Chapitre 5 : Géométrie dans l'espace



Documents pareils
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Séquence 10. Géométrie dans l espace. Sommaire

Géométrie dans l espace Produit scalaire et équations

Activités numériques [13 Points]

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Géométrie dans l espace

PARTIE NUMERIQUE (18 points)

Deux disques dans un carré

Le contexte. Le questionnement du P.E.R. :

Le théorème de Thalès et sa réciproque

1S Modèles de rédaction Enoncés

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

PROBLEME(12) Première partie : Peinture des murs et du plafond.

5 ème Chapitre 4 Triangles

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

Construction d un cercle tangent à deux cercles donnés.

Mesure d angles et trigonométrie

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

6 ème. Rallye mathématique de la Sarthe 2013/ ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

Le seul ami de Batman

Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés :

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Quelques contrôle de Première S

Eté LIVRET de RÉVISIONS en MATHÉMATIQUES

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Exercice numéro 1 - L'escalier

Exercices de géométrie

La médiatrice d un segment

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Date : Tangram en carré page

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

Sommaire de la séquence 10

Corrigé du baccalauréat S Asie 21 juin 2010

6. Les différents types de démonstrations

LE PRODUIT SCALAIRE ( En première S )

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Angles orientés et trigonométrie

Cours d Analyse. Fonctions de plusieurs variables

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Démontrer qu'un point est le milieu d'un segment

Autour du raisonnement par l'absurde

Paris et New-York sont-ils les sommets d'un carré?

Introduction au maillage pour le calcul scientifique

DOCM Solutions officielles = n 2 10.

Problèmes de Mathématiques Filtres et ultrafiltres

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Chapitre 14. La diagonale du carré

Livret de liaison Seconde - Première S

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Chapitre 2 : Vecteurs

Brevet 2007 L intégrale d avril 2007 à mars 2008

Triangles isométriques Triangles semblables

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

4G2. Triangles et parallèles

Mesurer les altitudes avec une carte

Mais comment on fait pour...

Structures algébriques

EXERCICES DE REVISIONS MATHEMATIQUES CM2

Proposition de programmes de calculs en mise en train

Polynômes à plusieurs variables. Résultant

Corrigés Exercices Page 1

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire

point On obtient ainsi le ou les points d inter- entre deux objets».

Constructions au compas seul, complément

Problème 1 : applications du plan affine

Sites web éducatifs et ressources en mathématiques

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

NOTIONS DE PROBABILITÉS

Ch.G3 : Distances et tangentes

Cours Fonctions de deux variables

Comment démontrer que deux droites sont perpendiculaires?

CHAPITRE VIII : Les circuits avec résistances ohmiques

Représentation géométrique d un nombre complexe

2.4 Représentation graphique, tableau de Karnaugh

Limitations of the Playstation 3 for High Performance Cluster Computing

Problèmes sur le chapitre 5

Correction du Baccalauréat S Amérique du Nord mai 2007

Algèbre binaire et Circuits logiques ( )

Sommaire de la séquence 8

Correction du baccalauréat S Liban juin 2007

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.

O, i, ) ln x. (ln x)2

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

EXAMEN : CAP ADAL SESSION 2011 N du sujet : SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Sommaire de la séquence 12

Quels polygones sont formés par les milieux des côtés d un autre polygone?

Transcription:

Source : site Bacamahts (G.Constantini) et Mathématiques 2 nde (Terracher) I. Règles de base de la géométrie dans l'espace Il existe une et une seule droite de l'espace passant par deux points distincts. Il existe un et un seul plan de l'espace passant par trois points non alignés. Si deux plans distincts ont un point commun, alors leur intersection est une droite. Tous les résultats de géométrie plane (Thalès, Pythagore, Th. Des milieux, etc...), sont applicables dans chaque plan de l'espace. Vocabulaire: Lorsque des points appartiennent à un même plan, on dit qu'ils sont coplanaires. Lorsque des droites sont contenues dans un même plan, on dit également qu'elles sont coplanaires. Remarque: Deux points, trois points sont toujours coplanaires. L'utilisation de ce qualificatif n'a donc de sens qu'à partir de quatre points. Problème : (servant d'exemple tout au long de la leçon) ABCD est un tétraèdre. I est le milieu de [AB], J est le milieu de [AC], K est le milieu de [AD], M est le milieu de [BD], N est le milieu de [CD]. 1. Déterminer l'intersection des plans (ABC) et (IJK). 2. Démontrer que les droites (IJ) et (MN) sont parallèles. 3. Démontrer que la droite (IJ) est parallèle au plan (BCD). 4. Démontrer que les plans (IJK) et (BCD) sont parallèles. 5. Déterminer les droites D 1 et D 3 d'intersections des plans (ACM) et (BCD) puis (ACM) et (IJK) 6. Démontrer que D 1 et D 2 sont parallèles. Solution de la question 1: 2010 My Maths Space Page 1/5

