TOUT LE COURS EN FICHES

Dimension: px
Commencer à balayer dès la page:

Download "TOUT LE COURS EN FICHES"

Transcription

1 TOUT L COURS N FICHS IUT Licence Écoles d ingénieurs Sous la direction d Yves Granjon Professeur à l université de Lorraine, directeur du Collégium Lorraine INP Bruno stibals Professeur à l université Paul Sabatier (Toulouse III) Chef du département GII de l IUT Serge Weber Professeur à l université de Lorraine

2 Illustration de couverture : Circuit Board Raimundas Fotolia.com Dunod, rue Laromiguière, Paris ISBN

3 Table des matières Avant-propos Comment utiliser cet ouvrage? Remerciements Chapitre 1 Principes généraux de l électrocinétique 1 Fiche 1 Généralités et conventions Fiche Les différents types de générateurs 4 Fiche 3 Les dipôles passifs linéaires usuels 6 Fiche 4 Les régimes électriques dans les circuits 8 Fiche 5 Les lois de Kirchhoff en régime continu 10 Fiche 6 Le théorème de Millman 1 Fiche 7 Les ponts diviseurs 14 Fiche 8 Le principe de superposition 16 Fiche 9 Les théorèmes de Thévenin et Norton 18 Fiche 10 Les circuits linéaires en régime sinusoïdal 0 Fiche 11 Le modèle complexe en régime sinusoïdal Fiche 1 Le régime sinusoïdal Méthode 4 Fiche 13 La puissance électrique 6 Fiche 14 La puissance en régime sinusoïdal 8 Fiche 15 La modélisation des quadripôles 1 30 Fiche 16 La modélisation des quadripôles 3 Fiche 17 Les schémas équivalents des quadripôles 34 Focus AC/DC 36 QCM 37 xercices 39 Chapitre Signaux et systèmes 43 VII VIII X Fiche 18 La notion de spectre 44 Fiche 19 Le spectre des signaux périodiques 46 Fiche 0 Le spectre des signaux non périodiques 48 Fiche 1 La transformation de Laplace 1 50 Fiche La transformation de Laplace 5 Fiche 3 La fonction de transfert d un système 54 Fiche 4 Les méthodes de résolution des problèmes 56 Focus Signaux analogiques et signaux numériques 58 QCM 59 xercices 61 Chapitre 3 Les diodes 63 Fiche 5 La conduction électrique intrinsèque 64 Fiche 6 La diode à jonction 66 Fiche 7 Le principe de fonctionnement de la diode 68 Fiche 8 Les caractéristiques électriques de la diode 70 Fiche 9 La polarisation de la diode 7 Fiche 30 La puissance dissipée dans une diode 74 Fiche 31 Les applications des diodes 76 III

4 Fiche 3 Le redressement double alternance 78 Fiche 33 Les régulateurs de tension 80 Focus Les ancêtres des semi-conducteurs 8 QCM 83 xercices 85 Chapitre 4 Les transistors bipolaires 87 Fiche 34 Le transistor bipolaire 88 Fiche 35 La polarisation d un transistor 90 Fiche 36 L approche physique de la polarisation 9 Fiche 37 Le fonctionnement en commutation 94 Fiche 38 Les montages à plusieurs transistors 96 Focus Toute une gamme de transistors 98 QCM 99 xercices 101 Chapitre 5 Les transistors bipolaires en régime dynamique 103 Fiche 39 Les paramètres hybrides du transistor NPN 104 Fiche 40 Le schéma équivalent du transistor 106 Fiche 41 Les amplificateurs 108 Fiche 4 L amplificateur à émetteur commun 110 Fiche 43 L amplificateur à collecteur commun 11 Fiche 44 L amplificateur à base commune 114 Fiche 45 Le montage push-pull 116 Fiche 46 Le montage push-pull à correction de distorsion 118 Fiche 47 L amplificateur différentiel simple 10 Fiche 48 La réjection du mode commun 1 Fiche 49 Le montage Darlington en régime variable 14 Focus Les différentes classes d'amplificateurs 16 QCM 17 xercices 19 Chapitre 6 Les amplificateurs opérationnels en régime linéaire 131 Fiche 50 Les caractéristiques de l amplificateur opérationnel 13 Fiche 51 Le fonctionnement linéaire de l amplificateur opérationnel 134 Fiche 5 Les additionneurs et les soustracteurs 136 Fiche 53 Les montages évolués 138 Fiche 54 De la théorie à la pratique 140 Fiche 55 Les montages dérivateurs et intégrateurs 14 Fiche 56 L oscillateur à pont de Wien 144 Focus Quand l électronique résout les problèmes de physique 146 QCM 147 xercices 149 Chapitre 7 Les filtres analogiques linéaires 153 Fiche 57 Les diagrammes de Bode 154 Fiche 58 Les diagrammes de Bode asymptotiques 156 Fiche 59 Les différents types de filtres 158 Fiche 60 Le filtre passif passe-bas du premier ordre 160 Fiche 61 Le filtre actif passe-bande 16 IV

