Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Documents pareils
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. C. Charignon. I Cours 3

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Cours de Probabilités et de Statistique

Exercices sur le chapitre «Probabilités»

Probabilités sur un univers fini

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Qu est-ce qu une probabilité?

Calculs de probabilités conditionelles

Calculs de probabilités

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

CALCUL DES PROBABILITES

Fluctuation d une fréquence selon les échantillons - Probabilités

I. Cas de l équiprobabilité

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

Espaces probabilisés

Arbre de probabilité(afrique) Univers - Evénement

Coefficients binomiaux

Probabilités. I - Expérience aléatoire. II - Evénements

Introduction au Calcul des Probabilités

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

P1 : Corrigés des exercices

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

Probabilités sur un univers fini

Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Probabilités Loi binomiale Exercices corrigés

Feuille d exercices 2 : Espaces probabilisés

TSTI 2D CH X : Exemples de lois à densité 1

PROBABILITÉS CONDITIONNELLES

Correction du Baccalauréat S Amérique du Nord mai 2007

Peut-on imiter le hasard?

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Analyse Combinatoire

LES GENERATEURS DE NOMBRES ALEATOIRES

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Que faire lorsqu on considère plusieurs variables en même temps?

Probabilités conditionnelles Loi binomiale

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Travaux dirigés d introduction aux Probabilités

Correction du baccalauréat ES/L Métropole 20 juin 2014

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as }

Exercices supplémentaires sur l introduction générale à la notion de probabilité

Probabilités conditionnelles Exercices corrigés

Programmes des classes préparatoires aux Grandes Ecoles

Couples de variables aléatoires discrètes

Les probabilités. Chapitre 18. Tester ses connaissances

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

NOTIONS DE PROBABILITÉS

ENS de Lyon TD septembre 2012 Introduction aux probabilités. A partie finie de N

YANN ROUDAUT - Professeur de l Ecole Française de Poker - roudaut@ecolefrancaisedepoker.fr

Précision d un résultat et calculs d incertitudes

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

Annexe commune aux séries ES, L et S : boîtes et quantiles

Mesure de probabilité, indépendance.

Suites numériques 4. 1 Autres recettes pour calculer les limites

POKER ET PROBABILITÉ

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Le produit semi-direct

Probabilités conditionnelles

Andrey Nikolaevich Kolmogorov

Indications pour une progression au CM1 et au CM2

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Probabilités (méthodes et objectifs)

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Statistiques Descriptives à une dimension

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Rappel sur les bases de données

L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun

PROBABILITES ET STATISTIQUE I&II

Poker. A rendre pour le 25 avril

Université Paris-Dauphine DUMI2E 1ère année, Applications

Axiomatique de N, construction de Z

C est à vous qu il appartient de mettre en place des conditions optimales pour permettre la meilleure réalisation possible.

PRIME D UNE OPTION D ACHAT OU DE VENTE

Chapitre VI - Méthodes de factorisation

Les devoirs en Première STMG

MATHÉMATIQUES APPLIQUÉES S4 Exercices

Cryptographie et fonctions à sens unique

Le modèle de Black et Scholes

Compter à Babylone. L écriture des nombres

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

Probabilités et Statistique

La simulation probabiliste avec Excel

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

Corps des nombres complexes, J Paul Tsasa

L exclusion mutuelle distribuée

Dépouillement questionnaire satisfaction TAP

ÉPREUVE COMMUNE DE TIPE Partie D

Entraînement, consolidation, structuration... Que mettre derrière ces expressions?

Plan du cours : électricité 1

Transcription:

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont des expériences aléatoires. Leur résultat n est connu que lorsque l expérience aléatoire a pris fin. On peut cependant envisager a priori des éventualités (des résultats possibles) mais seule la fin de l expérience nous permet de savoir si telle éventualité est réalisée ou non. Un événement est un ensemble d éventualités qui est réalisé si l une de ces éventualités est réalisée. Dans une expérience aléatoire certains événements sont plus probables que d autres ; d où l idée de chiffrer les chances qu a un événement de se produire. Cette idée trouve une justification expérimentale connue sous le nom de loi empirique des grands nombres : Soit A un événement relatif à une certaine expérience aléatoire (par exemple A="sortir pile" quand on joue à pile ou face). Répétons N fois (dans les mêmes conditions expérimentales) l expérience aléatoire et soit N A le nombre de fois où A s est réalisé au cours des N essais. On constate que le rapport f A = N A N appelé fréquence de l événement A, reste pratiquement constant pour N assez grand, de sorte qu on peut considérer ce nombre comme une caractéristique intrinsèque de l événement A. Dans le cas de l exemple, pour une pièce correcte, on constate que f A = 0, 5 dès que N est assez grand. 2 Expérience aléatoire et événements 2.1 Définitions Il est naturel de représenter une expérience aléatoire par l ensemble de toutes ses éventualités (qu on suppose pour l instant en nombre fini). Par exemple lancer un dé peut se représenter par l ensemble (1) Ω = {1, 2, 3, 4, 5, 6}. Notes du cours de Probabilités de M1 de M. L. Gallardo, Université de Tours, année 2008-2009. Les démonstrations sont détaillées dans le cours oral. 1

