Les Conditions aux limites



Documents pareils
Fonctions de plusieurs variables

Plan du cours : électricité 1

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Continuité et dérivabilité d une fonction

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Champ électromagnétique?

Circuits RL et RC. Chapitre Inductance

Chapitre 0 Introduction à la cinématique

Nombre dérivé et tangente

F411 - Courbes Paramétrées, Polaires

Chapitre 2 Le problème de l unicité des solutions

5. Les conducteurs électriques

Chapitre 1 Régime transitoire dans les systèmes physiques

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Cours Fonctions de deux variables

Chapitre 6. Fonction réelle d une variable réelle

Cours 1. Bases physiques de l électronique

Dualité dans les espaces de Lebesgue et mesures de Radon finies

OM 1 Outils mathématiques : fonction de plusieurs variables

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Précision d un résultat et calculs d incertitudes

2.4 Représentation graphique, tableau de Karnaugh

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

TP 7 : oscillateur de torsion

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Thème 17: Optimisation

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Plan du chapitre «Milieux diélectriques»

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

PHYSIQUE 2 - Épreuve écrite

Cours d Analyse. Fonctions de plusieurs variables

Fonctions homographiques

Examen d informatique première session 2004

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Complément d information concernant la fiche de concordance

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

C f tracée ci- contre est la représentation graphique d une

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Capacité Métal-Isolant-Semiconducteur (MIS)

Texte Agrégation limitée par diffusion interne

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

La fonction exponentielle

Fonctions de deux variables. Mai 2011

DOCM Solutions officielles = n 2 10.

Oscillations libres des systèmes à deux degrés de liberté

Lecture graphique. Table des matières

Comparaison de fonctions Développements limités. Chapitre 10

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

NOTICE DOUBLE DIPLÔME

Chapitre 1 : Évolution COURS

O, i, ) ln x. (ln x)2

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Commun à tous les candidats

TSTI 2D CH X : Exemples de lois à densité 1

Le modèle de Black et Scholes

DYNAMIQUE DE FORMATION DES ÉTOILES

Marchés oligopolistiques avec vente d un bien non homogène

Décharge électrostatique

Cours 9. Régimes du transistor MOS

I - Quelques propriétés des étoiles à neutrons

Les indices à surplus constant

I. Polynômes de Tchebychev

Image d un intervalle par une fonction continue

Optimisation des fonctions de plusieurs variables

3 Approximation de solutions d équations

BACCALAUREAT GENERAL MATHÉMATIQUES

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

F1C1/ Analyse. El Hadji Malick DIA

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Repérage d un point - Vitesse et

Suites numériques 4. 1 Autres recettes pour calculer les limites

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Calcul fonctionnel holomorphe dans les algèbres de Banach

Correction de l examen de la première session

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Les transistors à effet de champ.

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Correction du Baccalauréat S Amérique du Nord mai 2007

Etude de fonctions: procédure et exemple

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire Sébastien GERGADIER

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Calcul intégral élémentaire en plusieurs variables

Travaux dirigés de magnétisme

Programmes des classes préparatoires aux Grandes Ecoles

CHAPITRE 5. Stratégies Mixtes

VIII- Circuits séquentiels. Mémoires

Cours de Mécanique du point matériel

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Loi binomiale Lois normales

ELEC2753 Electrotechnique examen du 11/06/2012

Fonction inverse Fonctions homographiques

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

1 Problème 1 : L avion solaire autonome (durée 1h)

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Transcription:

Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles, d appliquer les conditions aux limites aux interfaces entre les différents corps. Nous allons donc nous attarder ici sur ces conditions aux limites. 5.1 Induction magnétique - b oient deux milieux de propriétés électriques différentes séparés par une interface. Construisons un petit cylindre de section a et d épaisseur l à travers cette surface Figure 5.1: Géométrie pour les conditions-limites sur b, d et j. On rappelle que b = 0 et le théorème de Gauss 16

