Pascal BASSET, - PMU Responsable Risques Numériques, Expériences Utilisateurs et DSI international

Dimension: px
Commencer à balayer dès la page:

Download "Pascal BASSET, - PMU Responsable Risques Numériques, Expériences Utilisateurs et DSI international"

Transcription

1 Pascal BASSET, - PMU Responsable Risques Numériques, Expériences Utilisateurs et DSI international CRiP Thématique Sécurité de l informatique de demain 03/12/14

2 Agenda Introduction big data et lien avec la sécurité Use cases SSI, fraude et autres Aspects organisationnels au sein des entreprises Architecture technique Conclusion Q&R

3 Introduction big data lien avec la sécurité Des solutions de stockage et de traitement de données scalables, évolutives, tolérantes aux pannes Des outils d accès, des traitements batchs et temps réel, sur des données non structurées Des performances optimisées par la distribution du calcul Le log La valorisation des logs Le volume (x100 Go / jour)

4 Big data lien avec les autres besoins (fraude, etc...) Les calculs de statistiques par batch dans l écosystème big data permettent de faire de la BI La corrélation d événements métiers à partir de données applicatives pour la détection de fraude L analyse des logs et des erreurs applicatives

5 Use case SSI la fuite d informations L injection SQL et l extraction des données des bases locales aux applis front SI Front SI Back Internet Fonctions sécurité : - FW - WAF - RP / LB - SSL Applicatifs web front: - front apache - middle tomcat - bases locales Reste du SI - applications métiers back - autres Evènements WAF Injection SQL, LFI, etc. (passante) Fuite d infos BDD locale Evènements applicatifs / comportement applicatif: - 1 requête longue - n requêtes sur une page - Volumétrie par session par page (par IP) - Evènements bdd

6 Use case SSI couplé aux autres usages Chaque utilisateur traite ses données SI Front SI Back Internet Attaquants Evènements infras sécu, systèmes Logs techniques applicatifs pour troobleshooting Preuves réglementaires Indicateurs métiers (métrologie applicative) Copie logs Sécurité opérationnelle Développeurs Services clients Réglementation / Conformité Marketing Fraude

7 Use case SSI couplé aux autres usages Chaque utilisateur dispose d un accès aux données SI Front SI Back Internautes / Attaquants Internet Logs infras sécus Logs techniques applicatifs Logs applicatifs Sécurité opérationnelle Développeurs Réglementation / Conformité Service Client Marketing Fraude

8 Use case SSI la séparation des pouvoirs Le risque des habilitations sur toute une chaîne de traitement Métiers Front Métiers Back Autres Définition et attribution des profils métiers Profils Profils Profils Application des droits techniques dans les applications (via l annuaire) Q: Réalité d une vrai séparation des pouvoirs front/back? Q: Accès à des opérations sensibles et utilisation des opérations sensibles? Applis front office Applis back office ERP R: analyse des logs applicatives sur les opérations sensibles

9 Les aspects organisationnels Responsabilité/propriété du data-lake? Logique de service voire d OpenData privé Equipe d analystes pluridisciplinaires Nouveaux profils Nouvelle organisation ou mission d une organisation existante Fonction/responsabilité transverse par définition et qui va bien audelà de la DSI

10 Yarn Hue Zookeeper Elastic Jobs.. Hcat Architecture Composants techniques Recherche Rapports Alertes Qlik, BO, SQL, excel, Kibana BI HIVE PIG Hbase Map Reduce HDFS Datalake Flume Indexation Grok Sources

11 Hadoop connect Yarn Hue Zookeeper Elastic Jobs.. Interactions SIEM Recherche Rapports Alertes Recherche Rapports Alertes Qlik, BO, SQL, excel, Kibana BI HIVE PIG Hcatalog SIEM Hbase Map Reduce HDFS Datalake Flume Grok Sources

