Matérialisation des vues dans un modèle multidimensionnel contraint

Dimension: px
Commencer à balayer dès la page:

Download "Matérialisation des vues dans un modèle multidimensionnel contraint"

Transcription

1 Matérialisation des vues dans un modèle multidimensionnel contraint Faïza Ghozzi Université Paul Sabatier - IRIT 118, Route de Narbonne Toulouse cedex 04 RÉSUMÉ. Les bases de données multidimensionnelles (BDM) ont émergé pour répondre aux besoins spécifiques des analyses OLAP. Les données des BDM sont visualisées au travers des cubes. Le cube a été introduit pour pré-calculer des vues agrégées, appelées vues matérialisées, dans le but d améliorer le temps d interrogation. Dans cet article, nous proposons une modélisation en constellation des BDM organisant les données en faits analysées selon différentes dimensions. Notre modèle permet d exprimer un ensemble de contraintes sémantique intra et inter dimensions. Afin d assurer la cohérence des données et d améliorer le processus de matérialisation des vues, nous intégrons ces contraintes lors de la construction du treillis multidimensionnel. Notre proposition est validée par le prototype GEDOOH qui permet d exprimer ces contraintes et de les intégrer dans l algorithme de construction du treillis. ABSTRACT. Multidimensional databases (MDB) were emerged to meet specific OLAP needs. Data in MDB were displayed using cube. Cube was introduced to pre-compute aggregate views, called materialised views, in order to improve response time of OLAP query. In this paper, we define a MDB model which organises data in a constellation of facts and multiple hierarchy dimensions. The model we describe provides a set of semantic intra- and interdimension constraints. In order to insure data consistence and to improve view materialisation process, we integrate these constraints during the multidimensional lattice construction. We validate our proposal by the prototype GEDOOH which can express these constraints into MDB model and integrate them in the lattice construction algorithm. MOTS-CLÉS : modèle multidimensionnel, contraintes, vue matérialisée, treillis multidimensionnel. KEYWORDS : multidimensional model, constraints, materialised view, multidimensional lattice.

2 1. Introduction Les entrepôts de données se sont développés afin de fournir aux décideurs des systèmes dédiés à l analyse des données et de pallier les insuffisances des systèmes transactionnels (OLTP OnLine Transactionnel Processing). Pour faciliter l accès aux données, plusieurs entrepôts ont adopté l approche des bases de données multidimensionnelles (BDM). Les BDM ont donc émergé pour répondre aux besoins spécifiques d analyse multidimensionnelle (OLAP On-Line Analytical Processing) (Codd, 1993). Les BDM sont généralement décrites selon un schéma multidimensionnel comportant des faits (regroupant les mesures d activité) et différents axes appelés dimensions (Kimball, 1996). Les dimensions regroupent les paramètres d analyse organisés selon des hiérarchies. Une hiérarchie décrit différents niveaux de granularité entre les paramètres. Cette structure hiérarchique permet d analyser les données au travers du cube multidimensionnel (Gray et al., 1996). Le cube comporte les valeurs des mesures d activités agrégées suivant les différentes combinaisons de paramètres. L agrégation de données provenant des différentes sources intégrées présente un coût très important qui diminue les performances du système OLAP. Ainsi, l interrogation du cube est souvent améliorée par la matérialisation des vues (Gupta et al., 1999). Contrairement à une vue classique qui est calculée à chaque consultation à partir de la base, une vue matérialisée est une vue dont les données sont stockées dans la base. Le choix de ces vues présente un problème ; une vue matérialisée permet de diminuer le temps d interrogation mais elle nécessite un coût de rafraîchissement et de stockage. L'objet de notre article est de fournir un modèle de représentation des données OLAP intégrant un ensemble de contraintes sémantiques pouvant être exploitées lors du calcul des pré-agrégats afin d éliminer des combinaisons incohérentes et ainsi réduire le coût de construction et de maintenance des bases multidimensionnelles. 1.1 Exemple et problématique Une société commerciale souhaite analyser ses ventes en tenant compte des points de vente, des produits et du temps. Ce besoin se traduit par la modélisation d'une BDM contenant un sujet d'analyse (fait VENTES) et trois axes d'analyses (dimensions TEMPS, PRODUITS et MAGASINS). En respectant le formalisme défini par (Golfarelli et al., 1998), nous obtenons le schéma suivant ; All Annee Mois Jour IdT TEMPS fait mesures hiérarchie VENTES Division Category Rayon Subcategory IdP PRODUITS dimension montant bénéfice Dept_n Dept lib Region attribut faible paramètre IdM All MAGASINS State Pays All ZoneG RaisonS Figure 1 Représentation graphique d'une BDM (Golfarelli et al., 1998).

3 Un cube multidimensionnel (Gray et al., 1996) permet de visualiser les données d une BDM. Il présente les mesures de l analyse agrégées en fonction des différentes combinaisons des paramètres des dimensions. Il peut être représenté par un treillis (Harinarayan et al., 1996). Chaque nœud du treillis est une combinaison de paramètres des dimensions. Chaque lien pointe du nœud i vers le nœud j si j peut être calculé à partir de i. Par exemple, à partir d un nœud regroupant les ventes par magasin et par produit (IdM, IdP) nous pouvons calculer le nœud qui regroupe les ventes par magasin (IdM) (figure 2). All IdM IdT IdP IdM,IdT IdM, IdP IdM, IdT, IdP IdT, IdP Figure 2 Treillis du fait VENTES (Harinarayan et al, 1996) La construction de ce treillis est une étape préliminaire qui permet par la suite de sélectionner l ensemble des vues à matérialiser (Harinarayan et al., 1996) (Baralis et al., 1997). Dans notre exemple, la dimension MAGASINS est organisée selon trois hiérarchies ; "h_zone", "h_géo_fr" et "h_géo_us". La dimension PRODUITS est organisée en deux hiérarchies "h_nom_fr" et "h_nom_us" décrivant respectivement la nomenclature des produits français et celle des produits américains. La combinaison de ces deux dimensions hiérarchisées permet de construire un treillis qui combine deux à deux les hiérarchies des deux dimensions (Gupta et al., 1997) (Harinarayan et al., 1996). Cette combinaison donnera lieu à la définition de vues matérialisées incohérentes tel que la vue combinant le paramètre SubCategory caractérisant les produits américains et le paramètre Département caractérisant un magasin français. A notre connaissance, ce problème n a pas été traité par aucun des travaux antérieurs. 1.2 Travaux existants Dans le cadre de la modélisation des BDM, plusieurs travaux ont proposé des schémas multidimensionnels qui se basent sur les concepts de fait et de dimension (Kimball, 1996). Les faits sont composés de mesures d'activité et les dimensions comportent des paramètres organisés en hiérarchies. Certains modèles intègrent une représentation explicite des hiérarchies (Li et al., 1996) (Lehner, 1998). D'autres modèles prennent en compte des objets à structures complexes avec des hiérarchies multiples (OOLAP) (Pedersen et al., 1999) et intègrent la gestion du temps (Mendelzon et al., 2000). Cependant, aucun de ces modèles ne gèrent les incohérences qui peuvent survenir sur les données de la BDM. A notre connaissance, seul (Hurtabo et al., 02) propose d intégrer un ensemble de contraintes entre les hiérarchies d une même dimension résolvant partiellement le problème des incohérences qui peuvent exister entre les hiérarchies de différentes dimensions.