5 Focus Musique! 164 QCM 165 xercices 167 Chapitre 8 Les amplificateurs opérationnels en régime non linéaire 171 Fiche 6 Le comparateur 17 Fiche 63 Le basculement d un comparateur 174 Fiche 64 Le trigger de Schmitt inverseur 176 Fiche 65 Le trigger de Schmitt non inverseur 178 Fiche 66 Les montages astables et monostables 180 Focus Le circuit intégré QCM 183 xercices 185 Chapitre 9 Les transistors à effet de champ 189 Fiche 67 Les transistors à effet de champ à jonction 190 Fiche 68 La polarisation des transistors JFT 19 Fiche 69 Le schéma équivalent en régime linéaire 194 Fiche 70 Les amplificateurs à JFT 196 Fiche 71 Les transistors JFT en commutation 198 Focus Le bruit de fond 00 QCM 01 xercices 03 Chapitre 10 Les circuits logiques combinatoires 07 Fiche 7 Les fonctions logiques 08 Fiche 73 Les nombres binaires entiers 10 Fiche 74 L algèbre de Boole 1 Fiche 75 Les circuits logiques combinatoires 14 Fiche 76 Méthode de conception d un circuit combinatoire 16 Fiche 77 Simplification des fonctions logiques 18 Fiche 78 Multiplexeur, démultiplexeur 0 Fiche 79 ncodeurs et décodeurs Fiche 80 Le comparateur 4 Fiche 81 L additionneur 6 Fiche 8 Le soustracteur 8 Fiche 83 Les caractéristiques technologiques des circuits combinatoires 30 Focus Du cristal de silicium à l ordinateur 3 QCM 33 xercices 35 Chapitre 11 Les circuits logiques séquentiels 39 Fiche 84 La logique séquentielle 40 Fiche 85 La fonction séquentielle synchrone 4 Fiche 86 Les registres 44 Fiche 87 Les compteurs 46 Fiche 88 Les machines à nombre fini d états 48 Fiche 89 L analyse de machines d état 50 Fiche 90 La synthèse des machines d état 5 Fiche 91 Le graphe d état pour les systèmes non conditionnés 54 Fiche 9 Le graphe d état pour les systèmes à évolution conditionnelle 56 V

6 Fiche 93 Les caractéristiques temporelles des systèmes séquentiels 58 Focus Fabrication d un circuit intégré 60 QCM 61 xercices 63 Chapitre 1 Les technologies des circuits numériques 67 Fiche 94 Circuits TTL et CMOS 68 Fiche 95 La classification des circuits numériques 70 Fiche 96 Les circuits PLD 7 Fiche 97 Les circuits FPGA 74 Fiche 98 Mémoires, notions générales 76 Fiche 99 Mémoires RAM et PROM 78 Fiche 100 Les circuits combinatoires à base de RAM 80 Fiche 101 Les machines d états à base de mémoire et registre 8 Focus Les nouvelles technologies mémoire 84 QCM 85 xercices 87 Chapitre 13 Éléments d instrumentation et de mesure 89 Fiche 10 La mesure du courant 90 Fiche 103 La mesure d une tension 9 Fiche 104 L oscilloscope 94 Fiche 105 Les sondes de courant et différentielle 96 Fiche 106 La chaîne d instrumentation 98 Fiche 107 Les capteurs : principes généraux 300 Fiche 108 Les capteurs actifs 30 Fiche 109 Les capteurs passifs 304 Fiche 110 Les convertisseurs analogique-numérique 306 Fiche 111 Les convertisseurs numérique-analogique 308 Focus Les capteurs solaires photovoltaïques 310 QCM 311 xercices 313 Chapitre 14 Éléments d électronique de puissance 317 Fiche 11 Les composants en régime de commutation 318 Fiche 113 Introduction à l électronique de puissance 30 Fiche 114 Les hacheurs série et parallèle 3 Fiche 115 Le hacheur série en conduction continue 34 Fiche 116 Le hacheur série en conduction discontinue 36 Fiche 117 Le hacheur parallèle en conduction continue 38 Fiche 118 Le hacheur parallèle en conduction discontinue 330 Fiche 119 Les hacheurs à accumulation 33 Fiche 10 Les hacheurs à accumulation inductive en conduction continue 334 Fiche 11 Les onduleurs et la structure de pont en H 336 Focus Les convertisseurs et le photovoltaïque 338 QCM 339 xercices 341 Corrigés des exercices 343 Annexes 49 Index 435 VI

