Electromagnétique 4 (1 ère session)



Documents pareils
G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Cours de Mécanique du point matériel

Travaux dirigés de magnétisme

I - Quelques propriétés des étoiles à neutrons

Plan du cours : électricité 1

Les Conditions aux limites

5. Les conducteurs électriques

Chapitre 0 Introduction à la cinématique

PHYSIQUE 2 - Épreuve écrite

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Fonctions de plusieurs variables

À propos d ITER. 1- Principe de la fusion thermonucléaire

Cours d Analyse. Fonctions de plusieurs variables

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Plan du chapitre «Milieux diélectriques»

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Fonctions de plusieurs variables

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Calcul intégral élémentaire en plusieurs variables

Sujet. calculatrice: autorisée durée: 4 heures

Oscillations libres des systèmes à deux degrés de liberté

Michel Henry Nicolas Delorme

Chapitre 2 : Caractéristiques du mouvement d un solide

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Sujet. calculatrice: autorisée durée: 4 heures

Champ électromagnétique?

Chapitre 1 Cinématique du point matériel

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

DYNAMIQUE DE FORMATION DES ÉTOILES

DIFFRACTion des ondes

La fonction exponentielle

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Chapitre 2 Le problème de l unicité des solutions

TD 9 Problème à deux corps

NOTICE DOUBLE DIPLÔME

F411 - Courbes Paramétrées, Polaires

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Théorème du point fixe - Théorème de l inversion locale

Test : principe fondamental de la dynamique et aspect énergétique

OM 1 Outils mathématiques : fonction de plusieurs variables

Introduction à l'electromagnétisme

Programmes des classes préparatoires aux Grandes Ecoles

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

P17- REACTIONS NUCLEAIRES

Développements limités. Notion de développement limité

Contrôle non destructif Magnétoscopie

Repérage d un point - Vitesse et

PROBLÈMES DE RELATIVITÉ RESTREINTE (L2-L3) Christian Carimalo

Cours d Electromagnétisme

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR. Lecteurs optiques numériques

TD de Physique n o 1 : Mécanique du point

Module : propagation sur les lignes

Précision d un résultat et calculs d incertitudes

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

Cours 02 : Problème général de la programmation linéaire

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

aux différences est appelé équation aux différences d ordre n en forme normale.

Différentiabilité ; Fonctions de plusieurs variables réelles

Les interférences lumineuses

Introduction. Mathématiques Quantiques Discrètes

Premier principe de la thermodynamique - conservation de l énergie

DISQUE DUR. Figure 1 Disque dur ouvert

Caractéristiques des ondes

Cours 1. Bases physiques de l électronique

Texte Agrégation limitée par diffusion interne

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

ETUDE REALISEE A LA DEMANDE DE LA REGION DE BRUXELLES-CAPITALE. W. PIRARD, Ingénieur Civil en Electronique, Chef de la Section Electronique Appliquée.

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

1STI2D - Les ondes au service de la santé

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Mesure de la dépense énergétique

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Algorithmes pour la planification de mouvements en robotique non-holonome

Fonctions de deux variables. Mai 2011

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

Chapitre 6 La lumière des étoiles Physique

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Chapitre1: Concepts fondamentaux

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Propriétés électriques de la matière

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Résonance Magnétique Nucléaire : RMN

Fonctions de plusieurs variables. Sébastien Tordeux

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Les Antennes indépendantes de la fréquence

Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité

Angles orientés et fonctions circulaires ( En première S )

Représentation géométrique d un nombre complexe

Problèmes sur le chapitre 5

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

Transcription:

Licence SP Sem4 mardi 30 mai 2006 (1 ère session) Durée : 2 h 00 Document autorisé : aucun Calculatrice : non autorisée I. Equations locales : En intégrant les équations locales en considérant un régime permanent, retrouver les 2 propriétés des champs électrique et magnétique. II Potentiel vecteur. Vérifiez que le potentiel vecteur d un champ magnétique uniforme en un B r point M tel que OM =r, O étant le point fixe, est : A = 2 III. Dipôle. On modélise l'électron par une sphère de rayon R uniformément chargée en volume et de charge totale -e. Cette sphère est mise ne rotation autour de l'un de ses diamètre avec une vitesse angulaire ω supposée constante. Calculer, en fonction de e, R et ω, le moment magnétique de cet électron.. IV. Energie électrique. Calculer l'énergie électrostatique d'une boule de rayon R portant une charge totale Q répartie sur sa surface à partir de l'expression de la densité d'énergie électrique. Retrouver ce résultat en calculant le travail fourni par un utilisateur pour construire cette boule. V. Equations de Maxwell. Vérifier l homogénéité (en dimension) des équations de Maxwell. Pour cela on notera T le temps, A les ampères, L les longueurs et V les volts. On utilisera le théorème de Gauss pour déterminer la dimension de ε 0 et la relation entre ε 0, µ 0 et la célérité des ondes électromagnétiques dans le vide pour la dimension de la perméabilité magnétique.

Licence SP Sem4 mardi 30 mai 2006 (2 ème session) Durée : 1 h 30 Document autorisé : aucun Calculatrice : non autorisée 1. Opérateurs différentiels. Calculer le rotationnel et la divergence de chacun du champ de vecteur suivant: A x = 2y; A y = 2x + 3z A z = 3y Si le rotationnel est nul, tenter de trouver la fonction scalaire V telle que le champ de vecteur en soit son gradient. 2. Equation de Maxwell-Ampère. Un corps radioactif en forme de feuille plane se désintègre en émettant des particules chargées. Au voisinage de la surface de la feuille l émission est homogène et perpendiculaire à la surface du matériau. Soit q(t) la charge contenue à l instant t dans un tronçon cylindrique de section S, de longueur 2e, symétrique et d axe perpendiculaire par rapport au plan de la feuille. a) Calculez, en fonction de q(t) et de S, la densité de courant J(q(t)) au voisinage de la feuille. b) La symétrie du problème montre que le champ électrique est perpendiculaire au plan dans cette région. Calculez son expression en fonction de q(t) et de S. c) La symétrie du problème montre que le champ magnétique est nul dans cette région. Montrez que ce résultat n est pas incompatible avec l équation de Maxwell-Ampère. 3. Equation de Maxwell. On considère un milieu vide de charge et de courant. En appliquant le rotationnel à l'équation de Maxwell issue de la loi de Faraday retrouver l'équation d'onde à laquelle obéit le champ électrique. On rappel : rotrot A = graddiva - A

Licence SP Sem4 9 mai 2007 (1 ère session) Durée : 1 h 30 Document autorisé : aucun Calculatrice : non autorisée 1. Energie magnétique. Retrouver l'expression du coefficient d'auto-induction d'un solénoïde de rayon R, de longueur L et comportant n spires par unité de longueur à partir de l'expression de la densité d'énergie. On admettra que le champ magnétique à l'intérieur du solénoïde est : B=µ 0 ni. 2. Equations de Maxwell. Rappeler les équations de Maxwell et leur lien avec les propriétés macroscopiques des champs électrique et magnétique. 3. Conditions aux limites entre 2 milieux. On considère une sphère de matière polarisée de rayon R. On la place au centre d'un repère Oxyz. Le champ électrique à l'intérieur de cette sphère vaut P Ei =, avec P = Pez. A l'extérieur le champ est tel qu'il est équivalent à celui d'un dipôle placé 3ε 0 4 3 en O et de moment dipolaire p = π R. P. 3 Exprimer les conditions aux limites du champ électrique (composantes tangentielle et perpendiculaire) et en déduire l'expression de la densité de charges à la surface de la sphère. Je rappelle les composantes du champ électrique créé par un dipôle de moment dipolaire p : 2 pcosθ psinθ E = e 3 r + e 3 θ 4πε r 4πε r 0 0 4. Onde plane monochromatique associée à un faisceau laser. Un faisceau laser de longueur d onde λ émet une OPM polarisée rectilignement qui se propage dans une direction Ox contenue dans le plan Oxy et faisant un angle de 60 avec l axe Ox. Le faisceau est polarisé rectilignement suivant Oz. Ecrire les composantes du vecteur d onde, du champ électrique, du champ magnétique et du vecteur de Poynting. - o o o o o o o o o - 1

