Quantification d incertitude et Tendances en HPC

Dimension: px
Commencer à balayer dès la page:

Download "Quantification d incertitude et Tendances en HPC"

Transcription

1 Quantification d incertitude et Tendances en HPC Laurence Viry E cole de Physique des Houches 7 Mai 2014 Laurence Viry Tendances en HPC 7 Mai / 47

2 Contents 1 Mode lisation, simulation et quantification d incertitudes 2 Quelques strate gies 3 Tendance en HPC E volution Hardware Implication software Grille de calcul Cloud Paralle lisme avec R Quelques outils Laurence Viry Tendances en HPC 7 Mai / 47

3 Sommaire 1 Modélisation, simulation et quantification d incertitudes 2 Quelques stratégies 3 Tendance en HPC Évolution Hardware Implication software Grille de calcul Cloud Parallélisme avec R Quelques outils Laurence Viry Tendances en HPC 7 Mai / 47

4 Applications/Modélisation/Simulation Numérique 1 Une application est fréquemment décrite par un modèle mathématique, souvent un système d équations aux dérivées partielles linéaires ou non linéaires, couplées. 2 Rôle prédictif des applications de simulations numériques. 3 Écart entre l application (observations) et la simulation numérique issue de la modélisation. 4 La modélisation et la simulation numérique qui en découle introduisent des sources d erreurs: Erreur sur le modèle, erreur sur les entrées/sorties et/ou variabilité naturelle de ces entrées, erreurs sur les conditions initiales, forçages, erreur d approximation numérique du modèle, erreur informatique,... 5 Chaque source d erreur devra être intégrée dans le processus de prédiction. Laurence Viry Tendances en HPC 7 Mai / 47

5 Propagation d incertitude à travers du modèle Dans les méthodes non-déterministes, un nombre de calculs du modèle doit être effectué pour recouvrir l espace des entrées vers l espace des sorties du modèle. Le nombre de calculs nécessaire dépend: de la non-linéarité des équations aux dérivées partielles, de la structure de dépendance entre les quantités incertaines, de la nature des incertitudes (aléatoire, épistémique) des méthodes numériques utilisées.... Laurence Viry Tendances en HPC 7 Mai / 47

6 Applications/Modélisation/Simulation Numérique La connaissance globale des incertitudes des réponses d un modèle peut nécessiter le développement et la mise en oeuvre: d une analyse de sensibilité globale permettant d identifier les variables d entrées les plus pertinentes, de techniques de propagation d incertitudes. de technique de vérification et validation de code. L évolution des ressources de calcul, de stockage et des logiciels disponibles : induit une plus grande complexité des modèles et de leur implémentation numérique, permet d envisager la mise en oeuvre de méthodes considérées jusqu à récemment comme trop coûteuses, L évolution des architectures hardware des machines de calcul impose une adaptation des algorithmes utilisés répondant à des critères d efficacité en terme de temps de calcul, de gestion de la mémoire et des I/O et de paradigme de programmation. Laurence Viry Tendances en HPC 7 Mai / 47

7

8 Sommaire 1 Modélisation, simulation et quantification d incertitudes 2 Quelques stratégies 3 Tendance en HPC Évolution Hardware Implication software Grille de calcul Cloud Parallélisme avec R Quelques outils Laurence Viry Tendances en HPC 7 Mai / 47

9 Modèle Nous considérons un modèle (code numérique) représenté de manière générique par une fonction f définie sur un domaine de R p et à valeurs dans R m : Y = f (X, θ) avec X R p les entrées, θ les paramètres et Y R m les sorties du modèle. Quantités d intérêt estimées en général par leur analogues empiriques. ϱ(x, θ) = E(f (X, θ)) moyenne de Y Var(f (X, θ)) variance de Y F Y (y) = P(Y < y) fonction de répartition de Y q s (Y ) quantile de Y E(Y /X s ) moyenne conditionnelle de Y Var(Y /x s ) variance conditionnelle de Y S i i 1,..., p indice de sensibilité de premier ordre S i1,i 2,...,i k indice de sensibilité d ordre supérieur... Laurence Viry Tendances en HPC 7 Mai / 47

10 Méthodologies Caractéristiques de calcul: Temps d une évaluation du modèle. Volume du stockage (échantillon, I/O du modèle, quantités d intérêts). Communications: évaluation du modèle, distribution des données et des résultats. Environnement software, gestion de la complexité des processus.... Les processus utilisés: (P 1 ) Paramétrisation, assigner des lois de probabilité aux variables du modèle étape de criblage éventuel. (P 2 ) Échantillonage ou planification à partir des lois des entrées. (P 3 ) Répartition des données en entrée du modèle et/ou du métamodèle. Évaluation du modèle (P 7 ) et/ou du métamodèle (P 8 ) : calcul séquentiel ou parallèle. (P 4 ) Récupération des résultats. (P 5 ) Estimation des quantités d intérêt. (P 6 ) Construction d un métamodèle (dans certains cas). Laurence... Viry Tendances en HPC 7 Mai / 47

11 Analyse de sensibilité: Estimations à l aide du modèle Échantillon de taille n (X(w 1 ),..., X(w n )) Estimations des quantités d intérêts ˆϱ n (f (X, θ)) ϱ(f (X, θ)) Evaluation Modèle (T7,S7,C7) Paramétrisation (T1,S1,C1) Échantillonnage Planification (T2,S2,C2) Distribution (T3,S3,C3)... Récupération (T4,S4,C4) Pi=(Ti,Si,Ci) Ti: temps de calcul de la tâche i Si: volume de stockage de la tâche i Ci: volume des communications de la tâche i Evaluation Modèle (T7,S7,C7) Estimations (T5,S5,C5) Laurence Viry Tendances en HPC 7 Mai / 47

12 Analyse : Estimations à l aide du modèle Temps de calcul global (T): T = T 1 + T 2 + T 3 + n T 7 + T 4 + T 5 n évaluations du code Dépend de T 7, de la taille de l échantillon (n), du volume des I/O. Stockage (S): S 1, S 2, S 5 : espace de stockage peu volumineux. S 7 : dépend du volume des I/O du code. S 4 : dépend du volume des quantités d intérêts. Volume d échange des données (C), concerne les tâches P 3, P 4, P 7. C 3 : distribution I/O et échantillon des paramètres: C 3 = taille(x) n C 4 : distribution des sorties du code et des quantités d intérêt pour l estimation des indices: C 4 = taille(y ) n C 7 : dépend du code (parallèle). Solutions HPC suivant la complexité de l application et des paramètres à estimer: Parallélisation du code. Distributions des calculs sur un gros cluster ou sur une grille de calcul. Utilisation d une grille de stockage. Parallélisation des estimations(moyenne, variance, indices de sensibilité,...) Laurence Viry Tendances en HPC 7 Mai / 47

13 Échantillon de taille m pour estimer le métamodèle Échantillon de taille (n) pour estimer les quantité d intérêts: (n >> m) Estimation à l'aide d'un métamodèle Evaluation Modèle (T7,S7,C7) Paramétrisation (T1,S1,C1) Planification (T2,S2,C2) Distribution (T3,S3,C3)... Récupération (T4,S4,C4) Evaluation Métamodèle (T8,S8,C8) Evaluation Modèle (T7,S7,C7) Récupération (T4',S4',C4')... Distribution (T3',S3',C3') Planification (T2',S2',C2') Construction Métamodèle (T6,S6,C6) Evaluation Métamodèle (T8,S8,C8) Estimations (T5,S5,C5) échantillon de taille m pour construire le métamodèle échantillon de taille n pour estimer les quantités d'intérêts m << n Laurence Viry Tendances en HPC 7 Mai / 47

14 Analyse : Estimations à l aide du modèle Temps de calcul global (T): T = T 1 + T 2 + T 3 + n T 7 + T 4 + T 6 + T 2 + T 3 + m T 8 + T 4 + T 5 Dépend de T 7 et de la taille de l échantillon (n). Stockage (S): S 1, S 2, S 2, S 5 : espace de stockage peu volumineux. S 7 : dépend du volume des I/O du code. S4, S4 : volume des quantités d intérêts. Volume d échange des données (C), concerne les tâches P 3, P 4, P 7. C 3 : distribution de l échantillon des paramètres: C 3 = taille(x) n C 4 : distribution des résultats du code pour l estimation des paramètres: C 4 = taille(y ) n C 7 : dépend du code. Laurence Viry Tendances en HPC 7 Mai / 47

15 Sommaire 1 Modélisation, simulation et quantification d incertitudes 2 Quelques stratégies 3 Tendance en HPC Évolution Hardware Implication software Grille de calcul Cloud Parallélisme avec R Quelques outils Laurence Viry Tendances en HPC 7 Mai / 47

16 Pourquoi le calcul parallèle? Qu est ce que le calcul parallèle? Plusieurs calculs exécutés simultanémant sur une ou plusieurs unités de calcul. Quand? Pour exploiter le parallélisme intrinsèque aux processeurs/ calculateurs et aux applications. Quand les limites des ressources nécessaires, des performances et/ou de la taille des problèmes traités sont atteintes sur un seul processeur. Comment? Par décomposition: des données pour traiter un plus gros volume de données ou traiter par une même tâche des données différentes: data parallelism de tâches indépendantes: task parallelism Laurence Viry Tendances en HPC 7 Mai / 47

17 Contexte HPC: Super calculateurs, Clusters, Grille, Cloud Ressources de calcul Station de travail Clusters Homogène: noeuds de plusieurs CPU multi-coeurs avec ou sans GPU ou accélérateurs. Super calculateur: IBM Blue Gene (4 096 nœuds de 16 cœurs à 1,6 GHz) TFlop/s de puissance crêteà l IDRIS),... Grille de calcul et de stockage: GRID500, grille locale,... Cloud Hiérarchie de réseaux WAN: Internet, Private WAN,... LAN: Ethernet SAN: InfiniBand,... Laurence Viry Tendances en HPC 7 Mai / 47

18 Motivations en simulation numérique La vitesse des processeurs a cessé d augmenter (x2 tous les 18mois). Parallélisme naturel dans la plupart des applications. Possibilité de traiter des gros volumes de données. Nécessité d exécuter un grand nombre de runs. Meilleure gestion des accès mémoire. La vitesse des réseaux augmentant, c est la possibilité d utiliser des ressources réparties sur un site ou sur plusieurs sites... En majorité: Codes parallèles Plusieurs codes indépendants Un seul code parallèle intensif Laurence Viry Tendances en HPC 7 Mai / 47

19 Unité de calcul: CPU versus GPU Composition d un noeud de calcul (Avec des proportions différentes) Une unité de contrôle Des unités d arithmétique et logique (ALU) Mémoire(DRAM, Caches,... ) Un grand nombre de coeurs capables de traiter rapidement des calculs simples sur des grandes quantités de données (GPU) Les processeurs classiques (CPU) sont moins rapides mais savent résoudre des problèmes plus compliqués Une combinaison de ces deux types de processeurs (accélérateurs) Laurence Viry Tendances en HPC 7 Mai / 47

20 Loi de Moore - Top500 Le nombre de transistors continue à augmenter par unité de surface. La puissance consommée et dissipée est le facteur limitant Puissance frequence 3 fréquence limitée Plus de performance avec moins de puissance Adaptation software? Laurence Viry Tendances en HPC 7 Mai / 47

21 Implication software Le coût en énergie de la fréquence Nb Cores Fréquence(Hz) Flops/s W Flops/s/W Superscalar 1 1.5X 1.5X 3.3X 0.45X Multicore X 1.5X 0.8X 1.88X Conséquences sur les applications Exécuter une application à un temps t 0 sur un calculateur Pas de modifications fondamentales du code entre t 1 et t 0 Exécuter l application au temps t 1 sur un nouveau calculateur quelles sont les performances? Laurence Viry Tendances en HPC 7 Mai / 47

22 Évolution des performances en HPC Période de fréquence croissante (< 2003) Peu de parallélisme dans les architectures La fréquence augmente Nb Flops/s augmente Les codes sont plus rapides L implémentation des codes n a pas besoin d être modifiée pour exploiter les nouvelles architectures Période Multi-core (> 2003) Plus de parallélisme dans l architecture (core,mémoire, stride des disque,... ) La fréquence décroit Les codes sont plus lents Les codes doivent être modifiées pour exploiter le parallélisme de ces nouvelles architectures Laurence Viry Tendances en HPC 7 Mai / 47

23 Laurence Viry Tendances en HPC 7 Mai / 47

24 Implications Multi-core Quelques définitions CPU (Central Processing Unit): puce ou processeur qui effectue les opérations de base du système. socket: le socket fournit au CPU les connections au bus système et tous les devices attachés à ce bus (mémoire, adaptateur réseau, I/O,... ). Core: unité de calcul contenu dans un CPU, ses propres registres et cache L1. Ressources partagées caches: les cores d un CPU peuvent se partager les caches L2 ou L3 socket: Les cores d un même CPU se partagent le même socket du CPU Ressources partagées Potentiel de conflits d accès aux ressources plus important Laurence Viry Tendances en HPC 7 Mai / 47

25 Classification des architectures parallèles Classification de Flynn basée sur le type d organisation du flux de données et du flux d instructions. Parallélisme d instructions Parallélisme de données { } { } S S I D M M SI Single Instruction MI Multiple Instruction SD Single Data MD Multiple Data SISD Single Instruction, Single Data SIMD Single Instruction, Multiple Data MISD Multiple instructions, Single Data MIMD Multiple Instructions, Multiple Data MIMD: architecture parallèle la plus utilisée Laurence Viry Tendances en HPC 7 Mai / 47

26 Mémoire partagée/mémoire distribuée Système à mémoire distribuée Un espace mémoire est associé à chaque processeur (CPU/noeud) L accès à la mémoire du processeur voisin se fait par échange de messages à travers le réseau entre les processeurs. Les algorithmes utilisés devront minimiser les communications. Système à mémoire partagée Un espace global visible par tous les processeurs (CPU/noeud) Les processeurs auront leur propre mémoire locale (cache,...) dans laquelle sera copié une partie de la mémoire globale. La cohérence entre ces mémoires locales devra être gérée par le hardware, le software et parfois l utilisateur. Laurence Viry Tendances en HPC 7 Mai / 47

27 Chaque processeur (noeud SMP) a sa propre mémoire. Les processus s exécutent indépendamment Ils communiquent entre eux par échange de message MPI. Overhead dû aux communications Réseau performant La mémoire globale est commune à tous les processeurs. Plus facile à utiliser (directives OpenMP) cohérence de cache. Performance de la bande passante mémoire. Défaut de scalabilité des accès mémoire. Problème de False Sharing ou de Race Dectection Facile à programmer - Difficile à déboguer Laurence Viry Tendances en HPC 7 Mai / 47

28 Plus rapide que la loi de Moore ( double tous les 14 mois) Le Top1 sort du Top500 en 8 ans La consommation électrique, l encombrement et le refroidissement sont devenu des freins à l extension des systèmes. Les architectures Hybrides (CPU/GPU) apparaissent. Laurence Viry Tendances en HPC 7 Mai / 47

29 Architectures Hybrides GPGPU sur les calculateurs Les architectures traditionnelles ont atteint leurs limites Plus de cores/noeud, plus de mémoire mais accès pas plus rapide. Actuellement, 3 sur 5 gros calculateurs sont des machines hybrides Plus de parallélisme dans le Hardware Adaptation des codes pour obtenir de la performance Les codes doivent être conçus différemment Les codes MPI ne passent pas au massivement parallèle. les performances augmentent en améliorant le parallélisme dans le code. Les performances augmentent en ajoutant des niveaux de parallélisme (OpenMP, MPI, GPU,... ) Laurence Viry Tendances en HPC 7 Mai / 47

30 Et plus de performances si affinités L apport de toujours plus de parallélisme dans les calculateurs pose le problème de la gestion des affinités. Les performances en dépendent Principe de localité et mémoire cache optimisation de l accès aux données. Caches et affinité entre tâches et données: le déplacement d une tâche sur un autre coeur. Partage de données entre tâches: accès à la mémoire par différent coeurs. Machine NUMA et affinités pour la mémoire: accès plus rapide aux données proche du processeur qui effectue l accès. Nos programmes peuvent s exécuter sans tenir compte de toutes ces contraintes, mais ils iront moins vite... Laurence Viry Tendances en HPC 7 Mai / 47

31 Et bien d autres affinités Périphériques qui peuvent être plus proches de certains cœurs que d autres (GPU,carte réseau). Calculateurs hétérogènes ou hybrides contenant différents types de cœurs de calcul: Combiner ces différents types de processeurs permet d atteindre des puissances de calcul gigantesques si on arrive à déterminer les affinités entre les # coeurs et les # tâches. Laurence Viry Tendances en HPC 7 Mai / 47

32 Architecture hautement parallèle: Accélérateurs Intel Xeon/Phi 60+ cores 512 Bit SIMD Clock Speed: 1000MHz Nombre de transistors: 3 B (22nm) Consommation énergétique: 250W Performance Max (DP): 1TF/s Bande passante Mémoire: 250GB/s (GDDR5) NB Threads: Language: Fortran, C/C++ + OpenMP+vectorisation NVIDIA Kepler (GK110) 15 unités SMX avec chacune 192 SP cores 2880 SP cores au total Vitesse de l horloge: 700MHz Nombre de transistors: 7.1 B (28nm) Consommation énergétique: 250W Performance Max (DP): 1TF/s Bande passante Mémoire: 250GB/s (GDDR5) NB Threads: Language: CUDA, OpenCL, OpenACC Laurence Viry Tendances en HPC 7 Mai / 47

33 Évolution rapide du HPC Hardware Toujours plus de parallélisme (multi-core, mémoire, stockage,... ). Architectures hétérogènes. Les accès mémoire sont le principal frein aux performances. Software Parallélisme multi niveaux. Optimisation: gestion des affinités,... Gestion de la précision, de la stabilité. Maintenance et robustesse? Point de vue utilisateur Nouveaux types d architectures (GPU, MIC, BG.Q,...) Nouveaux paradigmes de programmation (MPI, OPENMP, Hybrid, OpenCL,PGAS,... ). Un code unique pour CPU et Accélérateurs? Les gros codes de calcul doivent suivre. Quelle pérennité? Laurence Viry Tendances en HPC 7 Mai / 47

34 Efforts d optimisation Compromis entre efforts d optimisation et gain de performance Optimisation rapide: performances modérées... Le Hardware, le compilateur ne réussit pas à exploiter le parallélisme de l architecture. Une meilleure connaissance de l application est nécessaire. Optimisation approfondie: algorithme, implémentation, déploiement, gestion des affinités. La maintenance des efforts n est pa assuré. Génération automatique ou semi-automatique? (quelques propositions: HMPP, OpenACC,... ) De nouveaux paradigmes de programmation exploitant la parallélisme du Hardware sont attendus. Maintenance, portabilité? Laurence Viry Tendances en HPC 7 Mai / 47

35 Architecture, environnements utilisateurs, bibliothèques et réseau Même run, mêmes sources: différents environnements utilisateurs Étude au cas par cas Les analyses sont système-dépendantes, pas de règles systématiques. Utiliser des bibliothèques optimisées sur le Hardware. Les performances du réseau et du soft qui l utilise est aussi un critère important. Bien connaître son application et les bibliothèques utilisées Laurence Viry Tendances en HPC 7 Mai / 47

36 Grille de calcul Grille de calcul Ressources informatiques hétérogènes (clusters, supercalculateur, stockage,...) Projet Grid5000 (www.grid5000.fr) Mise en réseau de ces ressources Stockage.... Middleware (NetSolve, DIET,... ): couche réseau + services logiciels Gestion de l hétérogénéité des ressources, allocation des données et des tâches sur les ressources, Fault detection, mécanisme de checkpoint/restart,... récupération et réorganisation des résultats éviter le transfert multiple de données... Grâce aux grilles Les calculs au temps d exécution très longs deviennent possibles en temps raisonnable. Possibilité de lancer un nombre très grand de runs (plusieurs millions) Laurence Viry Tendances en HPC 7 Mai / 47

37 Cloud Cloud Basé sur la virtualisation Habituellement basé sur des processeurs de faible performance: presque sans contrainte sur le réseau HPC Cloud Fault-tolerance? Noeuds de calcul puissants avec beaucoup de mémoire, Performances du réseau garanties (F E.g., 10 Gbps, low latency) Opérationnel mais pas simple... (panne des infrastructures, noeuds non accessibles,... Coût Quelques tentatives pour mettre un calculateur (Blue Gene) dans le Cloud. Laurence Viry Tendances en HPC 7 Mai / 47

38 Considérations pour le développement des codes Efficacité des architectures: pour le passage aux architectures successives, il faut tenir compte des compétences et de l investissement humain qu il implique. Survivre aux générations successives des machines ( 5ans) est de plus en plus compliqué. La programmation homogène tire à sa fin: plusieurs niveaux de parallélisme déviennent nécessaires pour exploiter les nouvelles architectures. Bibliothèques: leur choix doit être dicté par leur stabilité, leurs performances et leurs disponibilité sur les systèmes. Organisation des données doit répondre à de nombreuses contraintes répondant aux différents types d affinités. L organisation des compétences scientifiques, numériques et informatiques est un challenge qui doit être compatible avec chaque écosystème. Compromis algorithmiques: le coût des flops est en décroissance alors que celui de l accès et du déplacement de données est en forte croissance.... Laurence Viry Tendances en HPC 7 Mai / 47

39 Calcul hautes performances avec R Paralléliser un code R est possible mais demande un effort significatif S assurer d une implémentation séquentielle optimale Algorithme adapté Bonnes pratiques de développement sous R Utilisation des packages adaptés aux gros volumes de données Utiliser des outils de profiling (mémoire, temps de calcul) proftools: profiling Output Processing Tools for R profr: An alternative display for profiling informations Quelques méthodes pour résoudre les problèmes d efficacité Vectorisation: fonctions appliquées à des vecteurs apply() fonctions: fonctions qui peuvent être utilisées sur un ensemble de données simultanément. Utiliser les interfaces avec des langages compilés (C,C++,...) = Les solutions suivantes utilisent le parallélisme Laurence Viry Tendances en HPC 7 Mai / 47

40 Calcul parallèle avec R R est mono-thread Plusieurs packages existent pour les clusters de calcul Basés sur plusieurs couches de communications: MPI, PVM, Socket, NWS Rmpi, nws, snow, sprint, foreach Plus ou moins matures, performants ou faciles à utiliser Sur un système multi-core: multicore, pnmath, fork, romp Intégration du package parallel (multicore, snow) à la version de base de R à partir de la version R peut aussi être compilé avec une version multi-thread des bibliothèques d algèbre linéaire (BLAS,LAPACK) ce qui permet d exploiter l architecture multicore et peut accélérer les calculs. State of the Art in Parallel Computing with R : HPC Task View on CRAN: Laurence Viry Tendances en HPC 7 Mai / 47

41 Le package parallel (version > 2.14) Basée sur les packages multicore et snow Particulièrement adaptée au programme de type SPMD (single program, multiple data) Peut utiliser simultanément : plusieurs coeurs d un même noeud SMP ( multicore) en mémoire partagée ou plusieurs CPUs en mémoire distribuée en utilisant la bibliothèque d échange de messages MPI ( snow) Le support MPI dépend du package Rmpi et d une bibliothèque MPI Inclut un générateur de nombre aléatoire parallèle ( RNG) Laurence Viry Tendances en HPC 7 Mai / 47

42 mclapply: version parallèle de lapply sur un seul CPU Exemple simple: calcul (1:100)ˆ2 ## La fonction aucarre fait le calcul aucarre <- function(n) {return(nˆ2)} ## Tableau sur lequel s applique le calcul tab <- 1:100 Version séquentielle (lapply) ## Calcul séquentiel res <- lapply(tab,aucarre) Version parallèle (mclapply) ## Nombre de tâches nbtask <- 8 ## Calcul parallèle res <- mclapply(tab,aucarre,mc.cores = nbtask) Utilise plusieurs coeurs sur un seul CPU Utilise des fork, ne fonctionne pas sous Windows mcmapply, mcmap: version parallèle de mapply et Map Laurence Viry Tendances en HPC 7 Mai / 47

43 parlapply: version parallèle de lapply sur un ou plusieurs noeuds Plusieurs types de communications, PSOCK et MPI PSOCK: peut être utilisé en intéractif Pas adapté pour plusieurs noeuds Portable Utilisé pour les tests MPI Ne peut pas être utilisé en intéractif Nécessite le package Rmpi (MPI) Fonctionne sur plusieurs noeuds Portable là où est installé Rmpi (MPI) Utilisé pour la production. Laurence Viry Tendances en HPC 7 Mai / 47

44 Exemple: parlapply avec PSOCK library(parallel) ## Nombre de tâches nbtask <- 8 ## Définit le cluster cl <- makecluster(nbtask,type= STOCK ) ## Calcul parallèle (parlapply) res <- parlapply(cl,tab,nbtask) ## Arrêter le cluster stopcluster(cl) print(unlist(res)) Laurence Viry Tendances en HPC 7 Mai / 47

45 Exemple: parlapply avec MPI Programme: simple mpi.r library(parallel) ## Définit le cluster nbtask <- 8 cl <- makecluster(nbtask,type= MPI ) ## Calcul parallèle (parlapply) res <- parlapply(cl,tab,nbtask) ## Arrêter le cluster stopcluster(cl) mpi.exit() # or mpi.quit(), qui sort de R également Exécuter mpirun -n 1 R --slave -f simple_mpi.r Laurence Viry Tendances en HPC 7 Mai / 47

46 Démarche pour les calculs Programmer les calculs dans une fonction qui peut être appelée par lapply Faire des tests intéractivement avec lapply en séquentiel, mclapply sur un CPU multi-core et/ou parlapply (SOCK) en parallel sur un noeud. Utiliser mclapply sur un seul noeud ou parlapply (MPI) sur un ou plusieurs noeuds. Avec parlapply, les gros volumes de données peuvent être distribuées à chaque tâche avec clusterexport. Avec parlapply, chaque process devra chargé les packages clusterevalq ou clustercall. Laurence Viry Tendances en HPC 7 Mai / 47

47 Environnement logiciel Cougar (IFPEN & partners) - reservoir simulation Commercial Fonctionnalités Analyse de sensibilité (basé sur la variance) Surface de réponse paramétrique (polynomiale) Surface de réponse non-paramétrique (Krigeage) Planification... Calcul sur grille OpenTURNS: exposé R Barate Calcul Haute Performance avec OpenTURNS Uranie: exposé F. Gaudier Plate-forme Incertitude Uranie: Fonctionnalités et Applications Laurence Viry Tendances en HPC 7 Mai / 47

Initiation au HPC - Généralités

Initiation au HPC - Généralités Initiation au HPC - Généralités Éric Ramat et Julien Dehos Université du Littoral Côte d Opale M2 Informatique 2 septembre 2015 Éric Ramat et Julien Dehos Initiation au HPC - Généralités 1/49 Plan du cours

Plus en détail

Architecture des ordinateurs

Architecture des ordinateurs Décoder la relation entre l architecture et les applications Violaine Louvet, Institut Camille Jordan CNRS & Université Lyon 1 Ecole «Découverte du Calcul» 2013 1 / 61 Simulation numérique... Physique

Plus en détail

Infrastructures Parallèles de Calcul

Infrastructures Parallèles de Calcul Infrastructures Parallèles de Calcul Clusters Grids Clouds Stéphane Genaud 11/02/2011 Stéphane Genaud () 11/02/2011 1 / 8 Clusters - Grids - Clouds Clusters : assemblage de PCs + interconnexion rapide

Plus en détail

Kick-off ANR Compass

Kick-off ANR Compass Kick-off ANR Compass Contribution MDLS Pierre Kestener CEA-Saclay, DSM, France Maison de la Simulation Meudon, 14 mars 2013 1 / 10 La Maison de la Simulation Laboratoire de recherche pluridisciplinaire

Plus en détail

Rapport 2014 et demande pour 2015. Portage de Méso-NH sur Machines Massivement Parallèles du GENCI Projet 2015 : GENCI GEN1605 & CALMIP-P0121

Rapport 2014 et demande pour 2015. Portage de Méso-NH sur Machines Massivement Parallèles du GENCI Projet 2015 : GENCI GEN1605 & CALMIP-P0121 Rapport 2014 et demande pour 2015 Portage de Méso-NH sur Machines Massivement Parallèles du GENCI Projet 2015 : GENCI GEN1605 & CALMIP-P0121 Rappel sur Méso-NH : Modélisation à moyenne échelle de l atmosphère

Plus en détail

CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES

CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES Trois types de formation LES FORMATEURS Les experts techniques AS+ Groupe EOLEN disposent d une réelle expérience pratique

Plus en détail

Plan : Master IM2P2 - Calcul Scientifique

Plan : Master IM2P2 - Calcul Scientifique Plan : Les systèmes HPC Typologie des systèmes : Machines Mémoire partagée Machines à Mémoire Distribuées Machine NUMA Exemples Architectures Processeurs HPC Processeurs scalaires, superscalaires, vectoriels

Plus en détail

cluster pour l Enseignement Universitaire et la Recherche

cluster pour l Enseignement Universitaire et la Recherche cluster pour l Enseignement Universitaire et la Recherche Université de Nice Sophia-Antipolis 22 janvier 2013 Université de Nice Sophia-Antipolis cluster pour l Enseignement Universitaire et la Recherche

Plus en détail

Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux

Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux CO 2 maîtrisé Carburants diversifiés Véhicules économes Raffinage propre Réserves prolongées Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux J-M. Gratien,, M. Hacene, T. Guignon

Plus en détail

Calcul Haute Performance avec OpenTURNS

Calcul Haute Performance avec OpenTURNS Calcul Haute Performance avec OpenTURNS Renaud Barate EDF R&D Workshop du GdR MASCOT-NUM «Quantification d incertitude et calcul intensif» 28 Mars 2013 Sommaire Présentation du logiciel OpenTURNS Problématiques

Plus en détail

Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs. Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle

Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs. Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle 1 CEA R & D for Nuclear Energy 5 000 people Nuclear systems

Plus en détail

Historique. Évolution des systèmes d exploitation (à travers les âges)

Historique. Évolution des systèmes d exploitation (à travers les âges) Historique Évolution des systèmes d exploitation (à travers les âges) Historique L histoire des systèmes d exploitation permet de dégager des concepts de base que l on retrouve dans les systèmes actuels

Plus en détail

Eléments d architecture des machines parallèles et distribuées

Eléments d architecture des machines parallèles et distribuées M2-RISE - Systèmes distribués et grille Eléments d architecture des machines parallèles et distribuées Stéphane Vialle Stephane.Vialle@supelec.fr http://www.metz.supelec.fr/~vialle Notions d architecture

Plus en détail

Présentation CaSciModOT Performances et Architectures

Présentation CaSciModOT Performances et Architectures Présentation CaSciModOT Performances et Architectures Code parallèle : Un peu de théorie Architectures variables : C(n,p)? Quel code? Quelle architecture? Structure d un code : partie parallèle / séquentielle

Plus en détail

Composants logiciel: Feel++, formats de fichier et visualisation

Composants logiciel: Feel++, formats de fichier et visualisation Composants logiciel: Feel++, formats de fichier et visualisation Alexandre Ancel Cemosis / Université de Strasbourg 13 Janvier 2015 1 / 20 Plan 1 Environnement logiciel & matériel 2 Formats de fichier

Plus en détail

Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC

Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC JSO HPC-Desk - 20 mai 2014 Vincent Ducrot, Sébastien Monot AS+ - Groupe Eolen Donnons de la suite à vos idées PRÉSENTATION

Plus en détail

Les environnements de calcul distribué

Les environnements de calcul distribué 2 e Atelier CRAG, 3 au 8 Décembre 2012 Par Blaise Omer YENKE IUT, Université de Ngaoundéré, Cameroun. 4 décembre 2012 1 / 32 Calcul haute performance (HPC) High-performance computing (HPC) : utilisation

Plus en détail

Détection d'intrusions en environnement haute performance

Détection d'intrusions en environnement haute performance Symposium sur la Sécurité des Technologies de l'information et des Communications '05 Détection d'intrusions en environnement haute performance Clusters HPC Fabrice Gadaud (fabrice.gadaud@cea.fr) 1 Sommaire

Plus en détail

INF6500 : Structures des ordinateurs. Sylvain Martel - INF6500 1

INF6500 : Structures des ordinateurs. Sylvain Martel - INF6500 1 INF6500 : Structures des ordinateurs Sylvain Martel - INF6500 1 Cours 4 : Multiprocesseurs Sylvain Martel - INF6500 2 Multiprocesseurs Type SISD SIMD MIMD Communication Shared memory Message-passing Groupe

Plus en détail

Architecture des calculateurs

Architecture des calculateurs Formation en Calcul Scientifique - LEM2I Architecture des calculateurs Violaine Louvet 1 1 Institut Camille jordan - CNRS 12-13/09/2011 Introduction Décoder la relation entre l architecture et les applications

Plus en détail

Evaluation des performances de programmes parallèles haut niveau à base de squelettes

Evaluation des performances de programmes parallèles haut niveau à base de squelettes Evaluation des performances de programmes parallèles haut niveau à base de squelettes Enhancing the Performance Predictability of Grid Applications with Patterns and Process Algebras A. Benoit, M. Cole,

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Outil d aide au choix Serveurs Lot 4 Marché Groupement de Recherche

Outil d aide au choix Serveurs Lot 4 Marché Groupement de Recherche Outil d aide au choix Serveurs Lot 4 Marché Groupement de Recherche Serveurs DELL PowerEdge Tour Rack standard R310 T110II Rack de calcul Lames R815 M610 R410 R910 M620 R415 R510 T620 R620 R720/R720xd

Plus en détail

Systèmes et traitement parallèles

Systèmes et traitement parallèles Systèmes et traitement parallèles Mohsine Eleuldj Département Génie Informatique, EMI eleuldj@emi.ac.ma 1 Système et traitement parallèle Objectif Etude des architectures parallèles Programmation des applications

Plus en détail

Architecture des ordinateurs, concepts du parallélisme

Architecture des ordinateurs, concepts du parallélisme Ecole Doctorale MathIf Architecture des ordinateurs, concepts du parallélisme Violaine Louvet 1 Remerciements à Françoise Roch, Guy Moebs, Françoise Berthoud 1 ICJ - CNRS Année 2009-2010 Objectifs de ce

Plus en détail

Architecture Logicielle

Architecture Logicielle Architecture Logicielle Chapitre 3: UML pour la description et la documentation d une architecture logicielle Année universitaire 2013/2014 Semestre 1 Rappel L architecture d un programme ou d un système

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Retour d expérience en Astrophysique : utilisation du Cloud IaaS pour le traitement de données des missions spatiales

Retour d expérience en Astrophysique : utilisation du Cloud IaaS pour le traitement de données des missions spatiales Retour d expérience en Astrophysique : utilisation du Cloud IaaS pour le traitement de données des missions spatiales Cécile Cavet cecile.cavet at apc.univ-paris7.fr Centre François Arago (FACe), Laboratoire

Plus en détail

Technologies SOC (System On Chip) (Système sur une seule puce)

Technologies SOC (System On Chip) (Système sur une seule puce) Technologies SOC (System On Chip) (Système sur une seule puce) Pierre LERAY et Jacques WEISS Équipe de recherche ETSN Supélec Campus de Rennes février, 02 Technologies SoC ; P. Leray, J. Weiss 1 Évolution

Plus en détail

Délégation GPU des perceptions agents : application aux boids de Reynolds

Délégation GPU des perceptions agents : application aux boids de Reynolds Délégation GPU des perceptions agents : application aux boids de Reynolds JFSMA 2015 LIRMM - Université de Montpellier - CNRS Emmanuel Hermellin, Fabien Michel {hermellin, fmichel}@lirmm.fr Mercredi 1

Plus en détail

Architecture des Ordinateurs. Partie II:

Architecture des Ordinateurs. Partie II: Architecture des Ordinateurs Partie II: Le port Floppy permet le raccordement du lecteur de disquette àla carte mère. Remarque: Le lecteur de disquette a disparu il y a plus de 6 ans, son port suivra.

Plus en détail

VMWare Infrastructure 3

VMWare Infrastructure 3 Ingénieurs 2000 Filière Informatique et réseaux Université de Marne-la-Vallée VMWare Infrastructure 3 Exposé système et nouvelles technologies réseau. Christophe KELLER Sommaire Sommaire... 2 Introduction...

Plus en détail

Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing

Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing Les Clusters Les Mainframes Les Terminal Services Server La virtualisation De point de vue naturelle, c est le fait de regrouper

Plus en détail

Juan ESCOBAR, IR1 Expert en Calcul Intensif. Fonction postulée :

Juan ESCOBAR, IR1 Expert en Calcul Intensif. Fonction postulée : Oral Examen Professionnel PFI 7 Octobre 2008 Juan ESCOBAR, IR1 Expert en Calcul Intensif Fonction postulée : Chef de Projet sur le Support du Code Communautaire Méso-NH Service National Labellisé INSU

Plus en détail

Simulation multi GPU d un logiciel de métagénomique. Dany Tello, Mathieu Almeida

Simulation multi GPU d un logiciel de métagénomique. Dany Tello, Mathieu Almeida Simulation multi GPU d un logiciel de métagénomique appliqué à la flore intestinale humaine Dany Tello, Mathieu Almeida Le microbiote intestinal humain : un organe négligé 100 trillions de micro organismes;

Plus en détail

Rapport de stage Master 2

Rapport de stage Master 2 Rapport de stage Master 2 Informatique Haute Performance et Simulation, 2 ème année Ecole Centrale Paris Accélération des méthodes statistiques sur GPU Auteur : CHAI Anchen. Responsables: Joel Falcou et

Plus en détail

Gestion de clusters de calcul avec Rocks

Gestion de clusters de calcul avec Rocks Gestion de clusters de calcul avec Laboratoire de Chimie et Physique Quantiques / IRSAMC, Toulouse scemama@irsamc.ups-tlse.fr 26 Avril 2012 Gestion de clusters de calcul avec Outline Contexte 1 Contexte

Plus en détail

Segmentation d'images à l'aide d'agents sociaux : applications GPU

Segmentation d'images à l'aide d'agents sociaux : applications GPU Segmentation d'images à l'aide d'agents sociaux : applications GPU Richard MOUSSA Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 Université de Bordeaux - France Laboratoire de recherche

Plus en détail

Calcul scientifique et serveurs de calcul

Calcul scientifique et serveurs de calcul Calcul scientifique et serveurs de calcul Serveurs de calcul : contexte, enjeux et administration Violaine Louvet, 13 septembre 2007 Calcul scientifique et serveurs de calcul Journée proposée par : Le

Plus en détail

Compréhension, Optimisation, Prédiction des Performances

Compréhension, Optimisation, Prédiction des Performances Compréhension, Optimisation, Prédiction des Performances J F. Méhaut Université Joseph Fourier (UJF), Polytech'G Equipe Projet INRIA (EPI) Mescal Pôle MSTIC, PILSI Institut Carnot LSI Pôle de compétivité

Plus en détail

Solaris pour la base de donnés Oracle

<Insert Picture Here> Solaris pour la base de donnés Oracle Solaris pour la base de donnés Oracle Alain Chéreau Oracle Solution Center Agenda Compilateurs Mémoire pour la SGA Parallélisme RAC Flash Cache Compilateurs

Plus en détail

! Vous aurez pris connaissance de l'évolution. ! Vous comprendrez pourquoi on utilise le binaire en. ! Vous serez capable de construire un circuit

! Vous aurez pris connaissance de l'évolution. ! Vous comprendrez pourquoi on utilise le binaire en. ! Vous serez capable de construire un circuit Architecture élémentaire Un cours d architecture pour des informaticiens Samy Meftali Samy.meftali@lifl.fr Bureau 224. Bâtiment M3 extension Sans architecture pas d informatique Comprendre comment çà marche

Plus en détail

Evolution des technologies et émergence du cloud computing Drissa HOUATRA, Orange Labs Issy

Evolution des technologies et émergence du cloud computing Drissa HOUATRA, Orange Labs Issy Evolution des technologies et émergence du cloud computing Drissa HOUATRA, Orange Labs Issy Séminaire Aristote, 17 Déc. 2009 Ecole Polytechnique Palaiseau Plan L'univers du cloud Ressources Grilles, middleware

Plus en détail

Communications performantes par passage de message entre machines virtuelles co-hébergées

Communications performantes par passage de message entre machines virtuelles co-hébergées Communications performantes par passage de message entre machines virtuelles co-hébergées François Diakhaté1,2 1 CEA/DAM Île de France 2 INRIA Bordeaux Sud Ouest, équipe RUNTIME Renpar 2009 1 Plan Introduction

Plus en détail

Rapport d activité. Mathieu Souchaud Juin 2007

Rapport d activité. Mathieu Souchaud Juin 2007 Rapport d activité Mathieu Souchaud Juin 2007 Ce document fait la synthèse des réalisations accomplies durant les sept premiers mois de ma mission (de novembre 2006 à juin 2007) au sein de l équipe ScAlApplix

Plus en détail

Practice HPC. Retour d expérience Xeon PHI. Février 2012. Damien DUBUC Expert HPC software. 28/03/2013 ANEO Tous droits réservés 1

Practice HPC. Retour d expérience Xeon PHI. Février 2012. Damien DUBUC Expert HPC software. 28/03/2013 ANEO Tous droits réservés 1 Retour d expérience Xeon PHI Damien DUBUC Expert HPC software Février 2012 28/03/2013 ANEO Tous droits réservés 1 Quel est notre rôle? Présenter o Gérer un portefeuille clients nécessitant des optimisations

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

Tests de SlipStream sur les plateformes StratusLab@LAL et OpenStack@CC-IN2P3 : vers la. Vers la fédération du Cloud computing

Tests de SlipStream sur les plateformes StratusLab@LAL et OpenStack@CC-IN2P3 : vers la. Vers la fédération du Cloud computing Tests de sur les plateformes StratusLab@LAL et OpenStack@CC-IN2P3 : vers la fédération du Cloud computing Cécile Cavet1 & Charles Loomis2 (1) Centre François Arago, Laboratoire, Université Paris Diderot,

Plus en détail

UNIVERSITÉ D ORLÉANS ÉCOLE DOCTORALE MIPTIS MATHÉMATIQUES, INFORMATIQUE, PHYSIQUE THÉORIQUE ET INGÉNIEURIE DES SYSTÈMES. THÈSE présentée par :

UNIVERSITÉ D ORLÉANS ÉCOLE DOCTORALE MIPTIS MATHÉMATIQUES, INFORMATIQUE, PHYSIQUE THÉORIQUE ET INGÉNIEURIE DES SYSTÈMES. THÈSE présentée par : UNIVERSITÉ D ORLÉANS ÉCOLE DOCTORALE MIPTIS MATHÉMATIQUES, INFORMATIQUE, PHYSIQUE THÉORIQUE ET INGÉNIEURIE DES SYSTÈMES Laboratoire d Informatique Fondamentale d Orléans THÈSE présentée par : Hélène COULLON

Plus en détail

PROGRAMME FONCTIONNEL RELATIF A L ACHAT D UN CLUSTER DE CALCUL

PROGRAMME FONCTIONNEL RELATIF A L ACHAT D UN CLUSTER DE CALCUL PROGRAMME FONCTIONNEL RELATIF A L ACHAT D UN CLUSTER DE CALCUL I Contexte Le Lycée de Bagnols sur Cèze veut se doter d'un centre de calcul scientifique et de stockage pour la conduite de projets éducatifs

Plus en détail

QUELQUES CONCEPTS INTRODUCTIFS

QUELQUES CONCEPTS INTRODUCTIFS ESIEE Unité d'informatique IN101 Albin Morelle (et Denis Bureau) QUELQUES CONCEPTS INTRODUCTIFS 1- ARCHITECTURE ET FONCTIONNEMENT D UN ORDINATEUR Processeur Mémoire centrale Clavier Unité d échange BUS

Plus en détail

HPC by OVH.COM. Le bon calcul pour l innovation OVH.COM

HPC by OVH.COM. Le bon calcul pour l innovation OVH.COM 4 HPC by OVH.COM Le bon calcul pour l innovation 2 6 5 6 2 8 6 2 OVH.COM 5 2 HPC by OVH.COM 6 HPC pour High Performance Computing Utilisation de serveurs et de grappes de serveurs (clusters), configurés

Plus en détail

Introduction aux grilles: L'exemple XtremWeb

Introduction aux grilles: L'exemple XtremWeb Introduction aux grilles: L'exemple XtremWeb Nicolas Bouillot bouillot@cnam.fr 1 Plan Introduction Première définition Les organisations virtuelles Contraintes liées aux Middlewares de Grilles Le calcul

Plus en détail

Portage et optimisation d applications de traitement d images sur architecture Kalray Mppa-Manycore Journées de la Compilation

Portage et optimisation d applications de traitement d images sur architecture Kalray Mppa-Manycore Journées de la Compilation Portage et optimisation d applications traitement d images sur architecture Kalray Mppa-Manycore Journées la Compilation Pierre Guillou Centre recherche en informatique Mines ParisTech 4 décembre 2013

Plus en détail

Calculs Haute Performance. Une Introduction aux Calculs Haute Performance

Calculs Haute Performance. Une Introduction aux Calculs Haute Performance Calculs Haute Performance Une Introduction aux Calculs Haute Performance Ivan LABAYE Tizi-Ouzou 2015 1 Plan de l'exposé Calculs Haute Performance? Pour quoi Faire? Modèles de calculateurs (HPC) Outils

Plus en détail

Introduction SIO Utilisation Conclusion Cluster au SIO

Introduction SIO Utilisation Conclusion Cluster au SIO Cluster au SIO ALBERT SHIH 1 1 Observatoire de Paris - Meudon 21 février 2008 Type de «machines» de calcul Mémoire partagée Tous les processeurs accèdent à toute la mémoire avec un même espace d adressage.

Plus en détail

Centre Commun de Calcul Intensif: www.univ-ag.fr/c3i

Centre Commun de Calcul Intensif: www.univ-ag.fr/c3i Centre Commun de Calcul Intensif: www.univ-ag.fr/c3i a HPC center in the Caribbean Mewbalaou Fédération de recherche fournissant des ressources à 6 laboratoires de l UAG: COVACHIM-M, GTSI, LAMIA, LARGE,

Plus en détail

Technologie SDS (Software-Defined Storage) de DataCore

Technologie SDS (Software-Defined Storage) de DataCore Technologie SDS (Software-Defined Storage) de DataCore SANsymphony -V est notre solution phare de virtualisation du stockage, dans sa 10e génération. Déployée sur plus de 10000 sites clients, elle optimise

Plus en détail

Parallélisme et Répartition

Parallélisme et Répartition Parallélisme et Répartition Master Info Françoise Baude Université de Nice Sophia-Antipolis UFR Sciences Département Informatique baude@unice.fr web du cours : deptinfo.unice.fr/~baude Septembre 2009 Chapitre

Plus en détail

Contribution à la conception à base de composants logiciels d applications scientifiques parallèles.

Contribution à la conception à base de composants logiciels d applications scientifiques parallèles. - École Normale Supérieure de LYON - Laboratoire de l Informatique du Parallélisme THÈSE en vue d obtenir le grade de Docteur de l École Normale Supérieure de Lyon - Université de Lyon Discipline : Informatique

Plus en détail

Infrastructure de calcul du CRRI

Infrastructure de calcul du CRRI Infrastructure de calcul du CRRI Types d'infrastructures de calcul Calcul Intensif (High Performance Computing) Tâches fortement couplées (codes vectoriels / parallèles) Supercalculateurs, SMP, clusters,

Plus en détail

DG-ADAJ: Une plateforme Desktop Grid

DG-ADAJ: Une plateforme Desktop Grid DG-ADAJ: Une plateforme pour Desktop Grid Olejnik Richard, Bernard Toursel Université des Sciences et Technologies de Lille Laboratoire d Informatique Fondamentale de Lille (LIFL UMR CNRS 8022) Bât M3

Plus en détail

L ARCHITECTURE D UN ORDINATEUR. Page 1

L ARCHITECTURE D UN ORDINATEUR. Page 1 L ARCHITECTURE D UN ORDINATEUR Page 1 Page 2 SOMMAIRE I) Définition II) Boîtier a) Format b) Refroidissement III) Alimentation IV) Carte Mère V) Chipset VI)BIOS VII)Microprocesseur a)qu est ce que c est

Plus en détail

Comment optimiser l utilisation des ressources Cloud et de virtualisation, aujourd hui et demain?

Comment optimiser l utilisation des ressources Cloud et de virtualisation, aujourd hui et demain? DOSSIER SOLUTION Solution CA Virtual Placement and Balancing Comment optimiser l utilisation des ressources Cloud et de virtualisation, aujourd hui et demain? agility made possible La solution automatisée

Plus en détail

ViSaGe. Virtualisation du Stockage dans les Grilles. Informatiques. RenPar 16, 6-8 Avril 2005 Thiebolt François thiebolt@irit.fr

ViSaGe. Virtualisation du Stockage dans les Grilles. Informatiques. RenPar 16, 6-8 Avril 2005 Thiebolt François thiebolt@irit.fr 1 ViSaGe Virtualisation du Stockage dans les Grilles Informatiques RenPar 16, 6-8 Avril 2005 Thiebolt François thiebolt@irit.fr IRIT Projet RNTL labellisé pré-compétitif Solution ViSaGe ViSaGe Accès transparent

Plus en détail

ParMat : Parallélisation pour la simulation des Matériaux.

ParMat : Parallélisation pour la simulation des Matériaux. : Parallélisation pour la simulation des Matériaux. G. Bencteux (EDF) 3 septembre 2008 Outline 1 2 Un algorithme d ordre N pour les calculs ab initio (DFT/HF) 3 Simulation du dommage d irradiation par

Plus en détail

Entrées-Sorties: Architectures de bus. GIF-1001 Ordinateurs: Structure et Applications, Hiver 2015 Jean-François Lalonde

Entrées-Sorties: Architectures de bus. GIF-1001 Ordinateurs: Structure et Applications, Hiver 2015 Jean-François Lalonde Entrées-Sorties: Architectures de bus GIF-1001 Ordinateurs: Structure et Applications, Hiver 2015 Jean-François Lalonde Architectures CPU/Mémoire/E-S Un ordinateur a cinq composantes de base: le(s) processeur(s)

Plus en détail

Gamme de produits. HPC_GPU Computing

Gamme de produits. HPC_GPU Computing Gamme de produits HPC_GPU Computing Une présence forte depuis 18 ans sur le marché Français Créée en 1992 par des passionnés, CARRI SYSTEMS est le premier constructeur informatique français de systèmes

Plus en détail

Benchmarks. Ensemble de codes permettant de tester la fonctionnalité et les performances d'une solution HPC dans son ensemble.

Benchmarks. Ensemble de codes permettant de tester la fonctionnalité et les performances d'une solution HPC dans son ensemble. Ensemble de codes permettant de tester la fonctionnalité et les performances d'une solution HPC dans son ensemble. (Merci à Ludovic Saugé) Françoise BERTHOUD, Francoise.Berthoud@grenoble.cnrs.fr Les benchmarks

Plus en détail

Retour d expérience, portage de code Promes dans le cadre de l appel à projets CAPS-GENCI

Retour d expérience, portage de code Promes dans le cadre de l appel à projets CAPS-GENCI , portage de code Promes dans le cadre de l appel à projets CAPS-GENCI PROMES (UPR 8521 CNRS) Université de Perpignan France 29 juin 2011 1 Contexte 2 3 4 Sommaire Contexte 1 Contexte 2 3 4 Laboratoire

Plus en détail

Tout savoir sur le matériel informatique

Tout savoir sur le matériel informatique Tout savoir sur le matériel informatique Thème de l exposé : Les Processeurs Date : 05 Novembre 2010 Orateurs : Hugo VIAL-JAIME Jérémy RAMBAUD Sommaire : 1. Introduction... 3 2. Historique... 4 3. Relation

Plus en détail

Les ordinateurs : de 1946 à aujourd hui

Les ordinateurs : de 1946 à aujourd hui : Introduction Daniel Etiemble de@lri.fr Les ordinateurs : de 1946 à aujourd hui ENIAC (1946) 19000 tubes 30 tonnes surface de 72 m 2 consomme 140 kilowatts. Horloge : 0 KHz. 330 multiplications/s Mon

Plus en détail

T. Gasc 1,2,3, F. De Vuyst 1, R. Motte 3, M. Peybernes 4, R. Poncet 5

T. Gasc 1,2,3, F. De Vuyst 1, R. Motte 3, M. Peybernes 4, R. Poncet 5 Modélisation de la performance et optimisation d un algorithme hydrodynamique de type Lagrange-Projection sur processeurs multi-cœurs T. Gasc 1,2,3, F. De Vuyst 1, R. Motte 3, M. Peybernes 4, R. Poncet

Plus en détail

CORBA haute performance

CORBA haute performance CORBA haute performance «CORBA à 730Mb/s!» Alexandre DENIS PARIS/IRISA, Rennes Alexandre.Denis@irisa.fr Plan Motivations : concept de grille de calcul CORBA : concepts fondamentaux Vers un ORB haute performance

Plus en détail

Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012. Better Match, Faster Innovation

Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012. Better Match, Faster Innovation Better Match, Faster Innovation Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012 Meeting on the theme of High Performance Computing TABLE DES MATIÈRES Qu est ce qu un imatch? STI

Plus en détail

en version SAN ou NAS

en version SAN ou NAS tout-en-un en version SAN ou NAS Quand avez-vous besoin de virtualisation? Les opportunités de mettre en place des solutions de virtualisation sont nombreuses, quelque soit la taille de l'entreprise. Parmi

Plus en détail

Limitations of the Playstation 3 for High Performance Cluster Computing

Limitations of the Playstation 3 for High Performance Cluster Computing Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire

Plus en détail

Systèmes Répartis. Pr. Slimane Bah, ing. PhD. Ecole Mohammadia d Ingénieurs. G. Informatique. Semaine 24.2. Slimane.bah@emi.ac.ma

Systèmes Répartis. Pr. Slimane Bah, ing. PhD. Ecole Mohammadia d Ingénieurs. G. Informatique. Semaine 24.2. Slimane.bah@emi.ac.ma Ecole Mohammadia d Ingénieurs Systèmes Répartis Pr. Slimane Bah, ing. PhD G. Informatique Semaine 24.2 1 Semestre 4 : Fev. 2015 Grid : exemple SETI@home 2 Semestre 4 : Fev. 2015 Grid : exemple SETI@home

Plus en détail

Journée Utiliateurs 2015. Nouvelles du Pôle ID (Informatique) Pierre Neyron, LIG/CNRS

Journée Utiliateurs 2015. Nouvelles du Pôle ID (Informatique) Pierre Neyron, LIG/CNRS Journée Utiliateurs 2015 Nouvelles du Pôle ID (Informatique) Pierre Neyron, LIG/CNRS 1 Pôle ID, Grid'5000 Ciment Une proximité des platesformes Autres sites G5K Grenoble + CIMENT Pôle ID = «Digitalis»

Plus en détail

Lilia Ziane Khodja. Laboratoire d Informatique de Paris 6 (LIP6) Département Calcul Scientifique, équipe PEQUAN. Post-doc à l INRIA Bordeaux Sud-Ouest

Lilia Ziane Khodja. Laboratoire d Informatique de Paris 6 (LIP6) Département Calcul Scientifique, équipe PEQUAN. Post-doc à l INRIA Bordeaux Sud-Ouest Lilia Ziane Khodja Post-doc à l INRIA Bordeaux Sud-Ouest Laboratoire d Informatique de Paris 6 (LIP6) Département Calcul Scientifique, équipe PEQUAN Lilia Ziane Khodja 20 mars 2014 Plan de la présentation

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

LA VIRTUALISATION. Etude de la virtualisation, ses concepts et ses apports dans les infrastructures informatiques. 18/01/2010.

LA VIRTUALISATION. Etude de la virtualisation, ses concepts et ses apports dans les infrastructures informatiques. 18/01/2010. Guillaume ANSEL M2 ISIDIS 2009-2010 / ULCO Dossier d étude sur la virtualisation LA VIRTUALISATION 18/01/2010 Etude de la virtualisation, ses concepts et ses apports dans les infrastructures informatiques.

Plus en détail

Introduction aux systèmes temps réel. Iulian Ober IRIT ober@iut-blagnac.fr

Introduction aux systèmes temps réel. Iulian Ober IRIT ober@iut-blagnac.fr Introduction aux systèmes temps réel Iulian Ober IRIT ober@iut-blagnac.fr Définition Systèmes dont la correction ne dépend pas seulement des valeurs des résultats produits mais également des délais dans

Plus en détail

Hiérarchie matériel dans le monde informatique. Architecture d ordinateur : introduction. Hiérarchie matériel dans le monde informatique

Hiérarchie matériel dans le monde informatique. Architecture d ordinateur : introduction. Hiérarchie matériel dans le monde informatique Architecture d ordinateur : introduction Dimitri Galayko Introduction à l informatique, cours 1 partie 2 Septembre 2014 Association d interrupteurs: fonctions arithmétiques élémentaires Elément «NON» Elément

Plus en détail

Éléments d'architecture des ordinateurs

Éléments d'architecture des ordinateurs Chapitre 1 Éléments d'architecture des ordinateurs Machines take me by surprise with great frequency. Alan Turing 1.1 Le Hardware Avant d'attaquer la programmation, il est bon d'avoir quelques connaissances

Plus en détail

Calcul haute performance (CHP-HPC). Utilisation des supercalculateurs

Calcul haute performance (CHP-HPC). Utilisation des supercalculateurs Calcul haute performance (CHP-HPC). Utilisation des supercalculateurs Pascal Rochon (UQO-ISFORT) Sommaire 1. Pourquoi utiliser le CHP 2. Définition des termes utilisés 3. Organismes qui chapeautent le

Plus en détail

CH.3 SYSTÈMES D'EXPLOITATION

CH.3 SYSTÈMES D'EXPLOITATION CH.3 SYSTÈMES D'EXPLOITATION 3.1 Un historique 3.2 Une vue générale 3.3 Les principaux aspects Info S4 ch3 1 3.1 Un historique Quatre générations. Préhistoire 1944 1950 ENIAC (1944) militaire : 20000 tubes,

Plus en détail

Informatique légale : FPGA vs. GPU

Informatique légale : FPGA vs. GPU Informatique légale : FPGA vs. GPU Sylvain Collange, Yoginder S. Dandass, Marc Daumas et David Defour 03/06/2008 Problématiques Analyse de disque dur Recherche de contenu illégal connu Y compris dans des

Plus en détail

WEB15 IBM Software for Business Process Management. un offre complète et modulaire. Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm.

WEB15 IBM Software for Business Process Management. un offre complète et modulaire. Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm. WEB15 IBM Software for Business Process Management un offre complète et modulaire Alain DARMON consultant avant-vente BPM alain.darmon@fr.ibm.com Claude Perrin ECM Client Technical Professional Manager

Plus en détail

Happy birthday ZSet High performance computing dans ZSet

Happy birthday ZSet High performance computing dans ZSet Happy birthday ZSet High performance computing dans ZSet F. Feyel & P. Gosselet Architectures SMP NUMA memory memory memory Distribué memory memory 2 memory memory Hybride memory memory memory memory memory

Plus en détail

Solutions Serveurs Dell PowerEdge

Solutions Serveurs Dell PowerEdge Solutions Serveurs Dell PowerEdge 2 Dell est n 1 mondial des plates-formes Intel* Société créée en 1984, fournisseur d infrastructures : platesformes Intel; Dell a livré +35 Millions d unités en 2003 Systèmes

Plus en détail

Compilation d applications de traitement du signal sur accélérateurs matériels à haute efficacité énergétique

Compilation d applications de traitement du signal sur accélérateurs matériels à haute efficacité énergétique Contexte Travaux recherche Activités annexes Conclusion Compilation d applications traitement du signal sur accélérateurs matériels à haute efficacité énergétique Rapport d avancement 1 re année Pierre

Plus en détail

3A-IIC - Parallélisme & Grid GRID : Définitions. GRID : Définitions. Stéphane Vialle. Stephane.Vialle@supelec.fr http://www.metz.supelec.

3A-IIC - Parallélisme & Grid GRID : Définitions. GRID : Définitions. Stéphane Vialle. Stephane.Vialle@supelec.fr http://www.metz.supelec. 3A-IIC - Parallélisme & Grid Stéphane Vialle Stephane.Vialle@supelec.fr http://www.metz.supelec.fr/~vialle Principes et Objectifs Evolution Leçons du passé Composition d une Grille Exemple d utilisation

Plus en détail

Sanity Check. bgcolor mgcolor fgcolor

Sanity Check. bgcolor mgcolor fgcolor Sanity Check bgcolor mgcolor fgcolor 0 1 2 3 4 5 6 7 8 9 10 Compilation pour cibles hétérogènes: automatisation des analyses, transformations et décisions nécessaires, François Irigoin et Ronan Keryell

Plus en détail

Résolvez vos problèmes d énergie dédiée à l informatique

Résolvez vos problèmes d énergie dédiée à l informatique Résolvez vos problèmes d énergie dédiée à l informatique GRÂCE À UNE SOLUTION ENERGY SMART DE DELL Surmonter les défis énergétiques des datacenters Les responsables informatiques ont un problème urgent

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Algorithmes évolutionnaires sur. et GPU. Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline

Algorithmes évolutionnaires sur. et GPU. Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline Algorithmes évolutionnaires et GPU Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline graphique Introduction au parallélisme de données Exemple de simulation Les langages de haut-niveau

Plus en détail

Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration

Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration Julien MATHEVET Alexandre BOISSY GSID 4 Rapport Load Balancing et migration Printemps 2001 SOMMAIRE INTRODUCTION... 3 SYNTHESE CONCERNANT LE LOAD BALANCING ET LA MIGRATION... 4 POURQUOI FAIRE DU LOAD BALANCING?...

Plus en détail

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com #solconnect13 SOLUTIONS ADAPTEES AUX BESOINS CLIENTS Mobile/Cloud Data Serving and Transaction Processing Mobile Storefront JSON Database

Plus en détail

vbladecenter S! tout-en-un en version SAN ou NAS

vbladecenter S! tout-en-un en version SAN ou NAS vbladecenter S! tout-en-un en version SAN ou NAS Quand avez-vous besoin de virtualisation? Les opportunités de mettre en place des solutions de virtualisation sont nombreuses, quelque soit la taille de

Plus en détail