale La relation entre τ x et x t est ensuite donnée par P(x t x) = P(τ x t) P. Garreau
Merton s Framework Temps de Passage et Barrière Mobile Probabilité de survie On utilise le théorème précédent : Une dynamique de diffusion pure : dv t = V t σ dw t Une barrière fixe de valeur L D a = σ 2 /2 et b = σ x = lnd L où d L = V0 LD T t t D où l expression de la probabilité de survie P(τ > T τ > t, L) = Φ( σ t 2 + ln d L σ t ) d LΦ( σ t 2 lnd L σ t ) P. Garreau
Merton s Framework Temps de Passage et Barrière Mobile Barrière Mobile L incertitude sur la valeur finale de l entreprise porte sur le taux de recouvrement L, et le niveau de la barrière est fixé à L D. On spécifiera ensuite une distribution f L (l) telle que P(τ > T τ > t) = + P(τ > T τ > t, L)f L (l)dl P. Garreau
Dynamique de la Barrière Probabilité de Survie Etude des sensibilités P. Garreau
Dynamique de la Barrière Probabilité de Survie Etude des sensibilités Distribution de la barrière de Défaut On suppose une loi log-normale pour L L = Le λz λ2 /2 i.e. L = E[L] et λ 2 = Var(ln L), Z N(0, 1). Attention, c est une variable aléatoire, pas un processus. On rappelle que la barrière vaut B = LD = LDe λz λ2 /2 La condition de survie s exprime comme σ2 σwt V 0 e 2 t > Le λz λ2 /2 P. Garreau
Dynamique de la Barrière Probabilité de Survie Etude des sensibilités La condition de survie est équivalente à σ2 ) (t + λ2 + σ (W t λσ ) Z } 2 σ 2 {{ } X t On cherche alors la quantité Deux possibilités ln ( LD ) } V 0 e λ2 2 {{ } B P(τ > T τ > t) = P(X T > B τ > t) Une approximation X t - Finger (2002) Une formule exacte qui n est pas celle publiée par CreditGrades P. Garreau
Dynamique de la Barrière Probabilité de Survie Etude des sensibilités Approximation de Finger (2002) L idée est d approximer X t par un processus de même moyenne et de même écart type ) X t = (t σ2 + λ2 2 σ 2 + σ (W t λσ ) Z t 0 ) X t = (t σ2 + λ2 2 σ 2 + σw t+ λ 2 t λ2 σ 2 σ 2 Cette approximation implique donc que l aléa de la barrière est réduit à un décalage temporel. P. Garreau
Dynamique de la Barrière Probabilité de Survie Etude des sensibilités Selon cette approximation, on obtient la probabilité de survie P(τ > T τ > t) = Φ( A t 2 + ln(d) A t ) d.φ( A t 2 ln(d) A t ) A t = σ 2 t + λ 2 et d = V 0e λ 2 2 LD Notons que la probabilité d obtenir un défaut pour t < 0 est non nulle. P. Garreau
Dynamique de la Barrière Probabilité de Survie Etude des sensibilités Probabilité de Survie exacte On utilise la probabilité conditionnelle sur la barrière de défaut. Reprenons la condition de survie σw t σ2 2 t } {{ } La probabilité de survie est donc ( LD ln V 0 ) λ2 2 + λz } {{ } ln d+λz P(τ > T τ > t) = { Φ ( ln d λz σ 2 2 t ) σ t ( lnd + λz σ 2 de λz Φ σ t 2 t )} f Z (z)dz P. Garreau
Dynamique de la Barrière Probabilité de Survie Etude des sensibilités Conclusion sur les deux approches L approximation de Finger (2002) conduit à une probabilité de défaut non nulle pour t ( λ2 σ 2, 0] La probabilité de défaut exacte n est pas celle donnée dans Finger (2002) La différence entre ces deux probabilités est marginale Utilisation de la formule approximée pour le calcul des Grecs P. Garreau
Dynamique de la Barrière Probabilité de Survie Etude des sensibilités La sensibilité au cours du sous-jacent δ(t, T) = m(t, T)/ S t Fig.: Delta CreditGrades for different Volatilities - The x-axis displays S/D and corresponds to the «moneyness» P. Garreau
Dynamique de la Barrière Probabilité de Survie Etude des sensibilités La sensibilité à la volatilité du sous-jacent ν(t, T) = m(t, T)/ σ t Fig.: Vega CreditGrades for different Volatilities - The x-axis displays S/D and corresponds to the «moneyness» P. Garreau