12 Points de vigilance techniques Une contribution des développeurs est nécessaire (co-sponsor) La «plomberie» d un cluster multi nœuds nécessite des compétences adhoc Peu de fonctions de sécurité built-in (cloisonnement des données, chiffrement, contrôle d intégrité)

13 Points de vigilance Les parois des silos sont épaisses Le mélange de données techniques et métiers n est pas naturel Les données applicatives ne sont pas nécessairement accessibles (hébergeurs, sous-traitants, cloisonnement réseau, ) Les volumes peuvent être très importants De multiples initiatives Big Data naissent un peu partout dans l entreprise (sans cohérence ni cohésion) Nécessite de nouvelles relations entre les équipes / métiers (SSI/Dev SSI/Fraude SSI/Exploitation IT, ) Commencer sur des uses cases simples et pragmatiques

14 Conclusions techniques comme composants/connecteurs des SIEM comme compléments des solutions de détection existantes

15 Conclusions La sécurité, pour être efficiente, ne peut plus se passer des données applicatives Par exemple les approches DevOps bouleversent les processus en place. Pour accéder/collecter les données nécessaires, il va falloir franchir les silos organisationnels. Le volume de donnés est tel qu il faut éviter une duplication par organisation et utiliser les solutions techniques des géants du web (commodity storage & processing). Il faut envisager la mise en place d un nouveau service IT de Data- Lake ou OpenData privé. L analyse de ces données nécessite de nouvelles coopérations au sein d équipes pluridisciplinaires (def. des patterns d analyse)

16 Merci de votre attention Q&R

Big Data Concepts et mise en oeuvre de Hadoop

Big Data Concepts et mise en oeuvre de Hadoop Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Les journées SQL Server 2013

Les journées SQL Server 2013 Les journées SQL Server 2013 Un événement organisé par GUSS Les journées SQL Server 2013 Romain Casteres MVP SQL Server Consultant BI @PulsWeb Yazid Moussaoui Consultant Senior BI MCSA 2008/2012 Etienne

Plus en détail

L écosystème Hadoop Nicolas Thiébaud [email protected]. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud [email protected] HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

Hadoop, les clés du succès

Hadoop, les clés du succès Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont

Plus en détail

Déploiement d une architecture Hadoop pour analyse de flux. franç[email protected]

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr Déploiement d une architecture Hadoop pour analyse de flux franç[email protected] 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

Offre formation Big Data Analytics

Offre formation Big Data Analytics Offre formation Big Data Analytics OCTO 2014 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél : +33 (0)1 58 56 10 00 Fax : +33 (0)1 58 56 10 01 www.octo.com 1 Présentation d OCTO Technology 2 Une

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Vos experts Big Data. [email protected]. Le Big Data dans la pratique

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique Vos experts Big Data [email protected] Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB

Plus en détail

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture API04 Contribution Apache Hadoop: Présentation et application dans le domaine des Data Warehouses Introduction Cette publication a pour but de présenter le framework Java libre Apache Hadoop, permettant

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO [email protected] @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions

Plus en détail

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES

Plus en détail

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera [email protected] @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi

Plus en détail

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Projet Xdata. Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia

Projet Xdata. Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia Projet Xdata Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia Mutualisation des données XData = Cross Data En croisant des données d origine diverses,

Plus en détail

Analytics & Big Data. Focus techniques & nouvelles perspectives pour les actuaires. Université d Eté de l Institut des Actuaires Mardi 8 juillet 2014

Analytics & Big Data. Focus techniques & nouvelles perspectives pour les actuaires. Université d Eté de l Institut des Actuaires Mardi 8 juillet 2014 Analytics & Big Data Focus techniques & nouvelles perspectives pour les actuaires Local Optimization European Minded Université d Eté de l Institut des Actuaires Mardi 8 juillet 2014 Intervenants : Alexandre

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

Préface Dunod Toute reproduction non autorisée est un délit. Les raisons de l émergence du Big Data sont bien connues. Elles sont d abord économiques et technologiques. La chute exponentielle des coûts