Licence SP Sem4 14 juin 2007 (2 ème session) Durée : 1 h 30 Document autorisé : aucun Calculatrice : non autorisée 1. Energie électrique. Retrouver, à partir de l'expression de la densité d'énergie, l'expression de la capacité d'un condensateur plan dont les armatures ont une surface S et sont distantes d'une distance d. 2. Equations de Maxwell. Rappeler les équations de Maxwell et leur lien avec les propriétés des champs électrique et magnétique. 3. Conditions aux limites entre 2 milieux. On considère un cylindre de matière aimantée de rayon R et de longueur L. Son axe coïncide avec l'axe Oz d'un repère Oxyz. Le champ magnétique à r l'intérieur du cylindre vaut Bi = M 0ez, et est nul à l'extérieur. R Exprimer les conditions aux limites du champ magnétique (composantes tangentielle et perpendiculaire) à la surface du cylindre et en déduire l'expression de la densité surfacique de courant sur cette surface. 4. Propagation d une onde radio. a) Rappeler l'équation d'onde et donner sa solution dans le cas général Une OEM monochromatique plane, polarisée rectilignement suivant l axe Ox, se propage dans le vide dans la direction des z croissants. L amplitude du champ électrique est E m = 0.3V/m et sa fréquence ν = 300MHz. b) Calculer la longueur d onde et l amplitude du champ magnétique c) Trouver les expressions des champs électrique et magnétique sachant que la valeur maximale du champ électrique E est atteinte au point z = 25 cm à l instant pris comme origine. - o o o o o o o o o - 2

Licence SP Sem4 lundi 28 avril 2008 (1 ère session) Durée : 2 h 00 Document autorisé : aucun Calculatrice : non autorisée 1. Equations locales : En intégrant les équations locales en considérant un régime permanent, retrouver les 2 propriétés des champs électrique et magnétique. 2 Potentiel vecteur. Vérifiez que le potentiel vecteur d un champ magnétique uniforme en un B r point M tel que OM =r, O étant le point fixe, est : A = 2 3. Equation de Maxwell-Ampère. Un corps radioactif en forme de feuille plane se désintègre en émettant des particules chargées. Au voisinage de la surface de la feuille l émission est homogène et perpendiculaire à la surface du matériau. Soit q(t) la charge contenue à l instant t dans un tronçon cylindrique de section S, de longueur 2e, symétrique et d axe perpendiculaire par rapport au plan de la feuille. a) Calculez, en fonction de q(t) et de S, la densité de courant J(q(t)) au voisinage de la feuille. b) La symétrie du problème montre que le champ électrique est perpendiculaire au plan dans cette région. Calculez son expression en fonction de q(t) et de S. c) La symétrie du problème montre que le champ magnétique est nul dans cette région. Montrez que ce résultat n est pas incompatible avec l équation de Maxwell-Ampère. 4. Energie électrique. Calculer l'énergie électrostatique d'une boule de rayon R portant une charge totale Q répartie dans tout son volume à partir de l'expression de la densité d'énergie électrique. Retrouver ce résultat en calculant le travail fourni par un utilisateur pour construire cette boule.