4 Au niveau de l implantation des BDM, plusieurs travaux se focalisent sur le problème de sélection des vues matérialisées. (Harinarayan et al., 1996) propose un algorithme qui sélectionne un ensemble de vues à matérialiser dans le but de minimiser le coût total d interrogation. Il introduit la notion de treillis multidimensionnel. (Gupta et al., 1999) étend ces travaux par l introduction des index qui permettent d optimiser le calcul des requêtes. (Baralis et al., 1997) propose un algorithme qui intègre explicitement la structure hiérarchique des dimensions. (Theodoratos et al., 1999) suggère d intégrer les facteurs de qualité dans le processus de construction des BDM. (Kotidis et al, 2001) propose le système Dynamat qui sélectionne dynamiquement l'ensemble optimal des vues à matérialiser. L évolution de ces vues est en fonction des requêtes OLAP et de l espace disponible. 1.3 Contributions et organisation de l article Notre contribution est structurée en deux points : l extension de la définition du schéma multidimensionnel en intégrant l expression des contraintes sémantiques afin d offrir une information fiable aux décideurs manipulant la BDM (Hurtabo et al., 2002) (Ghozzi et al., 2003), l intégration de ces contraintes dans le processus de sélection des vues matérialisées afin de ne garder dans le processus de sélection que les vues cohérentes qui ne violent pas l intégrité des contraintes sémantiques exprimées dans le modèle. Cet article s articule autour de trois sections. Une première section présente les concepts inhérents à notre modèle multidimensionnel et les contraintes sémantiques intégrées dans ce modèle. Une deuxième section présente l approche des vues matérialisées basée sur le concept de treillis multidimensionnel ainsi que l intégration des contraintes sémantiques dans le processus de construction de ce treillis. Une dernière section présente notre implantation du modèle multidimensionnel contraint et l apport de l intégration des contraintes sémantiques dans la construction du treillis. 2. Modèle multidimensionnel contraint Nous avons proposé un modèle multidimensionnel conceptuel à contraintes dans le cadre d un schéma en constellation (Ghozzi et al., 2003). Une constellation regroupe plusieurs sujets d'analyse (faits) étudiés selon différents axes d'analyses (dimensions) éventuellement partagés. Notre schéma en constellation intègre l expression de contraintes sémantiques inhérentes au modèle multidimensionnel.

5 2.1 Concepts de base Dans ce paragraphe, nous rappelons brièvement les définitions des concepts de base de notre modèle multidimensionnel. Définition.1 Une constellation C est définie par (N C, F C, D C, Star C, Cons C ) où N C est le nom de la constellation, F C est un ensemble de faits, D C est un ensemble de dimensions, Star C : F C 2 DC est une fonction associant les faits aux dimensions afin de spécifier les sujets d'analyses et les axes d'étude associés, Cons C représente l ensemble des contraintes associées à la constellation. L exemple de la figure 1 présente une constellation comportant un seul fait VENTES analysé selon trois dimensions : TEMPS, MAGASINS et PRODUITS. Définition.2 Un fait F est défini par (N F, M F, I F ) où N F est le nom du fait, M F est un ensemble de mesures, I F est l'ensemble des instances de F. Une instance est définie par le n-uplet [a 1 :v 1, a 2 :v 2,, a w :v w ] où k [1..w], a k M F v k est une valeur. Dans notre exemple, le fait VENTES regroupe les mesures d activité montant et bénéfice. Définition 3. Une dimension D est définie par (N D, P D, H D, I D ) où N D est le nom de la dimension, P D est un ensemble de paramètres, H D est un ensemble de hiérarchies et I D est l'ensemble des instances de D. Une instance est définie par le n- uplet [a 1 :v 1, a 2 :v 2,, a u :v u ] tel que k [1..u], a k P D v k est une valeur. Nous pouvons compléter la représentation graphique de la dimension MAGASINS (figure 1), par la définition suivante (schéma et 2 instances) : ( MAGASINS, {IdM, Dept_n, Dept_lib, Region, State, Pays, ZoneG, RaisonS, All}, {h_geo_fr, h_geo_us, h_zone}, {I MAGASINS 1, I MAGASINS 2}) avec I MAGASINS 1=[IdM : oid2, Dept_n : 31, Dept_lib : Hte-Garonne, Region : Midi- Pyrénées, State : NULL, Pays : France, ZoneG : SO, RaisonS : magasin 1, All : all ], I MAGASINS 2=[IdM : oid7, Dept_n : NULL, Dept_lib : NULL, Region : NULL, State : Texas, Pays : USA, ZoneG : SE, RaisonS : magasin 2, All : all ]. Définition 4. Une hiérarchie h D i est un chemin élémentaire acyclique débutant par Id et se terminant par All et se définit par (N h, Param h, Suppl h, Cond h ) où N h est le nom de la hiérarchie, Param h : P P (P P D ) est une fonction décrivant la hiérarchie des attributs, Suppl h : P 2 PD-P est une fonction décrivant l'ensemble des attributs faibles associés à chaque paramètre, Cond h est une expression booléenne définissant la condition d'appartenance des instances de la dimension à une hiérarchie. Les trois hiérarchies de la dimensions MAGASINS sont définies ainsi : h_geo_fr=( géo. française, (Param h_geo_fr (IdM) = Dept_n, Param h_geo_fr (Dept_n) = Region, Param h_geo_fr (Region) = Pays, Param h_geo_fr (Pays) = All),

6 (Suppl h_geo_fr (IdM) = {RaisonS}, Suppl h_geo_fr (Dept_n) = {Dept_lib}), dom(pays) { France }), h_geo_us=( géo. américaine, (Param h_geo_us (IdM) = State, Param h_geo_us (State) = Pays, Param h_geo_us (Pays) = All), (Suppl h_geo_us (IdM) = {RaisonS}), dom(pays) { USA }), h_zone=( géo. en zones, (Param h_zone (IdM) = ZoneG, Param h_zone (ZoneG) = Pays, Param h_zone (Pays) = All), (Suppl h_zone (IdM) = {RaisonS}), dom(zoneg) {'S', 'E', 'O', 'N', 'C', 'SO', 'SE', 'NO', 'NE'}). La spécificité de multi-instanciation de notre modèle réside dans l intégration d une condition d appartenance des instances de la dimension aux hiérarchies. Ainsi, l instance {I MAGASINS 1} appartient à "h_geo_fr" tandis que {I MAGASINS 2} appartient à "h_geo_us" et {I MAGASINS 1, I MAGASINS 2} appartiennent à "h_zone". 2.2 Contraintes multidimensionnelles Dans le cadre des BDM, plusieurs types de contraintes peuvent êtres identifiés ; les contraintes de démarche, les contraintes d accès, les contraintes syntaxiques et sémantiques liées au modèle. Cet article se focalise sur les contraintes sémantiques. Ces contraintes agissent sur les processus d interrogation et de manipulation des données. Les contraintes sémantiques sont liées à la structure hiérarchique des dimensions et au contexte d analyse. Ces contraintes sont définies lors de la construction d un modèle multidimensionnel. Nous définissons deux familles de contraintes sémantiques selon la portée de ces contraintes : Contraintes sur les instances d une dimension : Contrainte d exclusion : L'exclusion entre deux hiérarchies h 1 et h 2 de D traduit qu'une instance de D appartenant à h 1 n'appartient pas à h 2 et réciproquement. Exemple: L exclusion entre les hiérarchies "h_géo_us" et "h_géo_fr", implique que les instances de la dimension MAGASINS appartenant à la première hiérarchie ne vérifient pas la condition d appartenance à "h_géo_fr". Contrainte d inclusion : L'inclusion d'une hiérarchie h 1 de D dans h 2 de D indique que toutes les instances de h 1 appartiennent à h 2. Exemple: L inclusion de la hiérarchie "h_géo_fr" dans "h_zone", indique que toute les instances vérifiant la condition d appartenance à "h_géo_fr" sont impérativement des instances de la hiérarchie "h_zone". Contrainte de totalité : La totalité entre deux hiérarchies h 1 et h 2 de D traduit qu'une instance de D appartient à h 1 ou à h 2. (Ou inclusif). Elle indique que toutes les instances de la dimension sont des instances de l une des hiérarchies. Exemple: La totalité entre les hiérarchies "h_géo_us" et "h_géo_fr", implique que l union des instances de ces deux hiérarchies forment la totalité des instances de la dimension MAGASINS.