Plus en détail

Le BigData, aussi par et pour les PMEs

Le BigData, aussi par et pour les PMEs Parole d expert Le BigData, aussi par et pour les PMEs Stéphane MOUTON, CETIC Département Software and Services Technologies Avec le soutien de : LIEGE CREATIVE Le Big Data, aussi par et pour les PMEs

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

http://blog.khaledtannir.net

http://blog.khaledtannir.net Algorithme de parallélisations des traitements Khaled TANNIR Doctorant CIFRE LARIS/ESTI http://blog.khaledtannir.net [email protected] 2e SéRI 2010-2011 Jeudi 17 mars 2011 Présentation Doctorant CIFRE

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

CNAM 2010-2011. Déploiement d une application avec EC2 ( Cloud Amazon ) Auteur : Thierry Kauffmann Paris, Décembre 2010

CNAM 2010-2011. Déploiement d une application avec EC2 ( Cloud Amazon ) Auteur : Thierry Kauffmann Paris, Décembre 2010 CNAM 2010-2011 Déploiement d une application avec EC2 ( Cloud Amazon ) Auteur : Thierry Kauffmann Paris, Décembre 2010 Déploiement d une application dans le cloud. 1. Cloud Computing en 2010 2. Offre EC2

Plus en détail

Les quatre piliers d une solution de gestion des Big Data

Les quatre piliers d une solution de gestion des Big Data White Paper Les quatre piliers d une solution de gestion des Big Data Table des Matières Introduction... 4 Big Data : un terme très vaste... 4 Le Big Data... 5 La technologie Big Data... 5 Le grand changement

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables

DocForum 18 Juin 2015. Réussites d un projet Big Data Les incontournables DocForum 18 Juin 2015 Réussites d un projet Big Data Les incontournables Vos interlocuteurs Mick LEVY Directeur Innovation Business [email protected] 06.50.87.13.26 @mick_levy 2 Business &

Plus en détail

Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase

Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase Big Data : utilisation d un cluster cluster Cécile Cavet cecile.cavet at apc.univ-paris7.fr Centre François Arago (FACe), Laboratoire APC, Université Paris Diderot LabEx UnivEarthS 14 Janvier 2014 C. Cavet

Plus en détail

Le projet Gaïa, le Big Data au service du traitement de données satellitaires CRIP - 16/10/2013 Pierre-Marie Brunet

Le projet Gaïa, le Big Data au service du traitement de données satellitaires CRIP - 16/10/2013 Pierre-Marie Brunet Le projet Gaïa, le Big Data au service du traitement de données satellitaires CRIP - 16/10/2013 Pierre-Marie Brunet 1 SOMMAIRE Le calcul scientifique au CNES Le BigData au CNES, le cas Gaïa HPC et BigData

Plus en détail

Fouille de données massives avec Hadoop

Fouille de données massives avec Hadoop Fouille de données massives avec Hadoop Sebastiao Correia [email protected] Talend 2013 AAFD'14 29-30 avril 2014 1 Agenda Présentation de Talend Définition du Big Data Le framework Hadoop 3 thématiques

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar [email protected]

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar [email protected] Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

Ne cherchez plus, soyez informés! Robert van Kommer

Ne cherchez plus, soyez informés! Robert van Kommer Ne cherchez plus, soyez informés! Robert van Kommer Le sommaire La présentation du contexte applicatif Le mariage: Big Data et apprentissage automatique Dialogues - interactions - apprentissages 2 Le contexte

Plus en détail

Big Data. Les problématiques liées au stockage des données et aux capacités de calcul

Big Data. Les problématiques liées au stockage des données et aux capacités de calcul Big Data Les problématiques liées au stockage des données et aux capacités de calcul Les problématiques liées au Big Data La capacité de stockage - Traitement : Ponctuel ou permanent? - Cycle de vie des