Licence SP Sem4 mardi 3 juin 2008 (2 ème session) Durée : 1 h 30 Document autorisé : aucun Calculatrice : non autorisée 1. Opérateurs différentiels. Calculer le rotationnel et la divergence du champ de vecteur suivant: A x = 2y; A y = 2x + 3z A z = 3y Si le rotationnel est nul, tenter de trouver la fonction scalaire V telle que le champ de vecteur en soit son gradient. 2. Equations de Maxwell. Vérifier l homogénéité (en dimension) des équations de Maxwell. Pour cela on notera T le temps, A les ampères, L les longueurs et V les volts. On utilisera le théorème de Gauss pour déterminer la dimension de ε 0 et la célérité des ondes électromagnétiques dans le vide pour la dimension de la perméabilité magnétique. 3. Equation de Maxwell. On considère un milieu vide de charge et de courant. En appliquant le rotationnel à l'équation de Maxwell issue de la loi de Faraday retrouver l'équation d'onde à laquelle obéit le champ électrique. On rappel : rotrot A = graddiva - A 4. Ondes stationnaires : On cherche une solution de l'équation d'onde de la forme : F(x,t) = f (x) cosωt Montrer que f(x) obéit à une équation différentielle et donner la forme de sa solution. Montrer que les conditions aux limites F(0,t) = 0 et F(a, t) = 0 imposent des valeurs à ω qu'on exprimera en fonction d' un entier n (F décrit une onde stationnaire).

UNIVERSITE DE POLYNESIE FRANCAISE Vendredi 13 Mars 2009 ELECTROMAGNETISME 4 Licence 2 ème année Examen 1- QUESTION DE COURS Donner les équations de Maxwell dans leur expression la plus générale dans le vide. En l absence de charges et de courants, établir les équations d onde satisfaites par les deux champs E et B. Donner le type de solution qui satisfait l équation d onde et leur signification. Comment sont décrites les ondes stationnaires? On indique que rot( rota) = grad diva A 2- SPHERE CHARGEE Calculer le champ et le potentiel électrostatique créés en tout point de l espace par une sphère de centre O et de rayon R portant : a) une densité surfacique de chargesσ ; b) une densité volumique de charges ρ. 3- CABLE COAXIAL On peut admettre que l expression de l inductance propre d un câble coaxial de longueur h de rayon d'âme a et de rayon de gaine b est : µ 0h b L =. ln 2π a Ce résultat s'obtient en négligeant, dans le calcul des flux, les régions conductrices (âme et gaine) devant la région isolante. Retrouvez ce résultat, avec les mêmes approximations, en utilisant la densité d énergie électromagnétique. 4- NAPPE DE COURANT CYLINDRIQUE Etablir l expression du champ magnétique et du potentiel vecteur créés, en tout point de l espace, par un cylindre infini, de rayon R, d axe Oz, parcouru par un courant surfacique correspondant à une densité uniforme λ par unité de longueur du fil, dirigé selon Ox. On admettra que le champ est orthoradial ( B = B( r) e ). θ

Licence SP Sem4 mercredi 27 mai 2009 (2 ème session) Durée : 1 h 30 Document autorisé : aucun Calculatrice : non autorisée 1. Sphère chargée Calculer le champ et le potentiel électrostatique créés en tout point de l espace par une sphère de centre O et de rayon R portant une densité surfacique de chargesσ. 2. Equations de Maxwell. Vérifier l homogénéité (en dimension) des équations de Maxwell. Pour cela on notera T le temps, A les ampères, L les longueurs et V les volts. On utilisera le théorème de Gauss pour déterminer la dimension de ε 0 et la célérité des ondes électromagnétiques dans le vide pour la dimension de la perméabilité magnétique. 3. Equations de Maxwell. On considère un milieu vide de charge et de courant. En appliquant le rotationnel à l'équation de Maxwell issue de la loi de Faraday retrouver l'équation d'onde à laquelle obéit le champ électrique. On rappel : rotrot A = graddiva - A 4. Ondes stationnaires : On cherche une solution de l'équation d'onde de la forme : F(x,t) = f (x) cosωt Montrer que f(x) obéit à une équation différentielle et donner la forme de sa solution. Montrer que les conditions aux limites F(0,t) = 0 et F(a, t) = 0 imposent des valeurs à ω qu'on exprimera en fonction d' un entier n (F décrit une onde stationnaire).