7 Contrainte de partition : La partition entre deux hiérarchies h 1 et h 2 de D traduit qu'une instance de D appartient obligatoirement soit à h 1 soit à h 2. (Ou exclusif). L obligation traduit une contrainte de totalité puisque toutes les instances de la dimension appartiennent à l une des deux hiérarchies. Exemple: Une contrainte de partition entre les hiérarchies "h_géo_us" et "h_géo_fr", implique que l intersection des instances des deux hiérarchies est vide (exclusion) et que l union de ces instances forme la totalité des instances de la dimension MAGASINS (totalité). Contraintes sur les instances du fait : Contrainte d exclusion : L'exclusion entre deux hiérarchies h 1 d'une dimension D 1 et h 2 d'une dimension D 2 indique qu'une instance du fait (relié à D 1 et à D 2 ) ne peut être associée simultanément aux instances de h 1 et h 2. Exemple : L exclusion entre les hiérarchies "h_nom_us" et "h_géo_fr", implique que les instances du fait VENTES reliées à la première hiérarchie ne sont pas en relation avec les instances de la hiérarchie "h_géo_fr". Contrainte d inclusion : L inclusion d une hiérarchie h 1 d'une dimension D 1 dans une hiérarchie h 2 de D 2 indique que les instances du fait (relié à D 1 et D 2 ) manipulées au travers de h 1 sont un sous-ensemble des instances du fait associées à h 2. Exemple : L inclusion de la hiérarchie "h_nom_us" dans la hiérarchie "h_zone", implique que les instances du fait VENTES reliées à la première hiérarchie sont en relation avec les instances de la hiérarchie "h_zone". Contrainte de totalité : La totalité entre deux hiérarchies h 1 d'une dimension D 1 et h 2 d'une dimension D 2 indique que chaque instance du fait (relié à D 1 et à D 2 ) est associée aux instances de h 1 ou à celles de h 2 (ou inclusif). Exemple : La contrainte totalité entre la hiérarchie "h_nom_us" et la hiérarchie "h_géo_fr, implique que l union des instances du fait VENTES reliées à la première hiérarchie et celles reliées à la deuxième hiérarchie représente la totalité des instances du fait. Contrainte de partition : La partition entre deux hiérarchies h 1 d'une dimension D 1 et h 2 d'une dimension D 2 indique que chaque instance du fait est associée soit aux instances de h 1 soit à celles de h 2 (ou exclusif). Une contrainte de partition est l union des deux contraintes exclusion et totalité. Exemple : Entre les hiérarchies "h_nom_us" et "h_géo_fr", nous avons défini deux contraintes d exclusion et de totalité. Ces deux contraintes réunies expriment une contrainte de partition. 3. Treillis multidimensionnel et contraintes Une vue est une relation dérivée (virtuelle) construite à partir d autres relations de la base de données. Une vue définie ainsi est calculée à chaque fois qu elle est

8 appelée. Une vue matérialisée est une vue dont les données sont stockées dans la base. Dans nos travaux, l objectif d une vue matérialisée est d effectuer un calcul de pré agrégats afin d obtenir de meilleures performances en matière de temps de réponse. Une gestion dynamique de ces vues permet d ajouter ou d enlever des vues matérialisées ; leur stockage est temporaire en fonction de l évolution de l analyse. Un treillis de type ET, défini sur l ensemble des vues V, est un graphe acyclique dont les nœuds sont les vues v de V. Un Lien part de l ensemble des nœuds v 1, v 2, v n, vers le nœud v i si v i peut être calculé à partir de l ensemble v 1, v 2, v n et cette dépendance est présentée par un demi-cercle à travers les liens (v i, v 1 ), (v i, v 2 ) (v i, v n ), appelée arc ET. Un treillis de type ET-OU, est un graphe acyclique dont les nœuds sont les vues v de V. Chaque nœud peut avoir un ou plusieurs Arc ET qui le relie aux autres nœuds à partir des quels il peut être calculé. 3.1 Treillis multidimensionnel Soit V l ensemble des vues possibles en combinant les paramètres des dimensions d un fait. Pour chaque fait de notre constellation, nous pouvons définir un treillis multidimensionnel de vues v V de type ET-OU. Nous proposons de construire le treillis en se basant sur la structure hiérarchique (Harinarayan et al., 1996) afin d inclure la sémantique des hiérarchies. La construction du treillis multidimensionnel est basée sur la notion de dépendance fonctionnelle (DF) entre les paramètres d une hiérarchie. En effet, si nous considérons deux attributs ai et aj et que aj dépend fonctionnellement de ai, notée ai aj, (ai détermine aj) alors le regroupement des données selon ai donne le même résultat que le regroupement selon le couple (ai, aj). Par exemple, regrouper les ventes par région et par pays donne le même résultat qu un regroupement par région puisque une région détermine le pays. Ainsi, un nœud du treillis est défini comme suit : Définition 5 Un nœud N P appartenant au treillis multidimensionnel, représentant une vue v, est défini par l ensemble de ses paramètres P comportant les attributs de regroupement de la vue v et tel qu il n existe pas de dépendance fonctionnelle entre les paramètres de P. En se basant sur cette définition, l algorithme de construction du treillis simplifie les nœuds combinant des attributs de la même hiérarchie. Algorithme ConstructionTreillis Entrée : Ax : un nœud du treillis Avec : Structure Nœud : Racine : liste des paramètres, LFils = liste des fils du nœud. LPere_ET : pères reliés par un arc ET. ListeNoeud : Liste des nœuds déjà construits. Sortie : Liste des nœuds du treillis construit Pour chaque Pi Ax.Racine Faire Lp Ax.Racine - {Pi}; Lp Lp + Param (Pi) ; Lp Epurer (Lp) ; Az ChercheNoeud (Lp,ListeNœud) Si (Az= nul) Alors

9 Az.Racine Lp ; ListeNœud ListeNœud + Az ; ListeNœud ConstructionTreillis (Az, ListeNœud); FinSi Ax.LFils Ax.LFils +Az ; Retourner (ListeNœud) FinConstructionTreillis Param (Paramètre : p) récupère la partie droite des dépendances fonctionnelles p a. ChercheNoeud (Lp, ListeNœud) Cherche le nœud de racine Lp dans ListeNœud Algorithme Epurer Entrée : Liste de paramètres. Sortie : Liste de paramètres épurés. Pour chaque Pi Lp Faire Pour chaque Pj Lp- Pi Faire Si (Pj Dépend(Pi)) Alors Lp Lp Pi ; Retourner (Lp) ; FinEpurer Dépend(Pi) récupère les paramètres qui dépendent fonctionnellement de Pi. Figure 3 Algorithme de création d un treillis sans contrainte Dans l exemple de la figure 1, nous avons combiné les paramètres de la dimension MAGASINS. Le treillis généré sans intégration des contraintes (Baralis et al., 1997) est présenté par la figure 4. Dans ce treillis, la combinaison entre les différents paramètres pour réaliser les vues multidimensionnelles ne tient pas compte des contraintes entre les hiérarchies. Les vues visualisant les ventes selon les paramètres Depart et State ou Région et State ne peuvent pas exister car une contrainte d exclusion est définie entre la hiérarchie de la géographie française et celle de la géographie américaine. Région Depart Depart, Zone_G Région, Zone_G All Pays State Depart, State IdM Région, State Depart, State, Zone_G Zone_G State, Zone_G Région, State, Zone_G Figure 4 Treillis des Ventes selon la dimension Magasin (Baralis et al, 1997 En outre, la vue qui décrit les montants des ventes pour chaque pays peut être extraite à partir des vues matérialisées regroupant les montants des ventes par région, état ou zone géographique. Sans considération des contraintes entre les instances des hiérarchies, nous n aurons pas d informations sur la complétude de cette vue. En effet, regrouper les montants des ventes par pays à partir du paramètre région ne donne qu une partie des instances de la dimension, puisque le paramètre région ne concerne que les ventes réalisées en France. Par contre, le passage du paramètre zone vers pays permet de calculer les montants des ventes pour toutes les instances de la dimension MAGASINS. L introduction des contraintes sur les instances de la dimension permet d enlever cette ambiguïté.