7 Avant-propos L électronique est la discipline qui s intéresse aux dispositifs électriques construits autour de la technologie des semi-conducteurs. La plupart du temps, les courants et les tensions mis en œuvre restent de faible amplitude, excepté en électronique de puissance. Le traitement du signal, les automatismes, l informatique et d une manière plus générale, une grande partie des appareils que nous utilisons quotidiennement possèdent des systèmes électroniques. Que ce soit pour la commande des processus, le traitement de l information, le contrôle ou la mesure des phénomènes, l électronique apporte des solutions simples, fiables et souples à un grand nombre de problèmes techniques. Cet ouvrage rassemble toutes les notions fondamentales de l électronique : de la diode à jonction jusqu aux systèmes logiques, en passant par les montages à transistors et à amplificateurs opérationnels. Il aborde également les bases de l électronique de puissance qui, traditionnellement, sont plutôt étudiées en électrotechnique mais dont nous avons estimé qu elles avaient leur place au sein d un ouvrage consacré à l électronique. Il est structuré en cent vingt et une fiches et en quatorze chapitres développant chacun un thème particulier. Chaque fiche aborde un composant, un montage ou un principe. À la fin de chaque chapitre, le lecteur pourra pousser sa réflexion un peu plus loin à l aide des focus proposés qui mettent en exergue des thématiques particulières. Après un QCM qui lui permettra de tester ses connaissances et de valider ses acquis, il pourra ensuite s entraîner avec des exercices et des problèmes entièrement corrigés. Les solutions sont présentées dans leurs moindres détails en insistant systématiquement sur les méthodes à assimiler et sur le savoir-faire à acquérir absolument pour être capable de résoudre n importe quel problème d électronique. Chaque chapitre propose des exercices de difficultés variées. Il est conseillé de les aborder dans l ordre, sans chercher à brûler les étapes en négligeant tel ou tel qui paraît trop facile et sans succomber à la tentation de lire trop rapidement la solution. Certains de ces exercices sont de grands classiques ; d autres sont plus originaux. Ils ont tous vocation à guider l étudiant vers la maîtrise de l électronique et des fonctions qu elle permet de réaliser, et de l aider à acquérir suffisamment d aisance pour aborder avec succès des problèmes de plus en plus sophistiqués. L électronique n est pas une discipline extrêmement compliquée pour qui l aborde avec rigueur et méthode. lle nécessite toutefois que le lecteur soit familiarisé avec les lois fondamentales de l électrocinétique, que ce soit en régime continu, sinusoïdal ou transitoire. Ces notions sont rappelées dans le premier chapitre qui rassemble les principaux résultats et théorèmes qu il est indispensable de connaître. Les prérequis de mathématiques de l électronique ne sont pas nombreux : ils concernent l analyse des fonctions réelles, le calcul différentiel et intégral et les nombres complexes. Le formulaire situé en annexe à la fin de l ouvrage regroupe toutes les formules de mathématiques utiles à l électronicien. Cet ouvrage a été conçu avec le souci constant de rendre l électronique accessible au plus grand nombre. Nous souhaitons que chaque lecteur puisse y trouver les clés de sa réussite. VII