UNIVERSITE DE POLYNESIE FRANCAISE Mardi 27 avril 2010 ELECTROMAGNETISME 4 Licence SP 2 ème année 1 ère Session 1- Cours A Etablir l'équation d'onde du champ magnétique à partir d'une équation de Maxwell. B Le champ magnétique d'une onde électromagnétique progressive monochromatique est dirigé suivant l'axe Oz et se propage suivant l'axe Oy avec une amplitude B 0. a) donner l'expression générale de ce vecteur champ en fonction de B 0 (définir chaque terme utilisé) b) donner l'expression générale du vecteur champ électrique associé. 2- Cylindre coaxial Considérons un câble coaxial de longueur infinie dont le rayon de l'âme est a et le rayon intérieur de la gaine est b. Nous avions montré que le champ magnétique créé par un tel câble était nul à l'extérieur et, en négligeant l'épaisseur de la gaine et l'espace occupé par l'âme, nous avions calculé l'inductance par unité de longueur: µ L = 0 ln( b ) 2π a Calculez, avec les mêmes hypothèses, l'énergie par unité de longueur à partir de la densité d'énergie magnétique et exprimez là en fonction de L 3- Champ électrique dans la matière - 1. Condensateur plan : considérons dans l'air deux disques conducteurs parallèles, de surface S et distants de d. On intercale entre les disques un cylindre diélectrique plan de même axe, homogène de longueur e < d et de constante diélectrique relative ε. e ε a) Calculez les champs électriques E 0 et E d respectivement dans l'air et dans le diélectrique (vous négligerez les effets de bord). b) Exprimez la différence de potentiels entre les deux armatures et déduisez la capacité de ce condensateur. Montrer qu'elle s'exprime comme l'association de 2 condensateurs. 4- Champ électrique a) On considère un cylindre de rayon R, de longueur infinie et chargé en surface avec une densité de charge σ constante. A partir d'une des équations de Maxwell et des conditions aux limites déterminer le champ électrique à l'intérieur et à l'extérieur du cylindre. b) Ce même cylindre est maintenant chargé en volume avec une densité de charges constante ρ. A partir d'une des équations de Maxwell, des conditions aux limites et en admettant que le champ ne peut être infini sur l'axe du cylindre, déterminer le champ électrique à l'intérieur et à l'extérieur du cylindre. 1 1 Aθ Az On rappelle : div( A) =. ( rar ) +. + r r r θ ϕ 1 Az Aθ Ar Az 1 ( raθ ) 1 Ar rot A =. er eθ.. ez r θ z + + z r r r r θ

Licence SP Sem4 mardi 8 juin 2010 (2 ème session) Durée : 2 h 00 Document autorisé : aucun Calculatrice : non autorisée 1. Opérateurs différentiels. Calculer le rotationnel et la divergence du champ de vecteur suivant: A x = 2y; A y = 2x + 3z A z = 3y 2. Energie magnétique. Retrouver l'expression du coefficient d'auto-induction d'un solénoïde de rayon R, de longueur L et comportant n spires par unité de longueur à partir de l'expression de la densité d'énergie. On admettra que le champ magnétique à l'intérieur du solénoïde est : B=µ 0 ni. 3. Equations de Maxwell. Rappeler les équations de Maxwell et leur lien avec les propriétés macroscopiques des champs électrique et magnétique. 4. Conditions aux limites entre 2 milieux. On considère une sphère de matière polarisée de rayon R. On la place au centre d'un repère Oxyz. Le champ électrique à l'intérieur de cette P sphère vaut Ei =, avec P = Pez. A l'extérieur le champ est tel qu'il est équivalent à celui 3ε 0 4 3 d'un dipôle placé en O et de moment dipolaire p = π R. P. 3 Exprimer les conditions aux limites du champ électrique (composantes tangentielle et perpendiculaire) et en déduire l'expression de la densité de charges à la surface de la sphère. Je rappelle les composantes du champ électrique créé par un dipôle de moment dipolaire p : 2 pcosθ psinθ E = e 3 r + e 3 θ 4πε r 4πε r 0 0 5. Onde plane monochromatique associée à un faisceau laser. Un faisceau laser de longueur d onde λ émet une OPM polarisée rectilignement qui se propage dans une direction Ox contenue dans le plan Oxy et faisant un angle de 60 avec l axe Ox. Le faisceau est polarisé rectilignement suivant Oz. Ecrire les composantes du vecteur d onde, du champ électrique, du champ magnétique et du vecteur de Poynting.