10 3.2 Intégration des contraintes Pour intégrer les contraintes, nous modifions l algorithme de construction de treillis en validant chaque nœud avant de l insérer dans le treillis. La validation est basée sur les contraintes définies sur les instances des faits et des dimensions. Définition 6. Un Nœud N P est Valide en considérant l ensemble des contraintes C, s il n existe pas un couple de paramètres (pi, pj) appartenant à P x P qui sont en exclusion. Définition 7. Deux paramètres Pi et Pj P sont en exclusion si toutes les hiérarchies h n passant par Pi sont en exclusion (ou en partition) avec toutes les hiérarchies h m passant par Pj. Algorithme ValiderNœud Entrée : Un nœud Ax Sortie : Vraie si le nœud est valide, sinon faux. Lp Ax.Racine ; Valide Vraie ; i 0 ; Tant que Valide et i< taille (Lp) Faire Pi Lp[i]; j i+1 ; Tant que (Valide et j< taille(lp)) Faire Pj Lp[j] ; Valide ExclusionP (Pi, Pj); Retourner (Valide) ; FinValiderNœud Algorithme ExclusionP Entrée : Deux paramètres Pi et Pj Sortie : Vraie si Pi et Pj sont en exclusion, sinon faux. Vraie ou faux. Lhi les hiérarchies passant par Pi ; Lhj les hiérarchies passant par Pj ; p 0 ; Valide = Faux ; Tantque non Valide et p< taille (Lhi) Faire hp Lhi [p] ; q 0 ; Tant que non Valide et q <taille (Lhj) Faire hq Lhj [q] ; Si ((Exclusion(hq, hp)) = Faux) Alors Valide Vraie; retourner (Valide) ; FinExclusionP Figure 5 Algorithme de validation des contraintes des nœuds du treillis Ce premier algorithme (figure 5) permet d enlever de "ListeNoeud" les nœuds représentant des vues qui ne respectent pas les contraintes de validité. Dans l exemple que nous avons présenté, nous proposons de modifier le treillis afin de tenir compte des contraintes sur les instances de la dimension MAGASINS. Pour obtenir le treillis valide, il faut enlever les liens vers les nœuds fils supprimés du treillis et les remplacer par des liens qui pointent vers des nœuds fils valides.

11 Algorithme ValiderLiens Entrée : Liste des nœuds du treillis Sortie : Treillis avec des liens valides. Pour chaque nœud Ax ListeNœud Faire Pour chaque nœud Af Ax.LFils Faire Si Af ListeNœud Alors Ax.LFils Ax.LFils Af ; Ax.LFils Ax.LFils + Af.LFils ; FinSi Pour chaque nœud Ax ListeNœud Faire Pour chaque Af1 Ax.LFils Faire Pour chaque Af2 Ax.LFils Af1 Faire Si Af2 petitfils(af1) Alors Ax.LFils Ax.LFils Af2; Si Af1 petitfils(af2) Alors Ax.LFils Ax.LFils Af1; //Construction des arcs ET. Pour chaque Ap1 Pere(Ax) Faire Pour chaque Ap2 Pere(Ax) Ap1 Faire Si (ExclusionN(Ap1, Ap2) ) Alors Ajouter {Ap1, Ap2} à Ax.LPere_ET; FinSi FinValiderLiens Algorithme ExclusionN Entrée : Deux nœuds Ni et Nj. Sortie : Vraie si Ni et Nj sont en exclusion, sinon faux. Li Ni.Racine ; Lj Nj.Racine ; Valide Vraie ; i 0 ; Tant que Valide et i< taille(li) Faire Pi Li[i] ; j 0 ; Tant que Valide et j< taille (Lj) Faire Pj Lj[j]; Valide ExclusionP (Pi, Pj); Retourner(Valide) ; FinExclusionN petitfils(af) : récupère les petits fils du nœud Af dans le treillis. Pere(Ax) :récupère les nœuds pères de Ax. Figure 6 Algorithme de reconstruction des liens intégrant les contraintes Le deuxième algorithme (figure 6) permet de reconstruire les liens entre les nœuds valides du treillis multidimensionnel et d ajouter les arcs ET. La figure 7 décrit les différentes étapes du reconstruction des liens par cet algorithme. All Pays All Pays All Pays Région State Zone_G ET Depart Région, Zone_G Région, State State, Zone_G Région State Zone_G Région State Zone_G Depart, Zone_G Depart, State Région, State, Zone_G Depart Région, Zone_G State, Zone_G Depart Région, Zone_G State, Zone_G Depart, State, Zone_G Depart, Zone_G Depart, Zone_G IdM IdM IdM Figure 7 Treillis de la dimension MAGASIN intégrant les contraintes

12 La vue regroupant les ventes par pays est calculée soit à partir de la vue regroupant les ventes par ZoneG soit à partir de l union des ventes par State et par Région. La notation ET indique que l union de ces deux vues permet de retrouver la vue globale regroupant les ventes par pays. Ce treillis intègre la contrainte d exclusion entre les hiérarchies Géographique américaines et française, ainsi, il ne combine pas les deux paramètres State et Depart en une seule vue (de même pour State et Région). La combinaison entre les paramètres Depart et ZoneG, d un coté, et State et ZoneG, de l autre, est permise donnant lieu à deux nouvelles vues possibles pour les ventes. Le traitement que nous avons réalisé au niveau d une seule dimension est applicable au niveau d un fait entre les hiérarchies de différente dimensions. Dans notre exemple (figure 1), deux contraintes d exclusion sont définies entre les hiérarchies h_nom_fr et h_géo_us, d une part, et les hiérarchies h_nom_us et h_géo_fr, d autre part. L intégration de ces contraintes dans le treillis des ventes selon les dimensions MAGASINS et PRODUITS permet d enlever 92 nœuds invalides (voir figure 9). 4. Implantation du treillis multidimensionnel Le problème fondamental de la sélection des vues est de trouver l ensemble des vues à matérialiser qui maximise les performances de la bases de données multidimensionnelles lors de l interrogation. Le but de cette analyse est de comparer le résultat réalisé en construisant le treillis de vues à matérialiser sans considération des contraintes sémantiques avec celui obtenu en intégrant ces contraintes. En effet, les vues qui ne satisfont pas les contraintes sémantiques du modèle multidimensionnel n apportent pas de gain au temps d interrogation des requêtes OLAP. Prenons l exemple de la vue v combinant les ventes par département français et états américains. En respectant la contrainte d exclusion entre la hiérarchie de la géographie française et celle de la géographie américaine, la vue v est vide. Supposons que cette vue contient des données, alors la BDM est incohérente car la contraintes d exclusion n est pas satisfaite. L élimination de ces vues réduit considérablement la taille du treillis multidimensionnel sur lequel se base les techniques d optimisation de la sélection des vues matérialisées (Baralis et al., 1997) (Gupta et al., 1999) et de réécriture de requêtes OLAP (Park et al., 2001). La taille du treillis T dépend du nombre d attributs dans les dimensions et plus particulièrement dans les hiérarchies. Sans considération des contraintes T est calculée comme suit : T = Π h i=1 n i Avec n i le nombre d attributs dans la hiérarchie i et h le nombre de hiérarchies combinées dans le treillis. L intégration des contraintes réduit cette taille en enlevant les combinaisons incohérentes.

13 4.1 Implantation des contraintes Afin de valider nos propositions, nous avons développé un prototype, appelé GEDOOH. Il comporte une interface graphique qui permet à l administrateur de définir les schémas des BDM et produit automatiquement au travers du générateur les scripts de création et d alimentation de ces BDM. Pour ce faire, l ensemble des définitions sont entreposées dans un référentiel de méta-données. Après avoir défini les composants d un schéma de la BDM, l administrateur peut spécifier les contraintes intra- et/ou inter-dimensions. Cette définition est réalisée en sélectionnant l option de création d une contrainte afin d obtenir la boîte de dialogue de la figure 8 ; l administrateur doit sélectionner ensuite les hiérarchies et la contrainte appliquée. Figure 8 Interface de définition d'une contrainte d'exclusion intra-dimension La définition d une contrainte sur les hiérarchies induit une mise à jour du référentiel et une vérification des conflits possibles entre les contraintes ; cette vérification permet par exemple d interdire la création d une contrainte d exclusion et d une contrainte d inclusion entre les mêmes hiérarchies. 4.2 Treillis multidimensionnel intégrant les contraintes Le prototype intègre les contraintes sémantiques, stockées dans le référentiel de méta données, dans l algorithme de construction du treillis multidimensionnel. Nous avons pris l exemple de la BDM exposée dans la figure 1. Dans cet exemple, nous avons construit les treillis multidimensionnels en combinant les différentes dimensions sans intégrer les contraintes afin de relever le nombre de vues de chaque treillis. Puis, nous avons intégré les contraintes à l aide de notre interface et nous avons construit de nouveau l ensemble des treillis possibles (voir figure 9). Taille du treillis multi dimensionnel PRODUITS MAGASINS TEMPS PRODUITS, MAGASINS PRODUITS, TEMPS MAGASINS, TEMPS PRODUITS, MAGASINS, TEMPS Sans contraintes Avec contraintes Figure 9 Tableau comparatif de la taille du treillis multidimensionnel.