Dynamique de la Barrière Probabilité de Survie Etude des sensibilités Check point + Input : Marché Asset V t Volatilité σ t Taux d intérêt r t + Input : Bilan Dette D t Taux recouvrement L = Output Proba défaut P(τ > T τ > t) Spread m(t, T) Grecs δ et ν P. Garreau
Conditions Limites Choix des inputs Arbitrage et Théorie des inputs Soit η la distance au défaut, en nombre de déviations standard η = 1 ( ) σ ln Vt = 1 ( ) S V LD σ s V S ln Vt LD On condidère deux cas extrêmes V V t LD V t LD + S t S η 1 σ s V t S t η 1 σ s ln ( S t ) LD D où V t { }} { η = S t + LD ln S t + LD σ } {{ s LD } 1/σ t P. Garreau
Conditions Limites Choix des inputs Arbitrage et Théorie Fig.: Alcatel 5Y CDS Spread : Market (blue) vs 6-months put-implied CreditGrades (orange) vs Historical volatility CreditGrades (light purple) - L = 0.5, λ = 0.3, S ref = 8.93 P. Garreau
Conditions Limites Choix des inputs Arbitrage et Théorie Comparaison des Erreurs sur Volatilité Soit θ i le vecteur de paramètres au temps t i, θ i = ( L, λ, r i, D i, S i, S ref ) L erreur quadratique Se(θ i, σ i ) = ( m mkt i m cg i mi mkt L erreur moyenne quadratique comme indicateur de l erreur réalisée sur tout la période MSe(θ, σ) = N Se(θ i, σ i ) Le ratio d erreur quadratique, pour élément de comparaison i=1 ) 2 RMSe(θ, σ T, σ T ) = MSe(θ, σ T) MSe(θ, σ T ) P. Garreau
Conditions Limites Choix des inputs Arbitrage et Théorie Comparaison des Erreurs sur Volatilité 3y 5y 7y 10y 1m 0,797 0,747 0,733 0,697 3m 0,928 0,892 0,877 0,846 6m 0,990 0,958 0,934 0,908 1y 0,988 0,977 0,953 0,936 Tab.: Comparison of Model (CreditGrades) errors by Ratio Mean Squared Errors - The Table presents the windows / options maturity versus Cds Maturity P. Garreau
Conditions Limites Choix des inputs Arbitrage et Théorie Volatilité Implicite CDS La Volatilité implicite CreditGrades est la quantité : σ i = arg min σ m mkt i m cg i On (re)définit l erreur moyenne quadratique et le ratio de correlation entre Cds-implied-to-option-implied et Cds-implied-to-historical ( Se(θ i, mi mkt σi σ ref ) 2 i ) = ˆΣ = 1 σ i N N i=1 ρ(σ i, σ implied i ) ρ(σ i, σ histo i ) (1) Distance to Volatility - RMSe Correlation - ˆΣ 0,93 0,86 Tab.: Comparison of Cds-implied volatility to reference (historical / option-implied) volatility errors by Ratio Mean Squared Errors and Correlation P. Garreau
Conditions Limites Choix des inputs Arbitrage et Théorie Fig.: Alcatel 5Y CDS Spread Implied Volatility (light blue) vs 6-months put-implied volatility (dark blue) vs Historical volatility (light purple) - L = 0.5, λ = 0.3, S ref = 8.93 P. Garreau
Conditions Limites Choix des inputs Arbitrage et Théorie Validation des Sensibilité On cherche à comparer les variations du spread théorique avec les variations de ses deux paramètres principaux : Sous-jacent et volatilité δ t (S t+ t S t ) + 1 2 γ t(s t+ t S t ) 2 m(t + t, T + t; S t+ t ) m(t, T; S t ) σs ν t (σ t+ t σ t ) m(t + t, T + t; σ t+ t ) m(t, T; σ t ) St P. Garreau
Conditions Limites Choix des inputs Arbitrage et Théorie Fig.: 5Y CDS Spread variations vs Equity variations- L = 0.5, λ = 0.3, T = 5 yrs, σ s = 50% - Delta effect (blue), Gamma effect (red) and both (purple) P. Garreau
Conditions Limites Choix des inputs Arbitrage et Théorie Fig.: 5Y CDS Spread variations vs Equity variations - L = 0.5, λ = 0.3, T = 5 yrs - Vega effect for S/D = 1 (dark blue) and S/D = 2 (light blue) P. Garreau
Conditions Limites Choix des inputs Arbitrage et Théorie Fig.: Alcatel 5Y CDS Spread : Market (light blue) vs 6-months put-implied CreditGrades (dark blue) vs Historical volatility CreditGrades (light purple) - L = 0.5, λ = 0.3, S ref = 8.93 P. Garreau