Plus en détail

RSA ADVANCED SECURITY OPERATIONS CENTER SOLUTION

RSA ADVANCED SECURITY OPERATIONS CENTER SOLUTION RSA ADVANCED SECURITY OPERATIONS CENTER SOLUTION Augmenter la visibilité et l analyse des événements de sécurité dans le système d information Jérôme Asseray Senior PreSales Engineer 1 Agenda Sécurité,

Plus en détail

Big Data, un nouveau paradigme et de nouveaux challenges

Big Data, un nouveau paradigme et de nouveaux challenges Big Data, un nouveau paradigme et de nouveaux challenges Sebastiao Correia 21 Novembre 2014 Séminaire Thématique : Traitement et analyse statistique des données massives, Poitiers. 1 Présentation Sebastiao

Plus en détail

R+Hadoop = Rhadoop* Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata!

R+Hadoop = Rhadoop* Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata! R+Hadoop = Rhadoop* * Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata! 27 Janvier 2014 / Université Paul Sabatier / DTSI / David Tsang-Hin-Sun Big

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Tables Rondes Le «Big Data»

Tables Rondes Le «Big Data» Tables Rondes Le «Big Data» 2012-2013 1 Plan Introduc9on 1 - Présenta9on Ingensi 2 - Le Big Data c est quoi? 3 - L histoire 4 - Le monde du libre : Hadoop 5 - Le système HDFS 6 - Les algorithmes distribués

Plus en détail

Technologies du Web. Ludovic DENOYER - [email protected]. Février 2014 UPMC

Technologies du Web. Ludovic DENOYER - ludovic.denoyer@lip6.fr. Février 2014 UPMC Technologies du Web Ludovic DENOYER - [email protected] UPMC Février 2014 Ludovic DENOYER - [email protected] Technologies du Web Plan Retour sur les BDs Le service Search Un peu plus sur les

Plus en détail

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data Qui sommes-nous? Société de stratégie et de consulting IT spécialisée en ebusiness, Cloud Computing, Business

Plus en détail

LES TESTS CHEZ AXA FRANCE QUALIFICATION DES SOLUTIONS INFORMATIQUES (QSI) JFTL 14 avril 2015

LES TESTS CHEZ AXA FRANCE QUALIFICATION DES SOLUTIONS INFORMATIQUES (QSI) JFTL 14 avril 2015 LES TESTS CHEZ AXA FRANCE QUALIFICATION DES SOLUTIONS INFORMATIQUES (QSI) JFTL 14 avril 2015 Sommaire Contexte Raison d être et missions de la QSI Principes d organisation Sourcing & compétences Quelques

Plus en détail

Cloud Privé / Public / Hybrid. Romain QUINAT vente-privee.com

Cloud Privé / Public / Hybrid. Romain QUINAT vente-privee.com Cloud Privé / Public / Hybrid Romain QUINAT vente-privee.com Vente-privee.com Société Française implantée dans 8 pays : FR, DE, ES, IT, BE, AU, NL, UK (+US en joint-venture avec American Express) 1700

Plus en détail

M2 GL UE DOC «In memory analytics»

M2 GL UE DOC «In memory analytics» M2 GL UE DOC «In memory analytics» Alexandre Termier 2014/2015 Sources Travaux Amplab, U.C. Berkeley Slides Ion Stoica Présentations Databricks Slides Pat McDonough Articles de M. Zaharia et al. sur les

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON [email protected]

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON [email protected] Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

MapReduce. Nicolas Dugué [email protected]. M2 MIAGE Systèmes d information répartis

MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis MapReduce Nicolas Dugué [email protected] M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce

Plus en détail

Programmation parallèle et distribuée (Master 1 Info 2015-2016)

Programmation parallèle et distribuée (Master 1 Info 2015-2016) Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction

Plus en détail

Programme ASI Développeur

Programme ASI Développeur Programme ASI Développeur Titre de niveau II inscrit au RNCP Objectifs : Savoir utiliser un langage dynamique dans la création et la gestion d un site web. Apprendre à développer des programmes en objet.