14 La diminution du nombre de vues dans le treillis multidimensionnel simplifie sa manipulation. La recherche d un nœud représentant une vue à matérialiser devient moins coûteux et plus facile. Si nous reprenons l exemple du treillis combinant les ventes selon les dimensions PRODUITS et MAGASINS, nous passerons d un treillis de 140 nœuds sans considérer les contraintes (figure 10 (a)) vers un treillis de 48 nœuds après intégration des contraintes sémantiques (figure 10 (b)). (a) avant intégration des contraintes (b) après intégration des contraintes Figure 10 Treillis combinants les dimensions PRODUITS et MAGASINS

15 5. Conclusion Cet article étudie l intégration des contraintes sémantiques dans les treillis multidimensionnels. Ces contraintes sont définies dans un modèle de données en constellation qui assure une plus grande cohérence des données par sa propriété de multi-instanciation. Nous distinguons les contraintes intra-dimension qui portent sur les hiérarchies d une même dimension, des contraintes inter-dimensions qui s appliquent entre les hiérarchies de dimensions distinctes. L intégration de ces contraintes dans le processus de construction des treillis multidimensionnels permet d enlever toutes les vues incohérentes, ne satisfaisant pas les contraintes, et de réduire la taille de ces treillis. L intégration de ces contraintes dans le modèle multidimensionnel est réalisée à l aide de notre prototype GEDOOH, développé au sein de notre équipe. Une extension de ce prototype a permis d utiliser les contraintes lors de la construction des treillis multidimensionnels. L intégration des contraintes a permis de tenir compte de la sémantique de la BDM et de réduire la taille de ces treillis. Nous envisageons de poursuivre cette étude en analysant l implication des contraintes dans le processus d interrogation des requêtes OLAP. Pour cela nous envisageons de proposer un ensemble d opérateurs multidimensionnels qui intègrent la sémantique des contraintes et d utiliser le treillis multidimensionnel pour répondre à ces requêtes. 6. Bibliographie (Baralis et al, 1997) Baralis E., Paraboschi S., Teniente E., «Materialized Views Selection in a Multidimensional Database», Proceedings of the 23rd VLDB Conference Athens, Greece, (Codd, 1993) Codd E.F., «Providing OLAP (on-line analytical processing) to user-analysts : an IT mandate», Technical Report, E.F. Codd and Associates, (Ghozzi et al, 2003)Ghozzi F., Ravat F., Teste O., Zurfluh G., «Modèle Multidimensionnel à Contraintes», Revue des Sciences et Technologies de l'information, Série RIA-ECA, Volume 17, n1-2-3/2003. (Golfarelli et al, 1998) Golfarelli M., Maio D., Rizzi S., «Conceptual design of Data Warehouse from E/R Schemas», Proceeding of the 31 st Hawaii International Conference on System Sciences, Kona (Hawaii, USA), (Gray et al, 1996) Gray J., Bosworth A., Layman A., Pirahesh H., «Datacube: A Relational Operator Generalizing Group-By, Cross-Tab and Sub-Total», Proceeding of the 12 International Conference on Data Engineering, pp , (Gupta et al, 1997) Gupta H., Harinarayan V, Rajaraman A., «Index selection for OLAP», 13th International Conference on Data Engineering Birmingham, U.K April 07-11,

16 (Gupta et al, 1999) Gupta H., Mumick I., S., «Selection of view to materialize under a maintenance cost constraint», 7th International Conference Database Theory - ICDT '99, Jerusalem, Israel, January 10-12, (Harinarayan et al, 1996) Harinarayan V., Rajaraman A., Ullman J. «Implementing Data Cubes Efficiently» Proceedings of the 1996 ACM SIGMOD Conference, Monreal (Hurtabo et al, 2002) Hurtado C., Mendelzon A., «OLAP Dimension Constraints», PODS 2002, Madison, June 2002 (Kimball, 1996) Kimball R., «The data warehouse toolkit», John Wiley and Sons, (Kotidis et al, 2001) Kotidis Y., Roussopoulos N., «A case for dynamic view management», Database Systems journal, volume 26 n 4, p , (Lehner, 1998) Lehner W., «Modeling Large Scale OLAP Scenarios», 6th International Conference on Extending Database Technology (EDBT'98), Valence (Espagne), Mars (Li et al, 1996) Li C., Wang X. S., «A Data Model for Supporting On-Line Analytical Processing», 5th International Conference on Information and Knowledge Management -ACM CIKM'96, Novembre (Mendelzon et al, 2000) Mendelzon A, Vaisman A., «Temporal Queries in OLAP», VLDB 2000, Caire (Egypte), Septembre (Park et al, 2001) Park C. S., Kim M. H., Lee Y. J. «Rewriting OLAP Queries Using Materialized Views and Dimension Hierarchies in Data Warehouses», 17th International Conference on Data Engineering, April 02-06, 2001 Heidelberg, Germany. (Pedersen et al, 1999) Pedersen T. B., Jensen C. S., «Multidimensional Data Modeling for Complex Data», ICDE' 99. (Theodoratos et al, 1999) Theodoratos D., Bouzeghoub M., «Data Currency Quality Factors in Data Warehouse Design», Proceedings of the International Workshop on Design and Management of Data Warehouses (DMDW 99), Heidelberg, Germany,

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 8 Introduction à OLAP 8.1. Présentation de la semaine Le modèle OLAP (Online Analytical Processing) est un modèle quasiomniprésent en intelligence

Plus en détail

Maintenance de charge pour l optimisation des entrepôts de données évolutifs : aide à l administrateur

Maintenance de charge pour l optimisation des entrepôts de données évolutifs : aide à l administrateur Maintenance de charge pour l optimisation des entrepôts de données évolutifs : aide à l administrateur Cécile Favre, Fadila Bentayeb, Omar Boussaid Université de Lyon (Laboratoire ERIC - Lyon 2) 5 av.

Plus en détail

Système adaptatif d aide à la génération de requêtes de médiation

Système adaptatif d aide à la génération de requêtes de médiation Système adaptatif d aide à la génération de requêtes de médiation Dimitre Kostadinov Verónika Peralta Assia Soukane Xiaohui Xue Laboratoire PRiSM, Université de Versailles 45 avenue des Etats-Unis 78035

Plus en détail

Contexte général de l étude

Contexte général de l étude 1 2 Contexte général de l étude Les entrepôts de données associés à des outils d analyse On Line Analytical Processing (OLAP), représentent une solution effective pour l informatique décisionnelle (Immon,

Plus en détail

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes II - II 1ère génération 13 2ème génération : Entrepôt de données / Magasin de données 15 3ème génération OLAP 16 Références Bibliographiques 18 A. 1ère génération Infocentre Tableur Base de données Infocentre

Plus en détail

Évolution de modèle dans les entrepôts de données : existant et perspectives

Évolution de modèle dans les entrepôts de données : existant et perspectives EDA'07 3èmes journées francophones sur les Entrepôts de Données et l'analyse en ligne Poitiers, 7 et 8 Juin 2007 Évolution de modèle dans les entrepôts de données : existant et perspectives Cécile Favre,

Plus en détail

Modèle d entrepôt de données à base de règles

Modèle d entrepôt de données à base de règles Modèle d entrepôt de données à base de règles Cécile Favre, Fadila Bentayeb, Omar Boussaïd Laboratoire ERIC, Université Lumière Lyon2 5, avenue Pierre Mendès-France 69676, Bron Cedex, France {cfavre, bentayeb}@eric.univ-lyon2.fr

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Personnalisation dans les entrepôts de données : bilan et perspectives