Cadre Théorique Le cas de Telecom Italia Signaux d entrée et de Sortie L arbitragiste joue la convergence du modèle et du marché. On introduit donc naturellement le «tracking error» ε t = m mkt t m cg t En particulier sa moyenne et son écart type µ t = 1 t t 0 ε u du et σ t = 1 t Soient les signaux d entrée et de sortie : t 0 (ε u µ t ) 2 du ε t µ t + α ent σ t ε t µ t + α out σ t Précisions : stop-loss, distance au défaut, durée moyenne de l arbitrage, corrélation equity-cds-volatilité, anxiété de l investisseur... P. Garreau
Cadre Théorique Le cas de Telecom Italia Instruments de réplication Instrument de départ : Credit Default Swap. T MtM t = (m(t, T) m(0, T)) e r(t u) P(u)du t Idée : Réplication du spread théorique CreditGrades par un portefeuille synthétique. où MtM th t T = (α t π t m cg (0, T)) e r(t u) P(u)du t π t = m(t, T)/ σs t P t / σ s t m(t, T) P t + ( m(t, T)/ σs t P t S t P t / σt s )S t S t P. Garreau
Cadre Théorique Le cas de Telecom Italia Paramétrage Bloomberg : volatilité 6-mois imp, S t, D t L = 0.5 - λ = 0.3 - S ref = 2.03 - α ent = 0, 25 - α out = 0, 25 Rebalancement quotidien, Stop-loss / Profit taking, réajustement si varitions quotidiennes > 15% On prend des positions long (s = 1)/short(s = 0) sur les des «jambes»π t = ( 1) [ ] s (π t m cg (0, T))A(t, T) MtMt th On introduit l indice de la stratégie I s T = 100 T i=1 m(0, T)A(t, T) + ik=1 Π k m(0, T)A(t, T) + i 1 k=1 Π k P. Garreau
Cadre Théorique Le cas de Telecom Italia Fig.: Telecom Italia 5Y CDS Spread (light blue) vs corresponding 5Y CreditGrades (dark blue) - L = 0.5, λ = 0.3, S ref = 2.03, α ent = 0,25, α out = 0,25 P. Garreau
Cadre Théorique Le cas de Telecom Italia Fig.: Telecom Italia 5Y CreditGrades (orange) vs Replication portfolio (dark blue), weekly weights rebalancing - L = 0.5, λ = 0.3, S ref = 2.03, α ent = 0, 25, α out = 0,25 P. Garreau
Cadre Théorique Le cas de Telecom Italia Fig.: Alcatel 5Y CDS Spread (light blue) vs corresponding 5Y CreditGrades (dark blue) - L = 0.5, λ = 0.3, S ref = 8,93, α ent = 0, 5, α out = 0,25 P. Garreau
Breaking the Bell Curve Cadre théorique Le cas de General Motors The Ludic Fallacy (N. N. Taleb) The misuse of games to model real-life situations Assymétrie et Evenements extrêmes Risque et aléa Continuité du cours des actions Fig.: Evolution du cours de d Ericsson entre Septembre et Mars 2008 P. Garreau
Breaking the Bell Curve Cadre théorique Le cas de General Motors Double Exponential Jump Process L idée est de perturber la dynamique Gaussienne en introduisant une exponentielle Lévy : où V t = V 0 e Lt N t L t = µt + σw t + ln Y i La densité des sauts est ensuite spécifiée : i=1 f Y (y) = p+ η + e y η + 1 y 0 + p η e y η 1 y<0 P. Garreau
Breaking the Bell Curve Cadre théorique Le cas de General Motors Condition de Martingale E Q [e iult ] = 1 Formule de Lévy-Khintchine E Q [e iult ] = e F(iu)t Formule d Itô-Lévy P(t, V) = E Q [g(v T τ ) V t = V] avec g(v t ) = 1 {Vt> ln d} Changement de variable P(t, V) F(τ, y) et transformée de Laplace U(p, y) = L[F(τ, y)] U(p, y) = Ae φy + Be ψy + 1 p P. Garreau
Breaking the Bell Curve Cadre théorique Le cas de General Motors Fig.: GM 5Y CDS on Senior Debt - market (orange) - Double exponential (light blue) - CreditGrades (dark blue) - λ p = 163.24, q + = 0.48, η + = 0.046, η = 0.11, D = 65, L = 0.5, λ = 30% P. Garreau
Idées clefs Pour étoffer Wrapping up Cadre mathématiques qui revient aux fondamentaux Structure entreprise Barrière et Temps de défaut Introduction d aléa méticuleuse Validation théorique Illustration Empirique Extensions possibles P. Garreau
Idées clefs Pour étoffer Raffiner la connaissance de la Dette et sa dynamique Condition de défaut : EDS Améliorations algorythmiques et Calibrage Identification des risques (risque modèle!) Volatilité Stochastique, Correlation, Processus de Lévy Généralisés... Tous les modèles sont faux. Certains modèles sont utiles. P. Garreau