8 Comment utiliser Chapitre 1 Principes généraux de l électrocinétique Objectifs Avec les spécificités qui lui sont propres, l électronique reste un domaine qui s intègre dans la discipline de l électricité générale. À cet égard, les lois, les principes fondamentaux, les théorèmes et les méthodes développées pour résoudre les problèmes sont les mêmes. Ce chapitre rassemble les outils génériques de l électrocinétique qui sont utiles à l étude des circuits électroniques. Le lecteur y retrouvera tous les théorèmes fondamentaux ainsi que les méthodes qui sont propres à chaque type de régime de fonctionnement des circuits. 14 chapitres auquels sont associés des bonus web à retrouver sur dunod.com 10 fiches de cours Les notions essentielles avec des renvois pour naviguer d une fiche à l autre De très nombreux schémas fiche 1 Le régime sinusoïdal Méthode 1. La transposition au modèle complexe expressions de grandeurs électriques, courants ou tensions, dans un montage alimenté par une source sinusoïdale, par exemple e() t eff cos = w t. xemple et () C A R ut () 1.1.a, on cherche à déterminer l expression de u(t). = eff 1 jc R A U t : Ê jrcw ˆ p j U = = jrcw) = - arg arg arg( arg( eff jrcw 1) + = - arctan( RCw). Á Ë jrcw + 1 () t cos D où : u U = + ( wt j ). eff ( ) RCw p Soit : ut () = eff coswt + - arctan( RCw ). RC w + 1 Important De même qu il ne faut jamais oublier que le module d un quotient est égal au quotient des modules, il faut également se souvenir que l argument d un quotient est égal à la différence entre l argument du numérateur et celui du dénominateur. Le lecteur devra également se souvenir des propriétés suivantes : b arg( a + jb) = arctan pour a > 0 a b arg( a + jb) = arctan ± p our a < 0 a Ce sont ces propriétés qui sont couramment utilisées pour calculer les modules et arguments des nombres complexes en électrocinétique. xercices QCM Fiche 1 a b Des renvois entre fiches Figure b) et on y applique le principe du pont diviseur de tension : R jrcw U = = eff. 1 R + jrcw + 1 jcw. Le retour au modèle temporel Nous savons déjà que la tension u(t) est sinusoïdale de même pulsation que e(t) puisque - Fiche 15 sage par rapport à e : u() t = Ueff cos( wt+ j ). jrc On a : U = Ueff ej j w = eff. jrcw + 1 RCweff Soit : Ueff = U = 1 + RC w. 3. Le principe général Dans la représentation complexe, en prenant soin de considérer l impédance complexe de chaque dipôle, les lois et théorèmes fondamentaux de l électricité qui gouvernent les circuits en régime continu restent valables en régime sinusoïdal : lois de Kirchhoff, théorème de Millman, principe de superposition, théorèmes de Thévenin et de Norton. Les règles qui régissent les associations de dipôles sont également transposables au modèle complexe. Important Dans le schéma électrique transposé à sa représentation complexe, toutes les lois de l électricité valables pour le régime continu, s appliquent aux grandeurs et variables complexes. Si la méthode présentée ici est simple dans son principe, il n en demeure pas moins qu elle exige une bonne maîtrise de la manipulation des nombres complexes. On trouutiles dans ce domaine, entre autres. Il est recommandé de s exercer autant que de besoin sinusoïdal. Chapitre 1 Des conseils méthodologiques 4 5 VIII