Personnalisation dans les entrepôts de données : bilan et perspectives Personnalisation dans les entrepôts de données : bilan et perspectives Fadila Bentayeb*, Omar Boussaid*, Cécile Favre* Franck Ravat**, Olivier Teste** * Université de Lyon, ERIC Lyon 2 5 av. Pierre Mendès-France

Plus en détail

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Thèse présentée par Cécile FAVRE pour obtenir le titre de Docteur en Informatique

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 5 Indexation des données multidimensionnelles 5.1. Presentation de la semaine Tous les systèmes de bases de données supportent les index en

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Systèmes d information et bases de données (niveau 1)

Systèmes d information et bases de données (niveau 1) Systèmes d information et bases de données (niveau 1) Cours N 1 Violaine Prince Plan du cours 1. Bibliographie 2. Introduction aux bases de données 3. Les modèles 1. Hiérarchique 2. Réseau 3. Relationnel

Plus en détail

Indépendance données / applications

Indépendance données / applications Vues 1/27 Indépendance données / applications Les 3 niveaux d abstraction: Plusieurs vues, un seul schéma conceptuel (logique) et schéma physique. Les vues décrivent comment certains utilisateurs/groupes

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 9 Les opérations OLAP 9.1. Présentation de la semaine Nous avons vu la semaine précédente qu il est possible de définir partiellement le paradigme

Plus en détail

UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID

UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID 1 UNE DÉMARCHE D ANALYSE À BASE DE PATRONS POUR LA DÉCOUVERTE DES BESOINS MÉTIER D UN SID 31 janvier 2012 Bordeaux Présentée par :Mme SABRI Aziza Encadrée par : Mme KJIRI Laila Plan 2 Contexte Problématique

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

Entrepôts de données multidimensionnelles NoSQL

Entrepôts de données multidimensionnelles NoSQL Entrepôts de données multidimensionnelles NoSQL Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, Ronan Tournier Université de Toulouse, IRIT UMR 5505, Toulouse, France http://www.irit.fr

Plus en détail

SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste

SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste Christian Soutou Avec la participation d Olivier Teste SQL pour Oracle 4 e édition Groupe eyrolles, 2004, 2005, 2008, 2010, is BN : 978-2-212-12794-2 Partie III SQL avancé La table suivante organisée en

Plus en détail

Sommaire. Introduction. Opérations typiques. Langages. Architectures

Sommaire. Introduction. Opérations typiques. Langages. Architectures OLAP IED 2006-2007 Sommaire Introduction Opérations typiques Langages Architectures Introduction Contexte un entrepôt de données offre des données - nombreuses - homogènes - exploitables - multidimensionnelles

Plus en détail

Modélisation de la Structure Complexe des Faits et des Mesures

Modélisation de la Structure Complexe des Faits et des Mesures Modélisation de la Structure Complexe des Faits et des Mesures Estella Annoni Franck Ravat Olivier Teste IRIT-SIG Institute (UMR 5505) 118 Route de Narbonne, F-31062 Toulouse Cedex 9 France {annoni, ravat,

Plus en détail

Algèbre relationnelle

Algèbre relationnelle Algèbre relationnelle 1. Introduction L algèbre relationnelle est le support mathématique cohérent sur lequel repose le modèle relationnel. L algèbre relationnelle propose un ensemble d opérations élémentaires

Plus en détail

Plan. Bases de données. Cours 1 : Généralités & rappels. But du cours. Organisation du cours. Polytech Paris-Sud. Apprentis 4 ème année

Plan. Bases de données. Cours 1 : Généralités & rappels. But du cours. Organisation du cours. Polytech Paris-Sud. Apprentis 4 ème année Plan Bases de données Polytech Paris-Sud Apprentis 4 ème année Cours 1 : Généralités & rappels 1.1 Avant-propos 1.2 Algèbre relationnelle kn@lri.fr http://www.lri.fr/~kn 2/18 But du cours Organisation

Plus en détail

Un modèle multidimensionnel pour un processus d analyse en ligne de résumés flous

Un modèle multidimensionnel pour un processus d analyse en ligne de résumés flous Un modèle multidimensionnel pour un processus d analyse en ligne de résumés flous Lamiaa Naoum To cite this version: Lamiaa Naoum. Un modèle multidimensionnel pour un processus d analyse en ligne de résumés

Plus en détail

Une extension pour RDF/RDFS utilisant des relations procédurales

Une extension pour RDF/RDFS utilisant des relations procédurales Une extension pour RDF/RDFS utilisant des relations procédurales Jean-François Baget * * INRIA Sophia-Antipolis & LIRMM(CNRS - UM2) LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5 baget@lirmm.fr RÉSUMÉ.

Plus en détail

Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype

Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype Anne Tchounikine, Maryvonne Miquel, Usman Ahmed LIRIS CNRS UMR 5205, INSA-Université de Lyon, France 1 Motivations Motivé

Plus en détail

Chapitre 7. Approfondir les connaissances

Chapitre 7. Approfondir les connaissances Chapitre 7 Approfondir les connaissances Déroulement du cours 1 : Le rôle du Designer d Univers 2 : Créer un Univers avec l Assistant 3 : Créer un Univers étape par étape 4 : Enrichir un Univers 5 : Création

Plus en détail

CONCEPTION ET MANIPULATION DE BASES DE DONNEES DIMENSIONNELLES À CONTRAINTES

CONCEPTION ET MANIPULATION DE BASES DE DONNEES DIMENSIONNELLES À CONTRAINTES CONCEPTION ET MANIPULATION DE BASES DE DONNEES DIMENSIONNELLES À CONTRAINTES Ghozzi Faiza To cite this version: Ghozzi Faiza. CONCEPTION ET MANIPULATION DE BASES DE DONNEES DIMEN- SIONNELLES À CONTRAINTES.

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Éléments spectraux d une fonction cyclostationnaire

Éléments spectraux d une fonction cyclostationnaire Éléments spectraux d une fonction cyclostationnaire Alain BOUDOU 1 & Sylvie VIGUIR-PLA 1 & 2 1 quipe de Stat. et Proba., Institut de Mathématiques, UMR5219 Université Paul Sabatier, 118 Route de Narbonne,

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

Introduction à Business Objects. J. Akoka I. Wattiau

Introduction à Business Objects. J. Akoka I. Wattiau Introduction à Business Objects J. Akoka I. Wattiau Introduction Un outil d'aide à la décision accès aux informations stockées dans les bases de données et les progiciels interrogation génération d'états

Plus en détail

Un modèle de qualité de l information

Un modèle de qualité de l information Rami Harrathi*, Sylvie Calabretto* * * LIRIS CNRS UMR 5205 - INSA de Lyon, Bâtiment Blaise Pascal 7, avenue Jean Capelle, F-69621 Villeurbanne Cedex Rharrathi @yahoo.fr **LIRIS CNRS UMR 5205 - INSA de

Plus en détail

Modélisation multidimensionnelle des données complexes : application aux données médicales

Modélisation multidimensionnelle des données complexes : application aux données médicales Modélisation multidimensionnelle des données complexes : application aux données médicales Sommaire : Midouni Sid Ahmed Djallal Version 9 08/06/05 1. Introduction... 3 2. Etat de l art... 4 3. Modélisation

Plus en détail

Prototype SOLAP appliqué sur des champs continus en mode raster

Prototype SOLAP appliqué sur des champs continus en mode raster Session démos 24 novembre 2014 Prototype SOLAP appliqué sur des champs continus en mode raster Analyse de hot spots de criminalité Jean-Paul Kasprzyk, doctorant Introduction 2 L informatique décisionnelle

Plus en détail

Evolution de modèle dans les entrepôts de données : existant et perspectives

Evolution de modèle dans les entrepôts de données : existant et perspectives Evolution de modèle dans les entrepôts de données : existant et perspectives Cécile Favre, Fadila Bentayeb, Omar Boussaid Université de Lyon Laboratoire ERIC - Lyon 2 5 av. Pierre Mendès-France, 69676

Plus en détail

Algèbre OLAP et langage graphique

Algèbre OLAP et langage graphique Algèbre OLAP et langage graphique Franck Ravat, Olivier Teste, Gilles Zurfluh To cite this version: Franck Ravat, Olivier Teste, Gilles Zurfluh. Algèbre OLAP et langage graphique. Congrès Informatique

Plus en détail

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK Oracle Décisionnel : Modèle OLAP et Vue matérialisée SOMMAIRE Introduction Le modèle en étoiles Requêtes OLAP Vue matérialisée Fonctions Roll up et Cube Application Introduction Data Warehouse Moteur OLAP

Plus en détail

PARTIE 1 : ETAT DE L ART...