V b dv = b n d = 0 (5.1) où n est un vecteur unitaire normal à l interface. i le rayon du cylindre est suffisamment petit, on peut supposer que l induction magnétique est constante sur cette surface et donc b = b 1 dans le milieu 1 et b = b 2 dans le milieu 2. L intégrand devient alors ( b 1 n 1 + b 2 n 2 ) a + (contribution des bords) l = 0 (5.2) si l tend vers zéro, i.e. on se limite à l interface, il ne reste que le premier terme, soit ( b 1 n 1 + b 2 n 2 ) a = 0, mais les deux normales sont inversées donc b1 b 2 = 0 (5.3) Ce qui implique que la composante normale de l induction magnétique est continue de part et d autre de l interface. 5.2 Déplacement diélectrique - d Reprenons le même cylindre que dans le cas précédent. L équation de Maxwell correspondante est cette fois d = ρ. En intégrant de part et d autre du cylindre, on obtient d dv = d n d = ρ dv = ρ l a (5.4) V si ρ est constant. Remplacons ρ l par une densité surfacique de charge ρ s. V ( d 1 n 1 + d 2 n 2 ) a = ρ s a (5.5) ( d 1 d 2 ) n = ρ s (5.6) Ce qui implique que la composante normale du déplacement diélectrique est discontinue à une interface à cause de l accumulation d une densité de charge surfacique ρ s. 17

5.3 Densité de courant - j Toujours avec ce cher cylindre. i l épaisseur du cylindre tend vers zéro, le courant traversant l interface est donné par I = j 1 n a = j 2 n a (5.7) ( j 1 j 2 ) n = 0 (5.8) donc la composante normale de la densité de courant est continue. i on s intéresse au cas plus général du courant total, i.e. conduction + déplacement soit (σ + iɛω)e, alors on a (σ 1 + iɛ 1 ω) E 1 = (σ 2 + iɛ 2 ω) E 2 (5.9) n J = ( J 1 J 2 ) n 0 (5.10) car, selon (2.7), n j + ρ/ t = 0. Notez que si on est à basse fréquence, i.e. ρ/ t 0, on retrouve simplement la relation (5.8). 5.4 Champ électrique - e Nous allons ici prendre un contour, en sens horaire, autour d un rectangle de longueur h et de hauteur l. Figure 5.2: Géométrie pour les conditions-limites sur e et h. Rappelons l équation de Maxwell 18

e = b (5.11) t Intégrons le champ électrique autour du contour. Nous obtiendrons, via le théorème de tokes ( e) n d = e dl (5.12) b t n d = e 1 l e 2 l + (contributions des bouts) (5.13) b t n l h = ( e 1 e 2 ) l (5.14) Comme nous nous intéressons à l interface au sens strict, on peut prendre h = 0 et donc annuler le terme du côté gauche. Il ne reste plus que C ( e 1 e 2 ) l = 0 (5.15) l étant parallèle à l interface, on en conclut que la composante tangentielle du champ électrique est continue. Ceci peut aussi être exprimé sur la forme plus pratique à appliquer. 5.5 Champ magnétique - h n ( e 1 e 2 ) = 0 (5.16) Nous reprenons le même contour et le même raisonnement que dans le cas précédent. L équation de Maxwell correspondante est h = d t + j (5.17) Intégrons le champ magnétique autour du contour. Nous obtiendrons, via le théorème de tokes ( h) n d = h dl (5.18) ( d t + j) n d = h 1 l h 2 l + (contributions des bouts) (5.19) 19 C