9 cet ouvrage? Des exercices en fin de chapitre pour réviser (corrigés en fin d ouvrage) Des QCM en fin de chapitre pour s auto-évaluer QCM Fiche XRCICS 1.1 la résistance équivalente du dipôle AB ainsi formé par cette association. A R = Ω R = Ω 3 60 R = Ω 50 R = Ω 4 5 QCM Pour chaque question, cocher la ou les réponse(s) exacte(s) (les réponses sont au verso). xercices B 1. U inconnue. A I = 0,3 A R= 8 Ω U =? = 5 V 1.3 U inconnue. A I = 0,1 A R= 30 Ω U =? = 15 V B B 1.1 Dans un circuit électrique simple alimenté par un générateur de tension continue parfait : a. les électrons circulent toujours vers la borne positive du générateur b. le courant électrique circule vers la borne négative du générateur c. le courant est imposé au circuit par le générateur 1. Lorsque deux résistances sont placées en parallèle : a. leurs résistances s ajoutent b. leurs conductances s ajoutent c. leurs résistances se multiplient 1.3 L unité d inductance propre d une bobine est : a. le farad b. le siemens c. le henry 1.4 Le théorème de Millman est une conséquence directe : xercices QCM Fiche 1.4 condition sur les quatre résistances R 1, R, R 3, R 4, de manière à ce que le courant I dans R 5 soit nul. n considérant que I est nul, déterminer l expression de V A. Puis déterminer l expression de V B. n déduire la condition recherchée. R 1 R 3 R I 5 A B Chapitre 1 a. de la loi des mailles b. de la loi des nœuds c. du théorème de Thévenin Réponses 1.5 L impédance d une 1.1 bobine a. et : b. Le courant est imposé à la fois par le générateur mais aussi et surtout par le circuit a. est proportionnelle qui à lui son est inductance connecté. propre b. dépend de la pulsation du signal qui la traverse conductance est égale à l inverse de la résistance et dans le cas d une association en parallèle, ce sont bien les inverses des résistances qui c. dépend de l amplitude du courant qui la traverse s additionnent. 1. b. La réponse a concerne l association en série de deux résistances. Rappelons que la Des focus sur une page à la fin de chaque chapitre R R Laquelle ou lesquelles de ces trois équations est (sont) par nature fausse(s) : 1.3 c. Le farad est l unité de capacité. Le siemens est l unité de conductance. a. U = U e j jrc w b. u()= t eff jrc w + 1 = w montre effectivement que ce sont les deux premières propositions t + qui ) sont correctes. c. U e = U cos( associés mais il ne peut y avoir égalité entre eux. La seule écriture correcte est celle qui a. est celle qui est dissipée dans les éléments résistifs du dipôle correspond à la proposition a dans laquelle la forme complexe d une tension est bien égale b. est la puissance à moyenne un nombre consommée complexe. par le dipôle c. est la puissance moyenne fournie par le générateur eff eff j 1.4 b. Voir fiche a. et b. L expression Z L jj eff w j b. et c. Ne pas mélanger modèles complexes et représentations temporelles. Les deux sont Un dipôle est alimenté par une source de tension sinusoïdale. La puissance active : 1.7 a., b. et c. Les trois propositions sont exactes. Voir fiche Lorsque deux quadripôles 1.8 a. Voir sont fiche associés 17. en cascade : a. leurs matrices impédance s ajoutent b. leurs matrices de transfert se multiplient c. leurs matrices admittances se multiplient 37 Chapitre 1 FO CUS Le bruit de fond Les dispositifs électroniques délivrent, captent, mesurent, transforment et traitent des signaux élecêtre sensibles par exemple aux signaux électromagnétiques ambiants, les capter et les mélanger aux signaux utiles. Ils peuvent aussi produire eux-mêmes de tels signaux parasites comme par exemple le bruit de fond. Il s agit là d un phénomène dû en particulier au mouvement erratique des électrons dans les conducteurs qui génère des forces électromotrices aléatoires qui se superposent aux signaux traités. Si on reprend l exemple d un ampli audio, nous avons tous constaté qu en l absence de signal et en 00 t La détection synchrone - ce qui concerne sa composition spectrale. Ainsi, il est fréquent que le bruit soit plus important dans les basses fréquences. Dans ces conditions, une astuce consiste à décaler le spectre des signaux utiles vers spectrale initiale. Cette technique s appelle la détection synchrone. S il est impossible de décrire temporellement le bruit a priori, il est néanmoins possible, à partir de ses Le rapport signal sur bruit le rapport signal sur bruit, qu on préfère en général exprimer en décibels. Toute la problématique, en - pact sur les signaux utiles. On peut aussi utiliser des composants électroniques haut de gamme qui produisent peu de bruit ou déployer des dispositifs, parfois assez complexes, pour réduire le bruit. Par exemple, le système Dolby, 38 Les réponses commentées au verso IX

10 Remerciements Les auteurs tiennent à remercier très sincèrement les personnes suivantes pour leurs relectures et conseils tout au long de la rédaction de cet ouvrage : Sylvie Roux, professeur agrégé de physique appliquée, IUT A Paul Sabatier, département GII, Toulouse Frédéric Morancho, professeur des universités, université Paul Sabatier, Toulouse Farid Meibody-Tabar, professeur des universités, École nationale supérieure d électricité et de mécanique de Nancy Guy Schneider, professeur agrégé de physique appliquée, CPP - La Prépa des INP, Nancy Yves Berviller, maître de conférences, université de Lorraine, faculté des sciences et technologies Slavisa Jovanovic, maître de conférences, université de Lorraine, faculté des sciences et technologies X

11 Chapitre 1 Principes généraux de l électrocinétique Objectifs Avec les spécificités qui lui sont propres, l électronique reste un domaine qui s intègre dans la discipline de l électricité générale. À cet égard, les lois, les principes fondamentaux, les théorèmes et les méthodes développées pour résoudre les problèmes sont les mêmes. Ce chapitre rassemble les outils génériques de l électrocinétique qui sont utiles à l étude des circuits électroniques. Le lecteur y retrouvera tous les théorèmes fondamentaux ainsi que les méthodes qui sont propres à chaque type de régime de fonctionnement des circuits.