Plus en détail

1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données

1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données 1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données Votre interlocuteur Didier Gaultier Directeur Data Science Business & Decision Professeur de Statistique à l

Plus en détail

Linux Expo 2010. Gestion des Identités et des Accès. Le 16 mars 2010. Arismore

Linux Expo 2010. Gestion des Identités et des Accès. Le 16 mars 2010. Arismore Linux Expo 2010 Le 16 mars 2010 Arismore 1 Agenda Arismore Vision fonctionnelle de la gestion des identités Positionnement de l open source 2 Spécialiste de la gestion des accès et des identités Société

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de

Plus en détail

Cassandra et Spark pour gérer la musique On-line

Cassandra et Spark pour gérer la musique On-line Cassandra et Spark pour gérer la musique On-line 16 Juin 2015 @ Paris Hammed RAMDANI Architecte SI 3.0 et BigData [email protected] +33 6 80 22 20 70 Appelez-moi Hammed ;-) (Sidi Mo)Hammed Ramdani @smramdani

Plus en détail

Libérez votre intuition

Libérez votre intuition Présentation de Qlik Sense Libérez votre intuition Qlik Sense est une application nouvelle génération de visualisation de données en libre-service qui permet à chacun de créer facilement des visualisations

Plus en détail

Stephan Hadinger, Sr. Mgr Solutions Architecture, AWS. Salon du Big Data 11 mars 2015

Stephan Hadinger, Sr. Mgr Solutions Architecture, AWS. Salon du Big Data 11 mars 2015 Stephan Hadinger, Sr. Mgr Solutions Architecture, AWS Salon du Big Data 11 mars 2015 Accélération de l innovation +500 +280 Amazon EC2 Container Service +159 AWS Storage Gateway Amazon Elastic Transcoder

Plus en détail

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué

Plus en détail

Big Data. SRS Day 2012. Ali FAWAZ Etienne CAPGRAS. Membres du groupe : Coaché par :

Big Data. SRS Day 2012. Ali FAWAZ Etienne CAPGRAS. Membres du groupe : Coaché par : Big Data SRS Day 2012 Membres du groupe : Mickaël CORINUS Thomas DEREY Jérémie MARGUERIE William TÉCHER Nicolas VIC Coaché par : Ali FAWAZ Etienne CAPGRAS 1 Sommaire 1 2 Présentation du Big Data État des

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

ELCA Forum 2014 BIG DATA

ELCA Forum 2014 BIG DATA ELCA Forum 2014 BIG DATA Jérôme Berthier, Head of Division Christian Nançoz, BI Consultant September 2014 SPEAKER Jérôme Berthier Head of Division Topics: Business Intelligence Data Warehouse Big Data

Plus en détail

Big Data. Concept et perspectives : la réalité derrière le "buzz"

Big Data. Concept et perspectives : la réalité derrière le buzz Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société

Plus en détail

MapReduce et Hadoop. Alexandre Denis [email protected]. Inria Bordeaux Sud-Ouest France ENSEIRB PG306

MapReduce et Hadoop. Alexandre Denis Alexandre.Denis@inria.fr. Inria Bordeaux Sud-Ouest France ENSEIRB PG306 MapReduce et Hadoop Alexandre Denis [email protected] Inria Bordeaux Sud-Ouest France ENSEIRB PG306 Fouille de données Recherche & indexation de gros volumes Appliquer une opération simple à beaucoup

Plus en détail

L ÉCHANGE DE DONNÉES TEMPS RÉEL

L ÉCHANGE DE DONNÉES TEMPS RÉEL Talented Together L ÉCHANGE DE DONNÉES TEMPS RÉEL Retours d expériences avec Talend Julien DULOUT Manager Sopra Consulting Expert des offres BI, MDM & BigData Ludovic MONNIER Architecte Sopra Expert EAI

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

Mars 2015. Editeur et Intégrateur d ERP QHSSE

Mars 2015. Editeur et Intégrateur d ERP QHSSE 1 Mars 2015 Editeur et Intégrateur d ERP QHSSE 2 Notre stratégie : construire des relations long terme Approche globale Un ERP QHSE transverse répondant aux besoins métier Des solutions pilotées par le

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014 Introduction aux algorithmes MapReduce Mathieu Dumoulin (GRAAL), 14 Février 2014 Plan Introduction de la problématique Tutoriel MapReduce Design d algorithmes MapReduce Tri, somme et calcul de moyenne

Plus en détail

DOSSIER DE PRESSE. Octobre 2011

DOSSIER DE PRESSE. Octobre 2011 Octobre 2011 Contacts presse CYMBIOZ NOMIOS Pauline Moreau Sébastien Kher, Directeur Général 31, rue des Petits-Champs 75001 Paris 13/15 rue de l Eglise 92100 Boulogne Billancourt [email protected]

Plus en détail

Sommaire. 1 Introduction 19. 2 Présentation du logiciel de commerce électronique 23

Sommaire. 1 Introduction 19. 2 Présentation du logiciel de commerce électronique 23 1 Introduction 19 1.1 À qui s adresse cet ouvrage?... 21 1.2 Comment est organisé cet ouvrage?... 22 1.3 À propos de l auteur... 22 1.4 Le site Web... 22 2 Présentation du logiciel de commerce électronique

Plus en détail

Tout savoir sur Hadoop : Vulgarisation de la technologie et les stratégies de certains acteurs

Tout savoir sur Hadoop : Vulgarisation de la technologie et les stratégies de certains acteurs Tout savoir sur Hadoop : Vulgarisation de la technologie et les stratégies de certains acteurs Hadoop suscite l'intérêt d'un nombre croissant d'entreprises. Dans ce guide, LeMagIT fait le tour des fonctionnalités

Plus en détail

Fiche Produit MediaSense Extensions

Fiche Produit MediaSense Extensions Fiche Produit MediaSense Extensions applications for Cisco Unified Communications Directory Solutions IPS Global Directory Web Directory IPS Popup Personal Directory ClickNDial Provisioning Corporate Speed

Plus en détail

La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit

La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit La Business Intelligence pour les Institutions Financières Jean-Michel JURBERT Resp Marketing Produit Agenda Enjeux des Projets Financiers Valeur de Business Objects Références Clients Slide 2 Des Projets

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer [email protected] Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

Change the game with smart innovation

Change the game with smart innovation Change the game with smart innovation Master Thesis 2013 2014 Faculty of Science engineering 12/08/2012 Master Thesis proposal for the academic year 2013. TABLE OF CONTENTS Section Un Introduction... 3

Plus en détail

La Latecion protection anti-intrusion Web Web Le concept «Zero effort Security» La protection des applications Extranet

La Latecion protection anti-intrusion Web Web Le concept «Zero effort Security» La protection des applications Extranet REALSENTRY TM Gestion, Performance et Sécurité des infrastructures Web La Latecion protection anti-intrusion Web Web Le concept «Zero effort Security» La protection des applications Extranet L authentification

Plus en détail

PCI DSS un retour d experience

PCI DSS un retour d experience PCI DSS un retour d experience Jean-Marc Darées, IT architect PSSC Customer Center, NTC France [email protected] EUROPE IOT Agenda Le standard PCI Un réveil soudain Retours d Expérience IBM PCI DSS Un

Plus en détail

Atelier BNP le 28 Mars 2013 Assurances, mutuelles : Les nouveaux défis de la communication multicanal

Atelier BNP le 28 Mars 2013 Assurances, mutuelles : Les nouveaux défis de la communication multicanal Atelier BNP le 28 Mars 2013 Assurances, mutuelles : Les nouveaux défis de la communication multicanal Solution HP Exstream Philippe Bessis Business Development Manager HP Exstream HP Exstream est une solution

Plus en détail

Document réalisé par Khadidjatou BAMBA

Document réalisé par Khadidjatou BAMBA Comprendre le BIG DATA Document réalisé par Khadidjatou BAMBA 1 Sommaire Avant propos. 3 Historique du Big Data.4 Introduction.....5 Chapitre I : Présentation du Big Data... 6 I. Généralités sur le Big

Plus en détail

Big Data : Risques et contre-mesures

Big Data : Risques et contre-mesures 18 mars 2014 Big Data : Risques et contre-mesures Les fondamentaux pour bien démarrer Gérôme BILLOIS [email protected] Twitter : @gbillois Chadi HANTOUCHE [email protected] Twitter : @chadihantouche

Plus en détail

DSI Le pragmatisme ne tue pas l Architecture Claire Mayaux Pascal Pozzobon 23 septembre 2010

DSI Le pragmatisme ne tue pas l Architecture Claire Mayaux Pascal Pozzobon 23 septembre 2010 DSI Le pragmatisme ne tue pas l Architecture Claire Mayaux Pascal Pozzobon 23 septembre 2010 On fait quoi pour vous aujourd hui? 2 La transformation du SI (PMT 2010-2012) Séquoia 2009 2010 2011 2012 Mobilité

Plus en détail

BI CONSULTING. Présentation de l offre. Mai 2013. La Synthèse et le Pilotage en réponse aux besoins des métiers

BI CONSULTING. Présentation de l offre. Mai 2013. La Synthèse et le Pilotage en réponse aux besoins des métiers Présentation de l offre BI CONSULTING La Synthèse et le Pilotage en réponse aux besoins des métiers Mai 2013 Valeur ajoutée 100% Banque Assurance 100% Systèmes de synthèse & de pilotage Des expertises

Plus en détail

DEMARREZ RAPIDEMENT VOTRE EVALUATION

DEMARREZ RAPIDEMENT VOTRE EVALUATION Pentaho Webinar 30 pour 30 DEMARREZ RAPIDEMENT VOTRE EVALUATION Resources & Conseils Sébastien Cognet Ingénieur avant-vente 1 Vous venez de télécharger une plateforme moderne d intégration et d analyses

Plus en détail

La formation de vos collaborateurs est la meilleure garantie sur la pérennité de votre Entreprise. Les former c est Stimuler leur productivité!

La formation de vos collaborateurs est la meilleure garantie sur la pérennité de votre Entreprise. Les former c est Stimuler leur productivité! La formation de vos collaborateurs est la meilleure garantie sur la pérennité de votre Entreprise. Les former c est Stimuler leur productivité! Trésorerie Conso & Reporting Pourquoi former vos collaborateurs?

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

Réf. Module Public ciblé Durée Contenu. Décideurs du secteur Commerce ou des Institutions financières concernées par le paiement

Réf. Module Public ciblé Durée Contenu. Décideurs du secteur Commerce ou des Institutions financières concernées par le paiement La sécurisation des transactions électroniques a toujours été au cœur des préoccupations des acteurs du paiement, qu'ils soient commerçants, institutions financières ou fournisseurs de services. L'industrie

Plus en détail

NEXTDB Implémentation d un SGBD Open Source

NEXTDB Implémentation d un SGBD Open Source DIT - INFRA Demande d information (RFI) NEXTDB Implémentation d un SGBD Open Source Réf. : INFRA_NEXTDB_RFI.docx Page 1/8 Demande d information Projet NEXTDB Implémentation d un SGBD Open Source SOMMAIRE

Plus en détail

La Sécurité des Données en Environnement DataCenter

La Sécurité des Données en Environnement DataCenter La Sécurité des Données en Environnement DataCenter Thien-Trung Nguyen [email protected] 1 Agenda Présentation Imperva Protection des applications Web Protection des données sensibles Modes de déploiement

Plus en détail