UNIVERSITE DE POLYNESIE FRANCAISE Lundi 02 mai 2011 ELECTROMAGNETISME 4 Licence SP 2 ème année 1 ère Session 1- Cours A Etablir l'équation d'onde du champ électrique à partir d'une équation de Maxwell. B - Le champ magnétique d'une onde électromagnétique progressive monochromatique est dirigé suivant l'axe Oz et se propage suivant l'axe Oy avec une amplitude B 0. Donner l'expression générale de ce vecteur champ en fonction de B 0 (définir chaque terme utilisé) b) donner l'expression générale du vecteur champ électrique associé. C - Vérifier que le champ électromagnétique suivant vérifie les équations de Maxwell dans le vide privé de charge et de courant (avec c²=1/ µ 0.ε 0 ) : E x = E y = 0 ; E z = c cos(y - ct) et B x = cos(y - ct) ; B y = B z = O 2. Champ d'une sphère uniformément chargée en surface. Une sphère de rayon R porte une charge Q uniformément répartie dans sur sa surface. On admettra (mais on peut le E = E e ).. r montrer) que le champ est radial ( a) Ecrire les équations locales auxquelles satisfait le champ E dans tout l espace. b) Résoudre ces équations et exprimes la ou les expressions de E en fonction d une constante. c) Achever la détermination de E en utilisant la continuité de E en r = R (rappeler la règle de continuité) et le fait que le champ ne peut pas être nul en r = 0. d) Rappeler l expression de la densité d énergie électrique. e) Appliquer cette définition au cas de la sphère en question et calculer l énergie potentielle électrique associée à cette sphère f) Retrouver cette énergie par utilisation de la définition de l énergie électrostatique 3 - Onde progressive non plane. On s'intéresse à la fonction scalaire suivante : π z F = Acos cos( kx ωt) où A, a, k et ω sont des constantes. 2a a) A quelle condition cette fonction est-elle une onde? b) Pour ce soit le cas, montrer qu'il existe une relation entre k, c, a et ω et que ce type de solution ne convient que si ω > ω 0. Déterminer ω 0. 4 Superposition d'ondes progressives. Soit l'onde plane progressive suivante : F 1 = A cos((kx-ωt). a) Ecrire l'expression F 2 correspondant à une onde de même amplitude A, de même fréquence ω et se propageant en sens inverse. b) Montrer que la superposition de ces 2 ondes aboutit à une onde du type de l'exemple du cours (ondes stationnaire). On rappelle : 1 ( ² ) 1 1 dive =. r A diva r (sin. A ) A ϕ = + θ ϕ + r² r r sinθ θ r sinθ ϕ cos(a-b)=cosacosb+sinasinb sin(a-b)=sinacosb-cosasinb

Licence SP Sem4 08 juin 2011 (2 ème session) Durée : 2 h 00 Document autorisé : aucun Calculatrice : non autorisée 1. Opérateurs différentiels. Calculer le rotationnel et la divergence du champ de vecteur suivant: A x = 2y; A y = 2x + 3z A z = 3y Si le rotationnel est nul, exprimer la fonction potentielle dont le vecteur A dérive. 2. Cours. Compléter le tableau ci-dessous source de champ Electrostatique magnétostatique Exemple d'expression de champ élémentaire circulation Flux équations locales lignes de champ potentiel

3. Energie magnétique. Retrouver l'expression du coefficient d'auto-induction d'un solénoïde de rayon R, de longueur l et comportant n spires par unité de longueur à partir de l'expression de la densité d'énergie. On admettra que le champ magnétique à l'intérieur du solénoïde est : B=µ 0 ni.