II. Positions relatives de deux droites. Propriété : Deux droites de l'espace sont : Soit coplanaires (elles sont alors sécantes ou parallèles). Soit non coplanaires. ATTENTION : Dans l'espace, deux droites non parallèles ne sont pas nécessairement sécantes. Théorème: Deux droites parallèles à une même troisième sont Exemple : question 2 parallèles entre elles. III. Positions relatives d'une droite et d'un plan. Propriété: Une droite et un plan de l'espace sont : soit sécants soit parallèles. Théorème : Si une droite D est parallèle à une droite d'un plan P, Exemple : question 3 alors D est parallèle à P. 2010 My Maths Space Page 2/5

IV. Positions relatives de deux plans. Propriété: Deux plans de l'espace sont : soit sécants soit parallèles. Théorème: Si deux droites sécantes (d'un plan) sont parallèles Exemple : question 4 à un autre plan, alors ces deux plans sont parallèles. Théorème : Deux plans parallèles à un même troisième sont Exemple : question 5 parallèles entre eux. Théorème 6 : Un plan Q sécant à deux plans (strictement) parallèles P 1 et P 2 les coupe suivant deux droites parallèles ( D 1 et D 2 ) Démonstration du théorème : D 1 et D 2 sont deux droites coplanaires (dans le plan Q), donc D 1 et D 2 sont soit parallèles, soit sécantes. Si elles sont sécantes, alors il existe un point M = D 1 Ç D 2 qui appartient à la fois à P 1 et P 2, ce qui est absurde puisque P 1 et P 2 sont strictement parallèles. Donc D 1 et D 2 sont parallèles. 2010 My Maths Space Page 3/5

Exemple : question 6 V. Orthogonalité de deux droites définition: Deux droites D 1 et D 2 sont dites orthogonales si et seulement si leurs parallèles passant par un point quelconque sont perpendiculaires. Exemple: Montrer que, dans le cube ci-contre, les droites BE et GD sont orthogonales. Deux droites orthogonales à une même troisième ne sont pas nécessairement parallèles. Exemple: AE orthogonale à EF et AE orthogonale à HF et pourtant HF et EF ne sont pas parallèles. VI. Orthogonalité d'une droite et d'un plan Définition: On dit qu'une droite D 1 est orthogonale à un plan P lorsque D 1 est orthogonale à toute droite du plan P. 2010 My Maths Space Page 4/5

Théorème: (important) Lorsqu'une droite est orthogonale à deux droites sécantes d'un plan, elle est orthogonale à ce plan. ( ainsi deux droites sécantes suffisent!!! ) Exercice 1: Donner sur le cube, un exemple d'une droite D orthogonale à deux droites coplanaires mais qui n'est pas orthogonale au plan que ces deux droites définissent. Exercice 2: 1. En utilisant le triangle DHE montrer que AF est orthogonale à HD. 2. De même, en utilisant le triangle DHG, montrer que FC est orthogonale à HD. 3. En déduire que HD est orthogonale au plan ACF. VII. Plans perpendiculaires Définition: Deux plans P 1 et P 2 sont dits perpendiculaires lorsque l'un contient une droite orthogonale à l'autre. Exemples et remarques: Les plans CDFG et ABCD sont perpendiculaires car par exemple la droite DF qui est contenue dans la premier est orthogonale au second. Lorsque deux plans sont perpendiculaires, il existe dans chacun d'eux des droites non orthogonales à l'autre : par exemple, la droite (FC) n'est pas orthogonale au plan ABCD 2010 My Maths Space Page 5/5