( d t + j) n l h = ( h 1 h 2 ) l (5.20) Ce qui revient à dire n ( h 1 h 2 ) = lim ( d h 0 t + j) n h (5.21) On a donc deux termes à analyser. Il semble évident que la dérivée temporelle du déplacement ne peut être infinie, car cela nécéssiterait une variation instantanée de d. La limite tendra bien vers 0 pour ce premier terme. Qu en est-il du courant de conduction? On peut imaginer la présence d une densité surfacique de courant telle que la condition sur h tangentiel devient lim ( j h) = j s (5.22) h 0 j n ( h 1 h 2 ) = j s (5.23) Mais si σ est limité (i.e. n est pas infini) de part et d autre (ce qui est toujours le cas en géophysique) et que le champ électrique e = j/σ est aussi limité, j ne peut tendre vers l infini et donc le second terme est également nul, donc n ( h 1 h 2 ) = 0 (5.24) Ceci implique que la composante tangentielle du champ magnétique est continue dans ce cas. Pour certains problèmes, on pourra supposer que σ est infini. Alors, on peut envisager que j soit infini sans que e ne le soit. Dans ce cas, on doit utiliser (5.23). 5.6 Exemple: Filon Vertical Enfin, on commence à faire de la géophysique! Nous allons aborder un cas très simple mais il vous donnera une bonne idée des raisons pour lesquelles la prospection EM fonctionne. oit un filon vertical de conductivité électrique σ 2 dans un encaissant de conductivité σ 1. Un champ électrique orienté parallèlement à la surface est incident à l interface I. De plus ɛ 1 = ɛ 2 = ɛ et µ 1 = µ 2 = µ. 20

σ σ σ Figure 5.3: Problème du filon pour l application des conditions aux limites. A l interface I, on a la discontinuité dans le déplacement normal donc d 2 d 1 = ρ s (5.25) e 2 e 1 = ρ s ɛ on a aussi la continuité de la composante normale de j (5.26) j 2 j 1 = σ 2 e 2 σ 1 e 1 = 0 (5.27) Combinant ces deux premiers résultats, on obtient e 2 = σ 1e 1 σ 2 (5.28) σ 1 e 1 σ 2 e 1 = ρ s ɛ (5.29) σ 1 σ 2 e 1 = ρ s (5.30) σ 2 ɛ Deux cas sont possibles: - σ 1 < σ 2 (interface I) : alors ρ s < 0. Accumulation de charges négatives - σ 1 > σ 2 (interface II) : alors ρ s > 0. Accumulation de charges positives La quantité de charges accumulées dépendra du contraste de conductivité entre le filon et son encaissant. i l on trace le champ électrique résultant, on remarque que les discontinuités facilitent largement la mise en évidence du filon. 21

σ 1 < σ 2 E - - - - + + + + σ 1 σ 2 σ 1 Figure 5.4: Bas: accumulation de charges aux bords d un filon conducteur. Haut: champ électrique perpendiculaire au filon que l on mesurerait en surface. Notez comme les discontinutés permettent de bien locaiser le filon. 5.7 L effet galvanique - Un corps dans un Champ électrique Nous pouvons étendre le problème du filon à un cas plus général, par exemple à un parallélépipède dans un champ électrique. Pour une cible plus conductrice que son encaissant, nous venons de voir que des charges de signe opposé s accumulaient aux deux extrémités de la cible. On peut en déduire qu il y a un courant (= un champ) secondaire de direction opposée au champ primaire à l intérieur de la cible: c est donc un champ de dépolarisation. Il s ajoute cependant au champ primaire à l extérieur de la cible, ce qui a pour effet de faciliter la découverte de celle-ci. Le champ secondaire produit par ce courant secondaire est équivalent à celui produit par un dipôle électrostatique orienté des charges négatives vers les charges positives. i l on s intéresse à la somme entre le champ électrique primaire e p et le champ de dépolarisation e s, on remarque qu à l extérieur de la cible les lignes de champ convergent vers celle-ci, et qu à 22

l intérieur, l opposition des champs provoque un resserrement des lignes de champ vers le centre. Le champ électrique total semble donc canalisé par le corps conducteur. Cet effet de canalisation du courant est connu sous le nom d effet galvanique. Ce champ total peut être assimilé à celui d un dipôle électrique ce qui permet de modéliser simplement ce phénomène. 23