Un événement est un ensemble d éventualités ; par exemple "il sort un nombre pair" est représenté par le sous-ensemble A = {2, 4, 6}. L ensemble des éventualités autres que celles de A est un événement appelé contraire de A ; il est noté Ā. Toujours avec le même exemple, Ā = {1, 3, 5}. Deux événements A et B peuvent avoir des éventualités en commun. L ensemble des éventualités communes à A et B constitue un événement noté A B et appelé conjonction des événements A et B. Avec l exemple ci-dessus, si A ="il sort un nombre pair"= {2, 4, 6} et B ="il sort un nombre supérieur ou égal à 4"= {4, 5, 6}, on a A B = {4, 6}. Si on réunit les éventualités de deux événements A et B, on obtient un événement appelé événement A ou B 1 et noté A B. Toujours avec l exemple précédent, on a A B = {2, 4, 5, 6}. 2.2 Réalisation d un événement On dit que l événement A s est réalisé si et seulement si l une des éventualités constituant A s est réalisée. Ainsi on a : A réalisé Ā non réalisé A B réalisé A réalisé et B réalisé A B réalisé A réalisé ou B réalisé 3 Expérience aléatoire probabilisée Définition 3.1 : Si une expérience aléatoire est schématisée par un ensemble fini Ω appelé univers des possibles, alors : les éléments de Ω sont appelés éventualités. les éléments de l ensemble P(Ω) des parties de Ω sont appelés événements. Remarque 3.2 : Désormais on considérera un événement comme un sous-ensemble de Ω sans faire référence à sa réalisation ou sa nonréalisation. Les opérations ensemblistes, et trouvent alors une interprétation en termes d événements. On utilisera le vocabulaire suivant : écriture ensembliste Ω A( P(Ω)) Ā A B A B A B = A B formulation probabiliste événement certain événement impossible événement A événement non A événement A et B événement A ou B A et B sont incompatibles A implique B 1 attention, il s agit du «ou» mathématique, c est à dire le «ou» non exclusif. 2

Remarque 3.3 : Soit N > 0 un entier fixé. Notons f A la fréquence de l événement A au cours de N répétitions successives de l expérience aléatoire (voir le 1). On voit immédiatement que l application A f A possède les deux propriétés suivantes : 1) f Ω = 1 2) A B = = f A B = f A + f B. Les axiomes des probabilités sont calqués sur ces propriétés de la fréquence. Définition 3.4 : L univers fini Ω est probabilisé si à chaque événement A P(Ω) est associé un nombre P(A) 0, appelé probabilité de A de telle sorte que pour A, B P(Ω) les deux propriétés suivantes soient satisfaites : 1) P(Ω) = 1 2) A B = = P(A B) = P(A) + P(B). Le couple (Ω, P) où l application P définie sur P(Ω) vérifie les conditions ci-dessus, est appelé espace probabilisé. Les propriétés immédiates de la probabilité sont les suivantes : Proposition 3.5 : Si (Ω, P) est un espace probabilisé fini, pour tous A, B P(Ω), on a 1) 0 P(A) 1. 2) P(Ā) = 1 P(A). 3) P( ) = 0. 4) P(A B) = P(A) + P(B) P(A B). De plus si A 1..., A n sont des événements deux à deux incompatibles, P( n i=1a i ) = n P(A i ). i=1 Définition 3.6 : Soit Ω = {ω 1,..., ω n } un espace probabilisé fini et soient p 1 = P(ω 1 ),..., p n = P(ω n ) les probabilités des éventualités de Ω. La suite des nombres p i, i = 1,..., n s appelle la distribution de probabilité sur Ω. Ces nombres p i vérifient les propriétés suivantes : 1) 0 p i 1 pour tout i {1,..., n}. 2) n i=1 p i = 1. 3) si A = i J {ω i } alors P(A) = i J p i. Définition 3.7 : Etant donné un univers Ω, on appelle système complet d événements toute partition (A i ) i I de l ensemble Ω. Autrement dit les A i sont des événements deux à deux incompatibles et de réunion égale à Ω. Souvent on attache plus d importance à un système complet d événements (A i ) i I et aux événements obtenus comme réunion de certains A i qu aux éventualités (i.e. les éléments de Ω). Dans ce cas, on considère les A i (i I) comme de nouvelles éventualités et on n utilise alors que la distribution de probabilité associée aux A i. 3