PARTIE 1 : ETAT DE L ART... Table des matières INTRODUCTION... 1 Contexte général de l étude... 3 Problématiques... 4 Contributions des nos travaux de recherche... 5 Organisation du mémoire... 6 PARTIE 1 : ETAT DE L ART... 9 CHAPITRE

Plus en détail

h3870 Entrepôts de données

h3870 Entrepôts de données h3870 Entrepôts de données Date de publication : 10/02/5 Par : Claude CHRISMENT Professeur à l'université Toulouse-3 Geneviève PUJOLLE Maître de conférences à l'université Toulouse-1 Franck RAVAT Maître

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Notation fonctionnelle : Union (R,S) ou OR (R, S) Chapitre 4 : Algèbre Relationnelle

Notation fonctionnelle : Union (R,S) ou OR (R, S) Chapitre 4 : Algèbre Relationnelle Chapitre 4 : IV. Qu est-ce que l algèbre relationnelle? Une collections d opérations, chacune agissant sur une ou deux relations et produisant une relation en résultat. Un langage pour combiner ces opérations.

Plus en détail

Analyse en ligne d objets complexes avec l analyse factorielle

Analyse en ligne d objets complexes avec l analyse factorielle Analyse en ligne d objets complexes avec l analyse factorielle Loic Mabit, Sabine Loudcher, Omar Boussaïd To cite this version: Loic Mabit, Sabine Loudcher, Omar Boussaïd. Analyse en ligne d objets complexes

Plus en détail

OLAP : un pas vers la navigation

OLAP : un pas vers la navigation Arnaud Giacometti, Patrick Marcel, Elsa Negre Université François-Rabelais de Tours Laboratoire d Informatique, Campus de Blois 3 place Jean Jaurès, 41000 Blois {Arnaud.Giacometti,Patrick.Marcel,Elsa.Negre}@univ-tours.fr

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

Intelligence Economique - Business Intelligence

Intelligence Economique - Business Intelligence Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit

Plus en détail

INTRODUCTION AUX TECHNOLOGIES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES

INTRODUCTION AUX TECHNOLOGIES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES INTRODUCTION AUX TECHNOLOGIES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES Les contenus de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information

Plus en détail

Démarche dirigée par les modèles pour la conception d entrepôts de données multidimensionnelles. F.Atigui, F.Ravat, O.Teste, G.

Démarche dirigée par les modèles pour la conception d entrepôts de données multidimensionnelles. F.Atigui, F.Ravat, O.Teste, G. Démarche dirigée par les modèles pour la conception d entrepôts de données multidimensionnelles F.Atigui, F.Ravat, O.Teste, G.Zurfluh IRIT (SIG/ED) Université Paul Sabatier 118 route de Narbonne 31062

Plus en détail

Hervé Couturier EVP, SAP Technology Development

Hervé Couturier EVP, SAP Technology Development Hervé Couturier EVP, SAP Technology Development Hervé Biausser Directeur de l Ecole Centrale Paris Bernard Liautaud Fondateur de Business Objects Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud

Plus en détail

Chapitre 2 : Conception de BD Réparties

Chapitre 2 : Conception de BD Réparties 2/22 Chapitre 2 : Conception de BD Réparties 2/22 Introduction Une BDR diffère d'une BD centralisée avec certains concepts nouveaux qui sont particuliers à la répartition des données.. Méthode de conception

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

Chapitre 4 Modélisation et Conception de BD

Chapitre 4 Modélisation et Conception de BD Pourquoi une modélisation préalable? Chapitre 4 Modélisation et Conception de BD Il est difficile de modéliser un domaine sous une forme directement utilisable par un SGBD. Stockage physique Cohérence/intégrité

Plus en détail

arxiv:0707.1304v1 [cs.db] 9 Jul 2007

arxiv:0707.1304v1 [cs.db] 9 Jul 2007 Hadj Mahboubi, Kamel Aouiche, Jérôme Darmont ERIC, Université Lumière Lyon 2 5 avenue Pierre Mendès-France 69676 Bron Cedex { hmahboubi kaouiche jdarmont}@eric.univ-lyon2.fr arxiv:0707.1304v1 [cs.db] 9

Plus en détail

Bases de données multidimensionnelles et mise en œuvre dans Oracle

Bases de données multidimensionnelles et mise en œuvre dans Oracle Bases de données multidimensionnelles et mise en œuvre dans Oracle 1 Introduction et Description générale Les bases de données relationnelles sont très performantes pour les systèmes opérationnels (ou

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

F. Opérations multidimensionnelles

F. Opérations multidimensionnelles F. Opérations multidimensionnelles Roll up (drill-up)/drill down (roll down) Roll up (drill-up) : résumer, agréger des données en montant dans une hiérachie ou en oubliant une dimension Drill down (roll

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Méthode d aide à la conception en présence d imprécisions

Méthode d aide à la conception en présence d imprécisions Méthode d aide à la conception en présence d imprécisions Franck Massa, Thierry Tison, Bertrand Lallemand Laboratoire d'automatique, de Mécanique et d'informatique Industrielles et Humaines, UMR 8530,

Plus en détail

Cours 4 : Contrôle d accès

Cours 4 : Contrôle d accès Cours 4 : Contrôle d accès ESIL Université de la méditerranée Odile.Papini@esil.univ-mrs.fr http://odile.papini.perso.esil.univmed.fr/sources/ssi.html Plan du cours 4 1 Introduction 2 3 4 4 5 6 7 Introduction

Plus en détail

Fouille de Données : OLAP & Data Warehousing

Fouille de Données : OLAP & Data Warehousing Fouille de Données : OLAP & Data Warehousing Nicolas Pasquier Université de Nice Sophia-Antipolis Laboratoire I3S Chapitre 2. Data warehousing Définition : qu est-ce que le data warehousing? Entrepôt de

Plus en détail

Techniques d optimisation des requêtes dans les data warehouses

Techniques d optimisation des requêtes dans les data warehouses Techniques d optimisation des requêtes dans les data warehouses Ladjel Bellatreche LISI/ENSMA Téléport2-1, Avenue Clément Ader 86960 Futuroscope - FRANCE bellatreche@ensma.fr Résumé Un entrepôt de données

Plus en détail

Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013

Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013 Cube de textes et opérateur d'agrégation basé sur un modèle vectoriel adapté Text Cube Model and aggregation operator based on an adapted vector space model Lamia Oukid, Ounas Asfari, Fadila Bentayeb,

Plus en détail

Introduction aux S.G.B.D.