12 fiche 1 Généralités et conventions 1. Définitions et principes fondamentaux D une manière générale, tout circuit électrique peut se représenter sous la forme d un générateur d énergie alimentant un récepteur chargé de transformer l énergie électrique reçue en une autre forme exploitable, les deux dispositifs étant reliés par des conducteurs. Tout circuit électrique est le siège d un transfert de charges entre ces deux éléments (figure 1.1). Il est couramment admis de représenter ce transfert par un flux d électrons que l on modélise par un courant électrique traversant les conducteurs. flux d électrons courant i + générateur récepteur Figure 1.1 Ce courant électrique (exprimé en ampères) représente la quantité de charges q (en coulombs) traversant une section donnée du conducteur par unité de temps. Les électrons possédant une charge négative, la logique veut que le courant i soit représenté en sens contraire du flux d électrons. Dans un circuit composé d une seule boucle, le même courant circule à chaque instant dans tout le circuit. Générateurs et récepteurs simples possèdent en général deux bornes. Ce sont des dipôles électriques. Les dipôles générateurs sont dits actifs, ceux qui ne font que consommer de l énergie sont des dipôles passifs.. Le générateur de tension parfait Le dipôle actif le plus simple est le générateur de tension continue parfait qui délivre une tension constante (en volts) et l impose au dipôle récepteur qui présente donc à ses bornes la même tension. Le courant qui apparaît alors dans le circuit dépend de et de la nature du récepteur. Cette tension est la différence de potentiel VA - VB. La flèche symbolisant cette différence de potentiel est dirigée vers le potentiel le plus élevé. Comme les électrons sont attirés par le point A, correspondant au potentiel le plus élevé, le courant sera naturellement orienté, au sortir du générateur, par une flèche dirigée dans l autre sens. Pour un circuit alimenté par un générateur de tension, on considère en général que sa borne B constitue la référence de tension pour l ensemble du circuit et se trouve donc au potentiel 0 V (on dit aussi à la masse). Sa borne A se trouve donc au potentiel VA =.

13 On assimile donc toute différence de potentiel entre un point X quelconque et cette référence, au potentiel du point X. A + B générateur de tension parfait courant V V = A B Figure 1. récepteur 3. Conventions Dans un circuit simple composé d un générateur de tension et d un dipôle récepteur, compte tenu du fait que la même tension règne aux bornes des deux éléments, et que le même courant circule dans tout le circuit, on note que du côté du générateur, courant et tension sont représentés par des flèches dirigées dans le même sens, alors que du côté du récepteur, elles sont dirigées en sens contraires (figure 1.3). Par convention, nous dirigerons systématiquement les flèches des courants et des tensions dans le même sens pour le générateur (convention générateur), et en sens contraires pour tout récepteur (convention récepteur). n règle générale, les circuits simples ne comportent qu un seul générateur. Toutefois, certains peuvent en contenir plusieurs. Dans ce cas, si un générateur est considéré comme appartenant à la partie réceptrice du circuit, c est la convention récepteur que nous utiliserons. xercices QCM Fiche 1 convention générateur A i i convention récepteur B Figure 1.3 Le respect des conventions de signes est absolument essentiel dans la résolution d un problème d électricité en général et d électronique en particulier. La plupart des erreurs proviennent du non respect de ces règles élémentaires. On retiendra notamment qu en général, on n utilise la convention générateur que pour le générateur principal du circuit. Chapitre 1 3