Exemple 3.8 : Si on joue avec deux dés un blanc et un rouge, l expérience aléatoire peut être modélisée par l ensemble Ω des couples (a, b) où a est le numéro obtenu avec le dé blanc et b le numéro obtenu avec le dé rouge. Autrement dit Ω est le produit cartésien Ω = {1,..., 6} {1,..., 6}. Considérons les événements A i, 2 1 12 définis par : A i = la somme des points marqués égale i Les A i (2 i 12) forment un système complet d événements. Si on ne s intéresse qu à la somme des points marqués, il est plus commode d introduire un nouvel espace Ω = {A 2, A 3,..., A 12 } dont les nouvelles éventualités sont les A i et la distribution de probabilité sur Ω est donnée par : P(A 2 ) = 1, P(A 36 3) = 2, P(A 36 4) = 3, P(A 36 5) = 4, P(A 36 6) = 5, 36 P(A 7 ) = 6, P(A 36 8) = 5, P(A 36 9) = 4, P(A 36 10) = 3, P(A 36 11) = 2, 36 P(A 12 ) = 1. 36 Soit A l événement "la somme des points marqués est supérieure ou égale à 10". On a P(A) = P(A 10 ) + P(A 11 ) + P(A 12 ) = 3 36 + 2 36 + 1 36 = 1 6. 4 Probabilité équidistribuée 4.1 Généralités Soit Ω = {ω 1,..., ω n } un ensemble fini, P une probabilité sur Ω, et p 1 = P(ω 1 ),..., p n = P(ω n ) la distribution de probabilité correspondante sur Ω. Définition 4.1 : On dit que la probabilité est équidistribuée sur Ω si p 1 = p 2 =... = p n = 1 n. Proposition 4.2 : Si la probabilité est équidistribuée sur Ω, pour tout événement A, on a P(A) = card A. card Ω (en d autres termes plutôt anciens, P(A) = nombre de cas favorables à A nombre total de cas possibles ). Exemple 4.3 : La plupart des exemples élémentaires de probabilité équidistribuée ont trait aux jeux de hasard : 1) Quand on lance un dé, quelle est la probabilité d obtenir un nombre supérieur à 4 (événement A)? L expérience aléatoire se modélise par l ensemble Ω = {1,..., 6}. Si le dé n est pas truqué, il est naturel d admettre qu aucune face n est privilégiée donc que la probabilité est équidistribuée. On a donc P(A) = p 5 + p 6 = 2 = 1. 6 3 2) En tirant une carte d un jeu de 32 cartes, quelle est la probabilité d obtenir un as (événement A)? L expérience a ici 32 éventualités chacune équiprobable. Donc P(A) = 4 = 1. 32 8 3) Si on tire successivement 3 cartes d un jeu de 32 cartes (sans remise) 4

quelle est la probabilité d obtenir 3 as (événement A)? Ici la réponse dépend d une modélisation convenable de l expérience aléatoire consistant à tirer 3 cartes sans remise. Sa solution est étudiée dans le paragraphe suivant. 4.2 Tirages sans remise Les tirages sans remise interviennent si souvent dans les modèles probabilistes qu il convient que le débutant ait des idées claires sur cette question. Soit E un ensemble de N objets (par exemple des cartes ou d autres choses). Par définition «tirer un objet au hasard dans E» est une expérience aléatoire probabilisée qu on modélise par l espace Ω = E (car les éventualités sont les divers objets qu on peut «tirer» de l ensemble E qu on assimile à un sac dans lequel on va plonger le main pour en tirer un objet) et on suppose que la probabilité est équidistribuée sur Ω (c est ce qui justifie le terme tirer au hasard, ce qui suppose que les objets ont été bien mélangés dans le sac E et que chaque objet a la même probabilité d être choisi). Supposons qu il y ait dans E un nombre N C d objets possédant une certaine caractéristique C alors la probabilité de tirer un objet de type C est égale à N C N c est à dire c est la proportion d objets de type C dans E. Si maintenant on tire au hasard successivement r objets sans remise dans E (1 < r N) (i.e. on tire un objet dans E puis un deuxième dans E, etc... mais à chaque fois sans remettre les différents objets déjà tirés). Comment modéliser cette expérience aléatoire? : On convient de ne s intéresser qu aux r objets tirés et non à l ordre dans lequel ils ont été tirés (autrement dit tout se passe comme si on avait tiré les r objets d un seul coup dans E). Tout sous ensemble de E à r éléments est une éventualité. On modélise donc l expérience aléatoire «tirer r objets dans E sans remise» par l espace Ω = {F P(E); cardf = r} de toutes les parties de E ayant r éléments. On sait depuis le lycée que cardω = Cn r = n!. Par définition (de "au hasard") on suppose r!(n r)! que la probabilité est équidistribuée sur Ω, c est à dire que chaque éventualité a pour probabilité 1. Cn r Ainsi si on tire au hasard 3 cartes (sans remise) d un jeu de 32 la probabilité d obtenir 3 as (événement A) est égale à P(A) = carda = C3 4 = 4 4960 = 1 1240 = 0, 0008. La probabilité d obtenir au moins un valet (événement B) (en tirant toujours 3 cartes), vaut P(B) = 1 P( B) = 1 C3 28 = 1 819 1240 = 421 1240. 5