Introduction aux S.G.B.D. NFE113 Administration et configuration des bases de données - 2010 Introduction aux S.G.B.D. Eric Boniface Sommaire L origine La gestion de fichiers Les S.G.B.D. : définition, principes et architecture

Plus en détail

Top_Keyword : agrégation de mots-clefs dans un environnement d analyse en ligne (OLAP)

Top_Keyword : agrégation de mots-clefs dans un environnement d analyse en ligne (OLAP) Top_Keyword : agrégation de mots-clefs dans un environnement d analyse en ligne (OLAP) Franck Ravat, Olivier Teste Ronan Tournier, Gilles Zurfluh IRIT SIG/ED, UMR5505, 118 rte. de Narbonne, F31062 Toulouse

Plus en détail

Génération de réponses pour un système de questions-réponses

Génération de réponses pour un système de questions-réponses Génération de réponses pour un système de questions-réponses Van-Minh Pho 1 LIMSI-CNRS, Rue John von Neumann, Université Paris-Sud, 91403 Orsay cedex, France vanminh.pho@gmail.com RÉSUMÉ. Les systèmes

Plus en détail

Conception multi-agent d un système d aide à la décision collective

Conception multi-agent d un système d aide à la décision collective Conception multi-agent d un système d aide à la décision collective Justification automatique pour la confrontation des opinions Maxime Morge Philippe Beaune Équipe SMA / Centre SIMMO École Nationale Supérieure

Plus en détail

Modélisation et manipulation des systèmes OLAP : de l intégration des documents à l usager

Modélisation et manipulation des systèmes OLAP : de l intégration des documents à l usager MEMOIRE pour l obtention de l HABILITATION à DIRIGER des RECHERCHES Spécialité Informatique Modélisation et manipulation des systèmes OLAP : de l intégration des documents à l usager Olivier Teste Soutenue

Plus en détail

Généralisation contextuelle de mesures dans les entrepôts de données

Généralisation contextuelle de mesures dans les entrepôts de données Généralisation contextuelle de mesures dans les entrepôts de données Application aux entrepôts de données médicales Yoann Pitarch* Cécile Favre** Anne Laurent* Pascal Poncelet* * LIRMM, UMR 5506 161, Rue

Plus en détail

Indexation et interrogation de photos de presse décrites en MPEG-7

Indexation et interrogation de photos de presse décrites en MPEG-7 Indexation et interrogation de photos de presse décrites en MPEG-7 Emmanuel Bruno Jacques Le Maitre Elisabeth Murisasco Laboratoire SIS, Equipe Informatique Université de Toulon et du Var Bâtiment R, BP

Plus en détail

10 Intégration de données sur le web

10 Intégration de données sur le web 10 Intégration de données sur le web 240 Requête utilisateur : Où est-ce que je peux voir les films qui ont participé au dernier Festival de Cannes? Je voudrais les résumés et critiques des films de Pedro

Plus en détail

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes II - II A. 1ère génération Infocentre L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes Définition L'infocentre est une collection de données orientées sujet, intégrées,

Plus en détail

«La visualisation de l information au service de la veille, la recherche et la découverte d information sur le web»

«La visualisation de l information au service de la veille, la recherche et la découverte d information sur le web» «La visualisation de l information au service de la veille, la recherche et la découverte d information sur le web» Social Computing est spécialisé dans les domaines de l accès à l information, des réseaux

Plus en détail

Analyse flexible dans les entrepôts de données : quand les contextes s en mêlent

Analyse flexible dans les entrepôts de données : quand les contextes s en mêlent Analyse flexible dans les entrepôts de données : quand les contextes s en mêlent Yoann PITARCH, Cécile FAVRE Anne LAURENT, Pascal PONCELET LIRMM - Université Montpellier 2, Montpellier, France {pitarch,laurent,poncelet}@lirmm.fr

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Rappel sur les bases de données

Rappel sur les bases de données Rappel sur les bases de données 1) Généralités 1.1 Base de données et système de gestion de base de donnés: définitions Une base de données est un ensemble de données stockées de manière structurée permettant

Plus en détail

ETL Extract - Transform - Load

ETL Extract - Transform - Load ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus

Plus en détail

Personnalisation d analyses décisionnelles sur des données multidimensionnelles

Personnalisation d analyses décisionnelles sur des données multidimensionnelles Université Toulouse 1 Capitole(UT1 Capitole) Informatique Houssem Jerbi vendredi 20 janvier 2012 Personnalisation d analyses décisionnelles sur des données multidimensionnelles Mathématiques Informatique

Plus en détail

BASES DE DONNÉES AVANCÉES

BASES DE DONNÉES AVANCÉES L3 Informatique Option : ISIL BASES DE DONNÉES AVANCÉES RAMDANI MED U-BOUIRA M. R A M D A N I @ U N I V - B O U I R A. D Z P E R S O. L I V E H O S T. F R Cours 5 : Evaluation et optimisation des requêtes

Plus en détail

Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium. Comparatif Choco/Drools dans le cadre du projet JASMINe

Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium. Comparatif Choco/Drools dans le cadre du projet JASMINe Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium dans le cadre du projet JASMINe Avril 2008 Table des matières 1 Introduction 3 1.1 Rappel sur JASMINe.......................................

Plus en détail

Entreposage de données complexes pour la médecine d anticipation personnalisée

Entreposage de données complexes pour la médecine d anticipation personnalisée Manuscrit auteur, publié dans "9th International Conference on System Science in Health Care (ICSSHC 08), Lyon : France (2008)" Entreposage de données complexes pour la médecine d anticipation personnalisée

Plus en détail

BASES DE DONNEES AVANCEES

BASES DE DONNEES AVANCEES 1.Introduction J.Korczak 1 BASES DE DONNEES AVANCEES Jerzy KORCZAK, Mohammed ATTIK email: {jjk,attik}@lsiit.u-strasbg.fr BDA Objectifs : Ce cours présente des méthodes, modèles et outils d'aide au développement

Plus en détail

Encryptions, compression et partitionnement des données

Encryptions, compression et partitionnement des données Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des

Plus en détail

Entrepôt de données pour aider au pilotage dans les hôpitaux

Entrepôt de données pour aider au pilotage dans les hôpitaux Entrepôt de données pour aider au pilotage dans les hôpitaux (*), (**) Lama EL SARRAJ (*) LSIS, Université Aix Marseille, LSIS-UMR CNRS 6168 13385 Marseille (**) APHM, 147 boulevard Baille 13397 Marseille

Plus en détail

Il est nécessaire de connaître au moins un système d'exploitation de type graphique.

Il est nécessaire de connaître au moins un système d'exploitation de type graphique. GBD-030 Oracle Prise en main Saint-Denis à 9h30 5 jours Objectifs : Une formation Oracle complète pour découvrir tous les concepts du système et les différentes façons de les utiliser concrètement tout

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

Le modèle de données relationnel

Le modèle de données relationnel Le modèle de données relationnel 1. Le modèle relationnel 1.1. Présentation Le modèle relationnel représente la base de données comme un ensemble de tables, sans préjuger de la façon dont les informations

Plus en détail

Cours Base de données relationnelles. M. Boughanem, IUP STRI

Cours Base de données relationnelles. M. Boughanem, IUP STRI Cours Base de données relationnelles 1 Plan 1. Notions de base 2. Modèle relationnel 3. SQL 2 Notions de base (1) Définition intuitive : une base de données est un ensemble d informations, (fichiers),

Plus en détail

Master Exploration Informatique des données DataWareHouse

Master Exploration Informatique des données DataWareHouse Master Exploration Informatique des données DataWareHouse Binôme Ahmed BENSI Enseignant tahar ARIB SOMMAIRE I. Conception...1 1. Contexte des contrats...1 2. Contexte des factures...1 II. Modèle physique...2

Plus en détail

Influence De La Taille Du Jeton Sur Les Performances De L algorithme D'exclusion Mutuelle De Ricart - Agrawala

Influence De La Taille Du Jeton Sur Les Performances De L algorithme D'exclusion Mutuelle De Ricart - Agrawala Influence De La Taille Du Jeton Sur Les Performances De L algorithme D'exclusion Mutuelle De Ricart - Agrawala Sarah Benkouider, Souhila Labgaa 2, Mohamed Yagoubi 3 Université Amar Telidji Département

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

Optimisation des bases de données

Optimisation des bases de données Optimisation des bases de données Mise en œuvre sous Oracle Laurent Navarro Avec la contribution technique d Emmanuel Lecoester Pearson Education France a apporté le plus grand soin à la réalisation de

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

Extraction de règles d association pour la prédiction de valeurs manquantes

Extraction de règles d association pour la prédiction de valeurs manquantes Cari 2004 7/10/04 12:00 Page 487 Extraction de règles d association pour la prédiction de valeurs manquantes Sylvie Jami 1, Tao-Yan Jen 2, Dominique Laurent 3, George Loizou 1, Oumar Sy 3,4 1. Birkbeck

Plus en détail

Le Web sémantique, une infrastructure d'intégration de sources de données

Le Web sémantique, une infrastructure d'intégration de sources de données Le Web sémantique, une infrastructure d'intégration de sources de données Chantal Reynaud Université Paris X & LRI (Université Paris-Sud & CNRS), UR INRIA Futurs Plan de l'exposé 1. Importance du point

Plus en détail

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail