Rapport de stage Master 2

Dimension: px
Commencer à balayer dès la page:

Download "Rapport de stage Master 2"

Transcription

1 Rapport de stage Master 2 Informatique Haute Performance et Simulation, 2 ème année Ecole Centrale Paris Accélération des méthodes statistiques sur GPU Auteur : CHAI Anchen. Responsables: Joel Falcou et Christophe Genolini Laboratoire: LRI Du 01/04/2014 au 30/09/2014 1

2 Remerciements Je voudrais remercier Joel Falcou et Christophe Genolini, mes tuteurs du stage, de m avoir aidé avec beaucoup de patience pendant mon stage. Ils ont toujours encouragé ma créativité et m ont fait confiance sur mon travail. Je remercie également monsieur Antoine, thésard de deuxième années à LRI, pour ses aides concernant mon stage. Enfin, je voudrais remercier toutes les personnes de l équipe «parsys» pour leur accueil et leur bienveillance pendant mon stage. 2

3 Sommaire 1. Introduction: Statistique et informatique R++, the Next Step Parallélisme Méthodologie générale de notre travail Méthodes statistiques Bootstrap Imputation multiple... 7 Partie 2 : Méthode Bootstrap Description détaillée Cas univarié Cas multivarié Comparaison des deux cas Expérience effectuée Résultat et performance Conclusion Partie 3 : Imputation Multiple Description détaillée Modèle de régression linéaire Expérience effectuée Résultats et performance Conclusion Conclusion Contribution du stage Bilan d apport du stage Bibliographie Annexe

4 1. Introduction 1.1 Statistique et informatique Depuis dizaine années, l analyse statistique est de plus en plus utilisée dans beaucoup de domaines. La statistique comprend souvent quatre parties : la collecte des données, le traitement des données collectées, l interprétation des données et enfin la présentation. Aujourd hui il n est plus rare d avoir besoin de traiter et interpréter des données comportant des millions d individus ou de variables. Le coût de temps des méthodes d analyse devient donc un facteur limitant. L arrivé des ordinateurs a profondément modifiée l utilisation des méthodes statistiques. Il existe deux types de logiciels qui permettent de faire l analyse statistique: les logiciel métier(r, SAS, SPSS...) sont souvent conçus par statisticiens et sont plus facile à utiliser par les statisticiens. L inconvénient de ce genre de logiciel est la performance. Le temps de réponse est souvent long. D un autre côté, les logiciels conçus par des informaticiens (Matlab, C/C++, Fortran...) sont plus performants au niveau de calcul, mais ils manquent d APIs de haut niveau pour les statisticiens. Ils sont donc très peu utilisés par les statisticiens. 1.2 R++, the Next Step L objectif du projet R++, the Next Step est de produire un logiciel statistique de haute performance qui proposera les fonctionnalités des logiciels métiers tout en profitant des techniques informatiques moderne. Ce projet s articule autour de trois axes : a) Parallélisme : Aujourd hui, il existe de plus en plus de sources de parallélisme dans le domaine informatique: extension SIMD, multi-cœur, les architectures récentes comme GPU et le Xeon Phi. Le challenge est donc de développer des modèles de programmations parallèles qui s adaptent bien à ces sources. 4

5 b) Big data : La taille de données devient aujourd hui un facteur limitant pour les logiciels statistiques (ils sont généralement bloqué autour du giga). Des techniques utilisant les bases de données(oracle ou PostGRES) ou encore plus moderne, le framework «Hadoop» permettent d aller au-delà. c) Interface homme-machine : Les logiciels statistiques actuels maquent souvent l interface graphique interactive. L objectif de cet axe est de développer une interface graphique qui facilite l interaction homme-machine. Dans ce stage, nous nous sommes intéressés au premier axe, la parallélisation des méthodes statistiques. Nous nous sommes concentré sur deux méthodes particulièrement utilisées et couteuses en temps : le Bootstrap et les Imputations Multiples. 1.3 Parallélisme Le parallélisme consiste à implémenter des programmes utilisant plusieurs processeurs permettant de traiter des informations de manière simultanée. Ces techniques ont pour objectif de réaliser le plus grand nombre d opérations en un temps le plus petit possible.il existe 3 types de sources principales de parallélisme: a) SIMD(Single Instruction Multiple Data) : la même instruction est appliquée simultanément à plusieurs données pour obtenir plusieurs résultats en même temps.c est typiquement le cas des processeurs vectoriels. b) Multi-cœur: un processeur possède plusieurs cœurs physiques travaillant en parallèle. Chaque cœur physique comprend toutes les fonctionnalités nécessaires à exécuter un programme de façon autonome. c) Many-cœur: ce sont des architectures massivement parallèle, par exemple GPU ou Xeon Phi. Elles permettent de traiter efficacement de nombreuses tâches simultanées. Aujourd hui, le parallélisme est exploré dans de nombreux logiciels. Beaucoup de bibliothèques numériques ou noyaux de calcul ont été développés pour exploiter différentes sources parallèles, par exemple BLAS, LAPACK..., qui sont largement utilisés dans différents domaines. 5

6 Dans ce stage, nous nous sommes concentré sur l implémentation parallèle sur GPU. Pourquoi nous nous intéressons le plus à GPU? Premièrement, GPU n est pas cher qui ont déjà été utilisés comme coprocesseurs pour un grand nombre d application. GPU est une unité de calcul massivement parallèle qui nous permet de traiter efficacement de nombreuses tâches simultanées. Deuxièmement, il existe de nombreuse bibliothèques numériques de haute performance sur GPU. Par exemple, curand(cuda Random Number Generation library)[nv10] réalise la génération des nombres aléatoires de haute qualité. Troisièmement, GPU sont largement utilisés actuellement, même dans un ordinateur portable, GPU sont souvent intégrés comme un élément standard. 1.4 Méthodologie générale de notre travail L objectif du stage est d étudier les performances du parallélisme appliqué aux méthodes statistiques. La qualité des résultats de certaines méthodes (généralement non déterministes) dépend du nombre de tentatives effectués pour trouver la solution. Cela signifie que pour obtenir des résultats intéressant, il faut faire un grand nombre d itérations, le plus grand nombre possible. Dans ce genre de cas, le coût en temps devient donc un facteur limitant. D où l importance la parallélisation des méthodes. Pour étudier la parallélisation, nous avons choisi deux méthodes statistiques modernes, très utilisées et assez coûteuses en temps : le Bootstrap et les Imputation multiple. Nous avons implémenté ces méthodes sur différentes architectures (Multicœur, GPU). Ensuite nous avons mesuré les temps d exécution avec différentes tailles de données. Enfin, nous avons comparéles versions classiques et parallèles, en C et en R[r12]. 6

7 1.5 Méthodes statistiques Bootstrap En statistique, bootstrap est une technique permettant de faire de l inférence statistique à partir d un nombre limité d observation. Bootstrap est une méthode très utilisée dans le domaine statistique mais assez coûteux, qui est la troisieme fonction que nous voulons paralléliser dans R[tm14]. Du point de vu de l informatique, un grand nombre de rééchantillonnage indépendants sont requis, ce qui nous permet de penser que le parallélisme permettra effectivement un gain de temps. Il existe plusieurs packages parallèles de bootstrap, la liste(non exhaustif) est présentée ici : 1) Le package parallèle dans R. Les fonctions standards dans R, par exemple, boot(), bootstrap(), nous permettent de paralléliser bootstrap explicitement : boot(..., parallel=c( no, multicore, snow ) ) ou bootstrap(..., parallel=c( no, multicore, snow )). L option multicore permet d exécuter bootstrap en plusieurs processeurs en même temps. L option snow qui nous permet d exécuter bootstrap dans un cluster de machine. 2) Le package SPRINT[jh08](Simple Paralle R interface) qui nous permet de profiter de plusieurs nœuds en utilisant l interface MPI(Message Passing Interface)[sm98] Imputation multiple En statistique, l imputation consiste à remplacer des données manquantes par des valeurs de substitution. Afin de réduire le bruit due à l imputation, Rubin(1987) a développé une méthode appelé l imputation multiple[ru91]. L idée de cette méthode est d effectuer plusieurs imputations sur le même ensemble de données. Chaque ensemble de données imputées est ensuite analysée séparément. Le résultat final est la moyenne des résultats des analyses. 7

8 Imputation multiple est une méthode très utilisée à analyser des valeurs manquantes aléatoirement, mais c est aussi une méthode très coûteuse en temps d exécution. Partie 2 : Méthode Bootstrap 2.1 Description détaillée Le bootstrap est une méthode permettant de calculer l intervalle de confiance d une statistique S lorsque les méthodes classiques (paramétriques) ne le permettent pas. Différentes méthodes de bootstrap existent, mais elles font toutes appels à un processus de 4 étapes : 1) A partir d une population initiale de taille N, un échantillon de taille N, obtenu par tirage avec remise,est constitué. 2) La statistique S i est calculée sur l échantillon i 3) Les étapes 1) et 2) sont répétées M fois 4) Les M statistiques S i permettent de calculer l intervalle de confiance de S. Nous pouvons le voir, le processus de bootstrap est assez simple. Malheureusement, la fiabilité du résultat dépend grandement du nombre déchantillonages effectués M. Quand nous augmentons M, la précision du bootstrap augmente. En résumé, plus M est grand, meilleure sera la qualité de l intervalle. Mais d un point de vue informatique, plus M et N sont grands, plus de puissance de calcul nécessaire est importante. D où l intérêt d optimiser le Bootstrap avec l architecture parallèle récente : GPU(Graphics Processing Unit). 8

9 2.1.1 Cas univarié Nous considérons une population initial de taille N ne contenant qu une seule variable. Nous voulons effectuer M échantillonnages, donc nous avons besoin de faire N tirages par rééchantillonnage. Le nombre total de tirage que nous allons effectuer est M*N. Ensuite nous pourrons calculer la statistique qui nous intéressent pour chaque échantillon. Notons fla fonction qui calcule indice statistique. Les calculs dont nous avons besoin sont : 1) N*M fois de tirage avec remise pour construire M rééchantillonnages 2) M fois d appels de fonction f() pour calculer l indice statistique Cas multivarié Supposons que nous avons n variables dépendantes et chaque variable a N observations dans l échantillon initial. Maintenant, la population initiale est une matrice de n lignes et N colonne. Chaque colonne est une variable. Puisque ces n variables sont dépendantes entre eux, nous ne pouvons pas faire les tirages indépendamment pour chaque variable. Donc nous avons toujours besoin de faire N tirages pour construire un échantillon, mais cette fois nous tirons une ligne à chaque tirage. Ensuite nous appelons f() pour chaque variable. Finalement tous les calculs dont nous avons besoin sont : 1) N*M fois de tirage de colonne pour construire M échantillon 2) n*m fois d appels de fonction f() 9

10 2.1.3 Comparaison des deux cas Si nous comparons le cas univarié et multivarié, nous pouvons constater que dans la méthode Bootstrap, le nombre de tirages ne dépend pas du nombre de variables, il dépend du nombre d individus N et du nombre d échantillonnage M. Par contre, le nombre d appel de f est décidé par le nombre de variablen et le nombre d échantillonnage M. Maintenant pour analyser quantitativement les deux cas, j introduis ici une métrique à les évaluer : la densité de calcul P qui est définit par le nombre de calcul par rapport au nombre total des éléments dans l échantillon initial. Pour le cas univarié : P = N M+M N Pour le cas multivarié : P = N M+n M N n =M + M N où M : nombre d échantillonnage désiré n : nombre de variable N : nombre d observation = M n + M N Nous pouvons observer que si le nombre d observation N reste constant, la densité de calcul de Bootstrap diminue lorsque le nombre de variable n augmente. Cela signifie que un peu de variable mais beaucoup d observations sera le cas optimal à paralléliser. Nous nous concentrerons donc au cas extrême : univariable dans la partie suivante. 10

11 2.2 Expérience effectuée Dans ce rapport, nous allons étudier la performance de bootstrap sur différents architecture : mono-cœur, multi-cœurs et GPU. Nous allons comparer le temps d exécution de bootstrap avec les implémentations sur R, C/C++ et CUDA(GPU) Benchmark : L échantillon initial que nous allons utiliser ici sont des nombres flottants générés aléatoirement entre 0 et 100. Sa taille varie de 1*100 jusqu à 1*10^6. Nous cherchons à estimer le moyen de cet échantillon. Nous fixons le nombre de répétition M est 1000 fois Les processeurs utilisés : CPU : Intel Xeon GPU : Tesla C2050, 3GB, 1.15GHz Multi-cœur : 12 cœurs Intel Xeon Compilateur utilisé : gcc version Résultat et performance Dans cette partie, nous allons comparer les performances des différentes implémentations de bootstrap : 1) L implémentation manuelle avec R sur CPU(mono-cœur) sans utilisant des bibliothèques extérieurs(c, C++...) 2) La fonction standard de R : boot() avec des bibliothèques extérieurs(mean(x)) 3) L implémentation avec C/C++ sur CPU(mono-coeur) 4) L implémentation avec CUDA sur GPU 5) L implémentation sur multi-coeurs en utilisant OpenMP. Dans le tableau suivant, MC_N signifie que nous profitons de N cœurs simultanément. 11

12 2.3.1 L accélération par rapport à l implémentation séquentielle CPU : Speedup Size R Boot() CPU GPU MC_6 MC_8 MC_10 MC_12 1*10^ *10^ *10^ *10^ *10^ Nous prenons ici l implémentation séquentielle sur CPU comme la référence,donc la colonne de CPU est toujours 1 dans le tableau. Quand la valeur dans ce tableau est inférieur à 1, c est-à-dire que la version est plus lente que CPU et qu il n y pas d accélération. Nous pouvons constater que l implémentation manuelle sur R est toujours 25 fois(1/0.04) plus lente que l implémentation sur CPU et la fonction standard boot() est plus rapide que R mais plus lente que GPU et multi-cœur. Ensuite nous pouvons trouver que GPU va gagner un gain à partir de taille 1*10^4. L accélération augmente quand la taille élargi. Nous obtenons un gain de 8.81 à 1*10^6 sur GPU. Nous avons toujours une accélération sur multi-cœur à partir de taille 1*10^3 et maintenant nous nous intéressons à la comparaison des performances de GPU avec le multi-cœur. Vous pouvez trouver aussi le tableau du temps d exécution réel de chaque implémentation de bootstrap dans l annexe. 12

13 Selon la courbe ou l histogramme au dessus, nous pouvons constater que l accélération de GPU est entre 10 cœur et 12 cœur à partir de taille 1*10^5. Cela signifie que quand nous avons assez de données à traiter, la performance de bootstrap sur GPU est meilleur qu un processeur de 10 cœurs. 13

14 2.4 Conclusion En conclusion, nous pouvons bien profiter de parallélisation sur GPU pour bootstrap quand nous avons assez de données dans l échantillonnage original. La performance de GPU est comparable avec un processeur de 10 cœurs. Mais la performance de certain résultats de GPU n est pas très optimale. En fait, cette limitation vient de deux aspects : a) Le temps de transfert de données entre GPU et CPU n est pas négligeable, donc quand nous n avons pas assez de calcul à faire, cette partie est assez élevée par rapport au tempstotal. b) L accès à la mémoire globale de GPU est couteux(souvent cycles d horloge). Sachant que pour construire les rééchantillonnages dans bootstrap, nous avons besoin de faire de nombreuse fois de tirage qui demande d accéder la mémoire globale de manière très aléatoire. La conséquence de ce genre de l accès est de nombreuse de défauts de cache potentiels qui est un facteur important pour bootstrap. Partie 3 : Imputation Multiple 3.1 Description détaillée L Imputation multiple est une méthode statistique introduite par Rubin à Les étapes principales de l imputation multiple sont les suivantes : a) Choisir un modèle qui prédit toutes les données manquantes à partir de toute les autres informationsutilisables, par exemple, régression linéaire, régression logistique ou modèle non-linéaire... b) Utiliser le modèle choisi à créer un ensemble de données complet c) Faire l analyse statistique de cet ensemble de données complet et enregistrer les statistiques que nous cherchons(moyenne, ecart type... ) d) Répéter les étapes b) et c) (selon les auteurs, 3 à 5 fois suffisent) e) Faire l analyse finale pour l ensemble de ces répétitions Le dessin suivant montre le processus global de l imputation multiple. 14

15 Dans ce rapport, nous avons utilisé le modèle de régression linéaire pour faire l inférence des données manquantes Modèle de régression linéaire En statistique, un modèle de régression linéaire[cm91] est un modèle de régression d une variable expliquée sur une ou plusieurs variables explicatives. Dans ce modèle, nous faisons l hypothèse que la dépendance de variable expliquée et les variables explicatives est linéaire. La formule mathématique pour exprimer la relation entre une variable y et un vecteur de variables x est : (3.1) Où y est la variable expliquée, le vecteur x est l ensemble des variables explicatives. u désigne le terme d erreur aléatoire. Le vecteur ß est le paramètre que nous cherchons pour pouvoir faire l inférence les données manquantes. En fait, il existe plusieurs méthodes mathématiques pour estimer Le vecteur ß. Nous avons choisi la méthode OLS(ordinary least squares) pour résoudre cette équation. La formule mathématique est : 15

16 D où : (3.2) Sachant que trouver l inverse d une matrice est assez coûteux(o(n^3))], nous transformons cette formule en : (X T X)ß = X T y (3.3) En ce cas là, nous avons besoin de résoudre le système linéaire A*ß = Y, d où A est (X T X) et Y est (X T y). Une fois que nous trouvons ß, nous pouvons ensuite exprimer la variable expliquée y par le vecteur X qui nous permet d inférer les valeurs manquantes de y par l équation 3.1. Donc, l implémentation réelle de l imputation multiple est la suivante : 1) Initialiser toutes les valeurs manquantes. Si une valeur est manquantes, nous la réplaçons aléatoirement par une des valeurs possibles. Cela conduit a un jeu de donnée complet. 2) Appliquer le modèle de régression linéaire pour la première variable à qui il manque des valeurs. Nous remplaçons les valeurs manquantes initiales par les nouvelles valeurs qui sont trouvées par l équation 3.1 3) Ensuite nous faisons une deuxième régression linéaire pour deuxième variable à qui il manque des valeurs. Nous remplaçons les valeurs manquantes initiales par les nouvelles valeurs. Et ainsi de suite, jusqu à nous ayons traité toutes les variables à qui manquent des valeurs 4) Répéter 1), 2), 3) M fois 3.2 Expérience effectuée Dans ce rapport, nous allons étudier la performance de l imputation multiple sur 16

17 différents architectures : mono-cœur, multi-cœur et GPU Benchmark : Les Benchmarks effectués sont des matrices dont le nombre de variable varie de 10^2 jusqu à 10^3 et dont le nombre d observation de chaque variable varie de 10^3 jusqu à 10^6. Les valeurs de matrice sont des nombres flottants générés arbitrairement entre 0 et 100. Pour chaque taille de matrice, nous ajoutons 10% de valeurs manquantes et nous appliquons 5 imputations Les processeurs utilisés : CPU : Intel Xeon GPU : Tesla C2050, 3GB, 1.15GHz Multi-cœur : 12 cœurs Intel Xeon Compilateur utilisé : gcc version Résultats et performance Dans cette partie, nous allons comparer les performances des différentes implémentations de l imputation multiple: 1) L implémentation utilisant la fonction standard mice() dans R : 2) L implémentation sequentielle en C/C++ avec bibliothèque Blas[bl02] et Lapack[an99] 3) L implémentation GPU avec la bibliothèque Magma[do14] 4) L implémentation multi-cœur avec bibliothèque MKL[intel05] et Lapack, Dans le tableau suivant, MC_N signifie que nous profitons de N cœurs simultanément L accélération par rapport à l implémentation CPU 17

18 Speedup Size Mice() CPU GPU MC_4 MC_6 MC_8 MC_10 MC_12 10*10^ *10^ *10^ *10^ Speedup Size Mice() CPU GPU MC_4 MC_6 MC_8 MC_10 MC_12 100*10^ *10^ *10^ *10^ * Vous pouvez trouver aussi le tableau du temps d exécution réel de chaque implémentation de l imputation multiple dans l annexe. Nous prenons ici l implémentation CPU comme la référence, donc la colonne de CPU dans le tableau est toujours 1. Puisque à partir de taille 1000*10^4, l exécution de fonction mice() est trop longue(> 100h), la mesure donc s arrête à 1000*

19 Comme nous avons prévu, l exécution de l imputation multiple sous R est assez coûteuse aux grandes tailles. Nous pouvons observer que quand la taille passe de 100*10^5 à 100*10^6, la fonction mice() est un peu près 100 fois plus lente(annexe 2). Mais pour CPU, GPU ou multi-cœur, le facteur est normalement 10. Cela signifie encore une fois que l overhead de R pour les problèmes de grandes tailles est assez élevé. Ensuite, la performance de GPU est toujours la meilleur à partir de 100*10^4. Puisque il existe des calculs assez intensifs dans cette méthode, par exemple la multiplication matricielle, résoudre le système linéaire... Donc l imputation multiple est une méthode très adaptée à GPU, l accélération est meilleur qu un processeur de 12 cœurs quand nous avons 100 variables à traiter. Maintenant nous nous intéressons à la comparaison des performances de GPU avec le multi-cœur. Nous prenons ici l implémentation de CPU comme référence : 1) 10 variables: 19

20 2) 100 variables 20

21 Maintenant plus clairement, pour les tailles petite(10 variables), la performance de GPU n est pas très optimale par rapport à laquelle de multi-cœur, mais quand nous augmentons le nombre de variables à 100, nous trouvons que GPU est plus rapide que multi-cœur à partir de 100*10^ Conclusion En conclusion, GPU est un bon choix pour accélérer l imputation multiple quand la taille de problème est grande. Mais pour les petites tailles, l implémentation séquentielle sur CPU est suffisante. En ce moment-là, nous n avons pas besoin d utiliser un GPU ou multi-cœur. 21

22 4. Conclusion 4.1 Contribution du stage Pendant 6 mois de stage, nous avons étudié le parallélisme potentiel des méthodes statistiques modernes. Nous avons implémenté ces méthodes sur différentes architectures avec des bibliothèques de haute performance. Avoir effectué les benchmarks sur différentes tailles de problème, nous avons montré que la parallélisation est un moyen faisable pour réduire le temps d exécution des méthodes statistiques intensives. Nous avons utilisé l implémentation CPU comme références à bien montrer que l overhead de R est très élevé quand la taille de problème devient grande. Nous trouvons que ce genre de logiciel métier ne peut plus satisfaire les besoins du statisticien pour traiter des millions de données efficacement aujourd hui. Cela confirme la motivation de notre projet dont l objectif est de produire un logiciel statistique adapté à Big data. De plus, pendant ce stage, nous avons comparé expérimentalement les performances de multi-cœur et GPU en fonction de tailles. Nous avons montré que la performance de GPU est meilleur qu un processeur de 12 cœurs quand il y a assez de données. 22

23 4.2 Bilan d apport du stage D abord, j ai appris deux méthodes statistiques très utilisée dans le domaine médical : Bootstrap et Imputation Multiple. Ce stage m a permis de découvrir le parallélisme potentiel de statistique et d appliquer GPGPU dans le domaine statistique. Pour pouvoir étudier et comparer la performance de différentes architectures, j ai utilisé beaucoup de bibliothèques à exploiter la parallélisation, par exemple, CURAND,Thrust, Blas, MKL, Magma... Ensuite, pendant ce stage, j ai eu la chance à connaître comment utiliser le logiciel R pour traiter et analyser des problèmes statistiques. J ai mesuré le temps d exécution de chaque méthode sous R et les ai utilisé à comparer avec GPU et multi-cœur. Enfin, ce stage était un stage multidisciplinaire, j ai eu la chance de travailler avec des statisticiens, informaticiens et des experts de compilation, qui me permettait d élargir mes connaissances dans différents domaines et d augmenter mon niveau de communication et collaboration. 23

24 Bibliographie [r12] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN , [nv10] Nvidia, C. U. D. A. (2010). Curand library. [tm14] Sloan, T. M., Piotrowski, M., Forster, T., & Ghazal, P. (2014). Parallel Optimisation of Bootstrapping in R. arxiv preprint arxiv: [jh08] Hill, J., Hambley, M., Forster, T., Mewissen, M., Sloan, T. M., Scharinger, F.,... & Ghazal, P. (2008). SPRINT: A new parallel framework for R. BMC bioinformatics, 9(1), 558. [sm98] Snir, M. (Ed.). (1998). MPI--the Complete Reference: The MPI core (Vol. 1). MIT press. [ru91] Rubin, D. B., & Schenker, N. (1991). Multiple imputation in health are databases: An overview and some applications. Statistics in medicine, 10(4), [cm91] Charles Manski, «Regression», Journal of Economic Literature, vol. 29,n o 1, mars 1991, p [bl02] Blackford, L. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel, J.,... & Lumsdaine, A. (2002). An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical Software, 28(2), [an99] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,... & Sorensen, D. (1999). LAPACK Users' guide (Vol. 9). Siam. [do14] Dongarra, J., Gates, M., Haidar, A., Kurzak, J., Luszczek, P., Tomov, S., Yamazaki, I."Accelerating Numerical Dense Linear Algebra Calculations with GPUs," Numerical Calculations with GPUs, Volodymyr Kindratenko, eds., eds. Springer International Publishing, pp. 3-28, July, [intel05] Intel, M. K. L. (2005). Intel math kernel library, linear solvers basics. 24

25 Annexe 1. Le temps d exécution de bootstrap (en seconde) Size Time R Boot() CPU GPU MC_6 MC_8 MC_10 MC_12 1*10^ *10^ *10^ *10^ *10^

26 2. Le temps d exécution de l imputation multiple(en seconde) Size Time Mice() CPU GPU MC_4 MC_6 MC_8 MC_10 MC_12 10*10^ *10^ *10^ *10^ Size Time Mice() CPU GPU MC_4 MC_6 MC_8 MC_10 MC_12 100*10^ *10^ *10^ *10^ (>50H) * (>22H)

Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux

Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux CO 2 maîtrisé Carburants diversifiés Véhicules économes Raffinage propre Réserves prolongées Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux J-M. Gratien,, M. Hacene, T. Guignon

Plus en détail

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2 Sommaire Sommaire... 1 Introduction... 2 1 Trois différentes techniques de pricing... 3 1.1 Le modèle de Cox Ross Rubinstein... 3 1.2 Le modèle de Black & Scholes... 8 1.3 Méthode de Monte Carlo.... 1

Plus en détail

Plan : Master IM2P2 - Calcul Scientifique

Plan : Master IM2P2 - Calcul Scientifique Plan : Les systèmes HPC Typologie des systèmes : Machines Mémoire partagée Machines à Mémoire Distribuées Machine NUMA Exemples Architectures Processeurs HPC Processeurs scalaires, superscalaires, vectoriels

Plus en détail

Initiation au HPC - Généralités

Initiation au HPC - Généralités Initiation au HPC - Généralités Éric Ramat et Julien Dehos Université du Littoral Côte d Opale M2 Informatique 2 septembre 2015 Éric Ramat et Julien Dehos Initiation au HPC - Généralités 1/49 Plan du cours

Plus en détail

Quantification d incertitude et Tendances en HPC

Quantification d incertitude et Tendances en HPC Quantification d incertitude et Tendances en HPC Laurence Viry E cole de Physique des Houches 7 Mai 2014 Laurence Viry Tendances en HPC 7 Mai 2014 1 / 47 Contents 1 Mode lisation, simulation et quantification

Plus en détail

Optimisation des performances du programme mpiblast pour la parallélisation sur grille de calcul

Optimisation des performances du programme mpiblast pour la parallélisation sur grille de calcul Optimisation des performances du programme mpiblast pour la parallélisation sur grille de calcul Mohieddine MISSAOUI * Rapport de Recherche LIMOS/RR-06-10 20 novembre 2006 * Contact : missaoui@isima.fr

Plus en détail

Délégation GPU des perceptions agents : application aux boids de Reynolds

Délégation GPU des perceptions agents : application aux boids de Reynolds Délégation GPU des perceptions agents : application aux boids de Reynolds JFSMA 2015 LIRMM - Université de Montpellier - CNRS Emmanuel Hermellin, Fabien Michel {hermellin, fmichel}@lirmm.fr Mercredi 1

Plus en détail

Practice HPC. Retour d expérience Xeon PHI. Février 2012. Damien DUBUC Expert HPC software. 28/03/2013 ANEO Tous droits réservés 1

Practice HPC. Retour d expérience Xeon PHI. Février 2012. Damien DUBUC Expert HPC software. 28/03/2013 ANEO Tous droits réservés 1 Retour d expérience Xeon PHI Damien DUBUC Expert HPC software Février 2012 28/03/2013 ANEO Tous droits réservés 1 Quel est notre rôle? Présenter o Gérer un portefeuille clients nécessitant des optimisations

Plus en détail

Kick-off ANR Compass

Kick-off ANR Compass Kick-off ANR Compass Contribution MDLS Pierre Kestener CEA-Saclay, DSM, France Maison de la Simulation Meudon, 14 mars 2013 1 / 10 La Maison de la Simulation Laboratoire de recherche pluridisciplinaire

Plus en détail

CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES

CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES Trois types de formation LES FORMATEURS Les experts techniques AS+ Groupe EOLEN disposent d une réelle expérience pratique

Plus en détail

Limitations of the Playstation 3 for High Performance Cluster Computing

Limitations of the Playstation 3 for High Performance Cluster Computing Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire

Plus en détail

ParMat : Parallélisation pour la simulation des Matériaux.

ParMat : Parallélisation pour la simulation des Matériaux. : Parallélisation pour la simulation des Matériaux. G. Bencteux (EDF) 3 septembre 2008 Outline 1 2 Un algorithme d ordre N pour les calculs ab initio (DFT/HF) 3 Simulation du dommage d irradiation par

Plus en détail

Retour d expérience, portage de code Promes dans le cadre de l appel à projets CAPS-GENCI

Retour d expérience, portage de code Promes dans le cadre de l appel à projets CAPS-GENCI , portage de code Promes dans le cadre de l appel à projets CAPS-GENCI PROMES (UPR 8521 CNRS) Université de Perpignan France 29 juin 2011 1 Contexte 2 3 4 Sommaire Contexte 1 Contexte 2 3 4 Laboratoire

Plus en détail

Optimisation de logiciels de modélisation sur centre de calcul

Optimisation de logiciels de modélisation sur centre de calcul Optimisation de logiciels de modélisation sur centre de calcul Gérald Monard Pôle de Chimie Théorique http://www.monard.info/ Introduction Les ordinateurs sont des appareils électroniques permettant d

Plus en détail

Rapport 2014 et demande pour 2015. Portage de Méso-NH sur Machines Massivement Parallèles du GENCI Projet 2015 : GENCI GEN1605 & CALMIP-P0121

Rapport 2014 et demande pour 2015. Portage de Méso-NH sur Machines Massivement Parallèles du GENCI Projet 2015 : GENCI GEN1605 & CALMIP-P0121 Rapport 2014 et demande pour 2015 Portage de Méso-NH sur Machines Massivement Parallèles du GENCI Projet 2015 : GENCI GEN1605 & CALMIP-P0121 Rappel sur Méso-NH : Modélisation à moyenne échelle de l atmosphère

Plus en détail

Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012. Better Match, Faster Innovation

Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012. Better Match, Faster Innovation Better Match, Faster Innovation Rencontre sur la thématique du Calcul Haute Performance - 13 juin 2012 Meeting on the theme of High Performance Computing TABLE DES MATIÈRES Qu est ce qu un imatch? STI

Plus en détail

Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs. Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle

Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs. Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle Contrôle Non Destructif : Implantation d'algorithmes sur GPU et multi-coeurs Gilles Rougeron CEA/LIST Département Imagerie Simulation et Contrôle 1 CEA R & D for Nuclear Energy 5 000 people Nuclear systems

Plus en détail

Retour d expérience : portage d une application haute-performance vers un langage de haut niveau

Retour d expérience : portage d une application haute-performance vers un langage de haut niveau Retour d expérience : portage d une application haute-performance vers un langage de haut niveau Mathias Bourgoin, Chailloux Emmanuel, Jean-Luc Lamotte To cite this version: Mathias Bourgoin, Chailloux

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Présentation CaSciModOT Performances et Architectures

Présentation CaSciModOT Performances et Architectures Présentation CaSciModOT Performances et Architectures Code parallèle : Un peu de théorie Architectures variables : C(n,p)? Quel code? Quelle architecture? Structure d un code : partie parallèle / séquentielle

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Juan ESCOBAR, IR1 Expert en Calcul Intensif. Fonction postulée :

Juan ESCOBAR, IR1 Expert en Calcul Intensif. Fonction postulée : Oral Examen Professionnel PFI 7 Octobre 2008 Juan ESCOBAR, IR1 Expert en Calcul Intensif Fonction postulée : Chef de Projet sur le Support du Code Communautaire Méso-NH Service National Labellisé INSU

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Métriques de performance pour les algorithmes et programmes parallèles

Métriques de performance pour les algorithmes et programmes parallèles Métriques de performance pour les algorithmes et programmes parallèles 11 18 nov. 2002 Cette section est basée tout d abord sur la référence suivante (manuel suggéré mais non obligatoire) : R. Miller and

Plus en détail

Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante.

Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante. Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante. Objectifs et formulation du sujet Le syndrome de l apnée du sommeil (SAS) est un problème de santé publique

Plus en détail

Mise en œuvre de LAMMPS sur le mésocentre de calcul de la région Centre CCSC (action du projet CaSciModOT)

Mise en œuvre de LAMMPS sur le mésocentre de calcul de la région Centre CCSC (action du projet CaSciModOT) Mise en œuvre de LAMMPS sur le mésocentre de calcul de la région Centre CCSC (action du projet CaSciModOT) Un exemple d utilisation pratique : la simulation numérique de vortex supraconducteurs Nicolas

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

Historique. Évolution des systèmes d exploitation (à travers les âges)

Historique. Évolution des systèmes d exploitation (à travers les âges) Historique Évolution des systèmes d exploitation (à travers les âges) Historique L histoire des systèmes d exploitation permet de dégager des concepts de base que l on retrouve dans les systèmes actuels

Plus en détail

Principes généraux régissant l accès aux locaux et ressources informatiques de l ISIMA

Principes généraux régissant l accès aux locaux et ressources informatiques de l ISIMA 2013/2014 Principes généraux régissant l accès aux locaux et ressources informatiques de l ISIMA q PRINCIPES : Les horaires d ouverture de l Ecole vont de 7h30 à 18h30 du lundi au jeudi, et de 7h30 à 17h45

Plus en détail

Architecture des ordinateurs

Architecture des ordinateurs Décoder la relation entre l architecture et les applications Violaine Louvet, Institut Camille Jordan CNRS & Université Lyon 1 Ecole «Découverte du Calcul» 2013 1 / 61 Simulation numérique... Physique

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Table des matières PRESENTATION DU LANGAGE DS2 ET DE SES APPLICATIONS. Introduction

Table des matières PRESENTATION DU LANGAGE DS2 ET DE SES APPLICATIONS. Introduction PRESENTATION DU LANGAGE DS2 ET DE SES APPLICATIONS Depuis SAS 9.2 TS2M3, SAS propose un nouveau langage de programmation permettant de créer et gérer des tables SAS : le DS2 («Data Step 2»). Ces nouveautés

Plus en détail

Maarch Framework 3 - Maarch. Tests de charge. Professional Services. http://www.maarch.fr. 11, bd du Sud Est 92000 Nanterre

Maarch Framework 3 - Maarch. Tests de charge. Professional Services. http://www.maarch.fr. 11, bd du Sud Est 92000 Nanterre Maarch Professional Services 11, bd du Sud Est 92000 Nanterre Tel : +33 1 47 24 51 59 Fax : +33 1 47 24 54 08 Maarch Framework 3 - Maarch PS anime le développement d un produit d archivage open source

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

cluster pour l Enseignement Universitaire et la Recherche

cluster pour l Enseignement Universitaire et la Recherche cluster pour l Enseignement Universitaire et la Recherche Université de Nice Sophia-Antipolis 22 janvier 2013 Université de Nice Sophia-Antipolis cluster pour l Enseignement Universitaire et la Recherche

Plus en détail

Catalogue des stages Ercom 2013

Catalogue des stages Ercom 2013 Catalogue des stages Ercom 2013 Optimisations sur Modem LTE Poste basé à : Caen (14) Analyse et optimisation des performances des traitements réalisés dans un modem LTE. - Profiling et détermination des

Plus en détail

Mises en relief. Information supplémentaire relative au sujet traité. Souligne un point important à ne pas négliger.

Mises en relief. Information supplémentaire relative au sujet traité. Souligne un point important à ne pas négliger. Cet ouvrage est fondé sur les notes d un cours dispensé pendant quelques années à l Institut universitaire de technologie de Grenoble 2, au sein du Département statistique et informatique décisionnelle

Plus en détail

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT)

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) LAGGOUNE Radouane 1 et HADDAD Cherifa 2 1,2: Dépt. de G. Mécanique, université de Bejaia, Targa-Ouzemour

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Algorithmes évolutionnaires sur. et GPU. Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline

Algorithmes évolutionnaires sur. et GPU. Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline Algorithmes évolutionnaires et GPU Introduction : GPU et puissance calculatoire Principe du GPU : le pipeline graphique Introduction au parallélisme de données Exemple de simulation Les langages de haut-niveau

Plus en détail

Lilia Ziane Khodja. Laboratoire d Informatique de Paris 6 (LIP6) Département Calcul Scientifique, équipe PEQUAN. Post-doc à l INRIA Bordeaux Sud-Ouest

Lilia Ziane Khodja. Laboratoire d Informatique de Paris 6 (LIP6) Département Calcul Scientifique, équipe PEQUAN. Post-doc à l INRIA Bordeaux Sud-Ouest Lilia Ziane Khodja Post-doc à l INRIA Bordeaux Sud-Ouest Laboratoire d Informatique de Paris 6 (LIP6) Département Calcul Scientifique, équipe PEQUAN Lilia Ziane Khodja 20 mars 2014 Plan de la présentation

Plus en détail

Communications performantes par passage de message entre machines virtuelles co-hébergées

Communications performantes par passage de message entre machines virtuelles co-hébergées Communications performantes par passage de message entre machines virtuelles co-hébergées François Diakhaté1,2 1 CEA/DAM Île de France 2 INRIA Bordeaux Sud Ouest, équipe RUNTIME Renpar 2009 1 Plan Introduction

Plus en détail

INSTALLATION ET CONFIGURATION POUR LA PROGRAMMATION

INSTALLATION ET CONFIGURATION POUR LA PROGRAMMATION INSTALLATION ET CONFIGURATION POUR LA PROGRAMMATION PARALLELES SOUS WINDOWS I. PREPARATION DE L ENVIRONNEMENT Tous d abord il va vous falloir télécharger quelques logiciels afin de pouvoir commencer à

Plus en détail

Abstractions Performantes Pour Cartes Graphiques

Abstractions Performantes Pour Cartes Graphiques UNIVERSITÉ PIERRE ET MARIE CURIE ÉCOLE DOCTORALE INFORMATIQUE, TÉLÉCOMMUNICATIONS ET ÉLECTRONIQUE Abstractions Performantes Pour Cartes. Graphiques MATHIAS BOURGOIN sous la direction d Emmanuel Chailloux

Plus en détail

Outil d aide au choix Serveurs Lot 4 Marché Groupement de Recherche

Outil d aide au choix Serveurs Lot 4 Marché Groupement de Recherche Outil d aide au choix Serveurs Lot 4 Marché Groupement de Recherche Serveurs DELL PowerEdge Tour Rack standard R310 T110II Rack de calcul Lames R815 M610 R410 R910 M620 R415 R510 T620 R620 R720/R720xd

Plus en détail

Simulation multi GPU d un logiciel de métagénomique. Dany Tello, Mathieu Almeida

Simulation multi GPU d un logiciel de métagénomique. Dany Tello, Mathieu Almeida Simulation multi GPU d un logiciel de métagénomique appliqué à la flore intestinale humaine Dany Tello, Mathieu Almeida Le microbiote intestinal humain : un organe négligé 100 trillions de micro organismes;

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Implémentation multi GPU de la méthode Spectral Differences pour un code de CFD

Implémentation multi GPU de la méthode Spectral Differences pour un code de CFD EPSI Bordeaux École Privée des Sciences Informatiques Rapport de stage Implémentation multi GPU de la méthode Spectral Differences pour un code de CFD Adrien Cassagne Sous la direction d Isabelle d Ast,

Plus en détail

Centre Commun de Calcul Intensif: www.univ-ag.fr/c3i

Centre Commun de Calcul Intensif: www.univ-ag.fr/c3i Centre Commun de Calcul Intensif: www.univ-ag.fr/c3i a HPC center in the Caribbean Mewbalaou Fédération de recherche fournissant des ressources à 6 laboratoires de l UAG: COVACHIM-M, GTSI, LAMIA, LARGE,

Plus en détail

T. Gasc 1,2,3, F. De Vuyst 1, R. Motte 3, M. Peybernes 4, R. Poncet 5

T. Gasc 1,2,3, F. De Vuyst 1, R. Motte 3, M. Peybernes 4, R. Poncet 5 Modélisation de la performance et optimisation d un algorithme hydrodynamique de type Lagrange-Projection sur processeurs multi-cœurs T. Gasc 1,2,3, F. De Vuyst 1, R. Motte 3, M. Peybernes 4, R. Poncet

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC

Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC Portabilité, performances, hétérogénéité Le triple défi de la démocratisation du HPC JSO HPC-Desk - 20 mai 2014 Vincent Ducrot, Sébastien Monot AS+ - Groupe Eolen Donnons de la suite à vos idées PRÉSENTATION

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

MODELES ET METHODES DE SIMULATION DE CONTROLE NON- DESTRUCTIF PAR ULTRASON MASSIVEMENT PARALLELES

MODELES ET METHODES DE SIMULATION DE CONTROLE NON- DESTRUCTIF PAR ULTRASON MASSIVEMENT PARALLELES MODELES ET METHODES DE SIMULATION DE CONTROLE NON- DESTRUCTIF PAR ULTRASON MASSIVEMENT PARALLELES Jason LAMBERT 1, Gilles ROUGERON 1, Lionel LACASSAGNE 2 1 CEA LIST, CEA Saclay - Digiteo Labs, PC120, 91191

Plus en détail

CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX?

CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX? CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX? LABORATOIRE DE VISION ET INGÉNIERIE DES CONTENUS (LVIC) Fusion multimedia : extraction multimodale d

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur

Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur 2 I. Génération des matrices : Le code de Golay, comme le code de

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Etude d Algorithmes Parallèles de Data Mining

Etude d Algorithmes Parallèles de Data Mining REPUBLIQUE TUNISIENNE MINISTERE DE L ENSEIGNEMENT SUPERIEUR, DE LA TECHNOLOGIE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE TUNIS ELMANAR FACULTE DES SCIENCES DE TUNIS DEPARTEMENT DES SCIENCES DE L INFORMATIQUE

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Deuxième cours Rappel: Intérêt Rappel: Intérêt Fonction de capitalisation 1 Rappel: Intérêt Fonction de capitalisation Fonction d accumulation Rappel: Intérêt Fonction de capitalisation

Plus en détail

Programmation unifiée multi-accélérateurs avec OpenCL

Programmation unifiée multi-accélérateurs avec OpenCL Programmation unifiée multi-accélérateurs avec OpenCL Sylvain HENRY * Alexandre DENIS ** Denis BARTHOU * * Université de Bordeaux, 351, cours de la Libération, 33405 Talence, France [sylvain.henry,denis.barthou]@labri.fr

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com #solconnect13 SOLUTIONS ADAPTEES AUX BESOINS CLIENTS Mobile/Cloud Data Serving and Transaction Processing Mobile Storefront JSON Database

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Une dérivation du paradigme de réécriture de multiensembles pour l'architecture de processeur graphique GPU

Une dérivation du paradigme de réécriture de multiensembles pour l'architecture de processeur graphique GPU Une dérivation du paradigme de réécriture de multiensembles pour l'architecture de processeur graphique GPU Gabriel Antoine Louis Paillard Ce travail a eu le soutien de la CAPES, agence brésilienne pour

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

Segmentation d'images à l'aide d'agents sociaux : applications GPU

Segmentation d'images à l'aide d'agents sociaux : applications GPU Segmentation d'images à l'aide d'agents sociaux : applications GPU Richard MOUSSA Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 Université de Bordeaux - France Laboratoire de recherche

Plus en détail

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab notre compétence d'éditeur à votre service créée en juin 2010, Scilab enterprises propose services et support autour

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

L approche de régression par discontinuité. Thomas Lemieux, UBC Atelier de formation du Congrès de l ASDEQ Le 18 mai 2011

L approche de régression par discontinuité. Thomas Lemieux, UBC Atelier de formation du Congrès de l ASDEQ Le 18 mai 2011 L approche de régression par discontinuité Thomas Lemieux, UBC Atelier de formation du Congrès de l ASDEQ Le 18 mai 2011 Plan de la présentation L approche de régression par discontinuité (RD) Historique

Plus en détail

Comment ne pas construire un score-titanic

Comment ne pas construire un score-titanic Comment ne pas construire un score-titanic Mon mailing Olivier Decourt ABS Technologies / Educasoft Formations 1- Les principes 2- Un premier exemple : les vins de France 3- Mise en œuvre sous SAS 4- Un

Plus en détail

Architecture des calculateurs

Architecture des calculateurs Formation en Calcul Scientifique - LEM2I Architecture des calculateurs Violaine Louvet 1 1 Institut Camille jordan - CNRS 12-13/09/2011 Introduction Décoder la relation entre l architecture et les applications

Plus en détail

Centre de calcul de l ub

Centre de calcul de l ub Centre de calcul de l ub Formation Présentation et utilisation du cluster de Calcul Antoine Migeon ccub@u-bourgogne.fr Tel : 5205 ou 5270 Le Centre de Calcul de l ub (ccub) Dédié à l enseignement et à

Plus en détail

Gestion de clusters de calcul avec Rocks

Gestion de clusters de calcul avec Rocks Gestion de clusters de calcul avec Laboratoire de Chimie et Physique Quantiques / IRSAMC, Toulouse scemama@irsamc.ups-tlse.fr 26 Avril 2012 Gestion de clusters de calcul avec Outline Contexte 1 Contexte

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Modélisation et simulation

Modélisation et simulation Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.

Plus en détail

Conception et microprocesseurs

Conception et microprocesseurs Electronique embarquée Conception et microprocesseurs Richard Grisel Professeur des Universités Université de Rouen Conception et microprocesseurs Architectures et composants: Logiciel; Matériel. Test

Plus en détail

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/)

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/) IREM Clermont-Ferrand Algorithmique au lycée Malika More malika.more@u-clermont1.fr 28 janvier 2011 Proposition d activité utilisant l application Tripatouille (http://www.malgouyres.fr/tripatouille/)

Plus en détail

Téléchargez la Version d Évaluation 30 Jours de STATISTICA 9 en Français. Version Native en 64-bit... 2. Expérience Utilisateur Plus Intuitive...

Téléchargez la Version d Évaluation 30 Jours de STATISTICA 9 en Français. Version Native en 64-bit... 2. Expérience Utilisateur Plus Intuitive... Téléchargez la Version d Évaluation 30 Jours de STATISTICA 9 en Français Version Native en 64-bit... 2 Expérience Utilisateur Plus Intuitive... 3 Exploration Visuelle des Données... 5 Catégories de Graphiques...

Plus en détail

Systèmes et traitement parallèles

Systèmes et traitement parallèles Systèmes et traitement parallèles Mohsine Eleuldj Département Génie Informatique, EMI eleuldj@emi.ac.ma 1 Système et traitement parallèle Objectif Etude des architectures parallèles Programmation des applications

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Journée Utiliateurs 2015. Nouvelles du Pôle ID (Informatique) Pierre Neyron, LIG/CNRS

Journée Utiliateurs 2015. Nouvelles du Pôle ID (Informatique) Pierre Neyron, LIG/CNRS Journée Utiliateurs 2015 Nouvelles du Pôle ID (Informatique) Pierre Neyron, LIG/CNRS 1 Pôle ID, Grid'5000 Ciment Une proximité des platesformes Autres sites G5K Grenoble + CIMENT Pôle ID = «Digitalis»

Plus en détail

Rapport d activité. Mathieu Souchaud Juin 2007

Rapport d activité. Mathieu Souchaud Juin 2007 Rapport d activité Mathieu Souchaud Juin 2007 Ce document fait la synthèse des réalisations accomplies durant les sept premiers mois de ma mission (de novembre 2006 à juin 2007) au sein de l équipe ScAlApplix

Plus en détail

Compilation d applications de traitement du signal sur accélérateurs matériels à haute efficacité énergétique

Compilation d applications de traitement du signal sur accélérateurs matériels à haute efficacité énergétique Contexte Travaux recherche Activités annexes Conclusion Compilation d applications traitement du signal sur accélérateurs matériels à haute efficacité énergétique Rapport d avancement 1 re année Pierre

Plus en détail

High Performance by Exploiting Information Locality through Reverse Computing. Mouad Bahi

High Performance by Exploiting Information Locality through Reverse Computing. Mouad Bahi Thèse High Performance by Exploiting Information Locality through Reverse Computing Présentée et soutenue publiquement le 21 décembre 2011 par Mouad Bahi pour l obtention du Doctorat de l université Paris-Sud

Plus en détail

Calcul Haute Performance avec OpenTURNS

Calcul Haute Performance avec OpenTURNS Calcul Haute Performance avec OpenTURNS Renaud Barate EDF R&D Workshop du GdR MASCOT-NUM «Quantification d incertitude et calcul intensif» 28 Mars 2013 Sommaire Présentation du logiciel OpenTURNS Problématiques

Plus en détail

Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration

Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration Julien MATHEVET Alexandre BOISSY GSID 4 Rapport Load Balancing et migration Printemps 2001 SOMMAIRE INTRODUCTION... 3 SYNTHESE CONCERNANT LE LOAD BALANCING ET LA MIGRATION... 4 POURQUOI FAIRE DU LOAD BALANCING?...

Plus en détail

Retour d expérience en Astrophysique : utilisation du Cloud IaaS pour le traitement de données des missions spatiales

Retour d expérience en Astrophysique : utilisation du Cloud IaaS pour le traitement de données des missions spatiales Retour d expérience en Astrophysique : utilisation du Cloud IaaS pour le traitement de données des missions spatiales Cécile Cavet cecile.cavet at apc.univ-paris7.fr Centre François Arago (FACe), Laboratoire

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

COMOTEX COMmande temps réel de systèmes d Optique adaptative à Très grands nombres de degrés de liberté pour les télescopes EXtrêmement grands

COMOTEX COMmande temps réel de systèmes d Optique adaptative à Très grands nombres de degrés de liberté pour les télescopes EXtrêmement grands COMOTEX COMmande temps réel de systèmes d Optique adaptative à Très grands nombres de degrés de liberté pour les télescopes EXtrêmement grands Morgan GRAY Cyril PETIT, Sergey RODIONOV, Marc BOCQUET Laurent

Plus en détail

Technologies SOC (System On Chip) (Système sur une seule puce)

Technologies SOC (System On Chip) (Système sur une seule puce) Technologies SOC (System On Chip) (Système sur une seule puce) Pierre LERAY et Jacques WEISS Équipe de recherche ETSN Supélec Campus de Rennes février, 02 Technologies SoC ; P. Leray, J. Weiss 1 Évolution

Plus en détail

Cours de Data Mining PageRank et HITS

Cours de Data Mining PageRank et HITS Cours de Data Mining PageRank et HITS Andreea Dragut Univ. Aix-Marseille, IUT d Aix-en-Provence Andreea Dragut Cours de Data Mining PageRank et HITS 1 / 48 Plan du cours Présentation Andreea Dragut Cours

Plus en détail

Tests de SlipStream sur les plateformes StratusLab@LAL et OpenStack@CC-IN2P3 : vers la. Vers la fédération du Cloud computing

Tests de SlipStream sur les plateformes StratusLab@LAL et OpenStack@CC-IN2P3 : vers la. Vers la fédération du Cloud computing Tests de sur les plateformes StratusLab@LAL et OpenStack@CC-IN2P3 : vers la fédération du Cloud computing Cécile Cavet1 & Charles Loomis2 (1) Centre François Arago, Laboratoire, Université Paris Diderot,

Plus en détail