14 fiche Les différents types de générateurs Fiche 1 1. Le générateur de courant continu parfait Outre le générateur de tension parfait, un circuit peut être alimenté par un générateur de courant parfait (figure.1). Ce dernier impose un courant I au dipôle récepteur. La tension qui apparaît alors aux bornes du dipôle récepteur dépend de I et de la nature du récepteur. Les générateurs de courant sont en général des dispositifs complexes utilisés dans des cas bien particuliers. A courant I I tension V B générateur de courant parfait récepteur Figure.1 Important Les générateurs sont dits parfaits au sens où la tension délivrée par un générateur de tension parfait ne dépend pas du reste du circuit. De même, un générateur de courant parfait délivre un courant qui ne dépend pas du reste du circuit.. Le générateur de tension réel Dans la réalité, un générateur de tension n est jamais parfait. La tension qu il délivre diminue plus ou moins selon l intensité du courant qu on lui soutire. Ce phénomène est dû à la superposition de diverses chutes de potentiel internes qui ne peuvent plus être négligées lorsque le générateur est parcouru par un courant intense. On considère alors qu un modèle plus proche de la réalité consiste à associer une résistance en série avec un générateur de tension parfait, ou une résistance en parallèle avec un générateur de courant parfait. Ces résistances sont appelées résistances internes des générateurs (figure.). Si I est le courant qui circule dans le circuit, on a : VA - VB = - ri. 4

15 A courant I générateur de tension réel r B Figure. V A V B récepteur 3. Le générateur de courant réel De la même manière, un générateur de courant réel sera modélisé par la mise en parallèle d un générateur de courant parfait et d une résistance dite interne (figure.3). Dans ce cas, le courant qui alimente le récepteur est plus faible que le courant délivré par le générateur parfait et dépend de la tension qui s installe aux bornes du récepteur. xercices QCM Fiche A courant I I r B générateur de courant réel récepteur Figure.3 4. Les autres générateurs Outre les générateurs continus qui délivrent des tensions ou des courants constants, il est très fréquent d utiliser des générateurs de signaux variables dans le temps et de formes variées (signaux sinusoïdaux, par exemple, ou autres signaux périodiques, etc.). D une manière générale, on réserve les lettres majuscules pour nommer les grandeurs continues (VA,, I0) et les lettres minuscules pour les grandeurs variables (v, e1, i n ). Dans tous les cas, lorsqu il s agit du générateur principal du circuit, on utilisera la convention générateur pour repérer le sens de la tension à ses bornes et celui du courant qu il délivre (flèches dirigées dans le même sens). Chapitre 1 5

16 fiche 3 Les dipôles passifs linéaires usuels 1. Les lois de fonctionnement élémentaires Trois dipôles passifs sont couramment utilisés dans les circuits électroniques. Ils ont la particularité de posséder un fonctionnement qui s exprime sous la forme d une équation différentielle simple, linéaire, à coefficients constants. L équation de fonctionnement d un dipôle lie la tension à ses bornes et le courant qui le traverse. n supposant que, dans le cas le plus général, ces deux grandeurs sont variables dans le temps, les lois de fonctionnement des trois dipôles passifs usuels sont présentées sur la figure 3.1. résistance bobine condensateur it () it () it () ut () R ut () ut () ut () = Rit () R : résistance en ohms (Ω) di ut () = L d t L : inductance propre en henrys (H) Figure u(t)= i i(t)dt C C : capacité en farads (F). Associations de dipôles Deux dipôles quelconques sont dits associés en série si une des bornes de l un est reliée à une des bornes de l autre, l ensemble formant un nouveau dipôle. Ils sont dits associés en parallèle si les paires de bornes sont connectées deux à deux (figure 3.). Dans le cas de l association en série, les deux dipôles sont parcourus par le même courant. La tension totale aux bornes de l ensemble est égale à la somme des deux différences de potentiel aux bornes de chacun des deux dipôles. Dans le cas de l association en parallèle, la même différence de potentiel règne aux bornes de chacun des deux dipôles. n tenant compte de ces constats, on peut en déduire les règles d association des différents dipôles. 6

17 1 association en série 1+ 1 Figure 3. I1 1= association en parallèle I I= I1+ I n associant des résistances, on forme un dipôle qui se comporte comme une résistance, dont la valeur est appelée résistance équivalente, que l on note en général R eq. Lorsque l on associe des condensateurs, on forme un condensateur équivalent de capacité C eq. Lorsque deux résistances R 1 et R sont associées en série, on a Req = R1 + R RR Lorsqu elles sont associées en parallèle, on a = +, soit Req Req R1 R = 1. R + R Lorsque deux condensateurs C 1 et C sont associées en série, on a = +. Ceq C1 C Lorsqu ils sont associés en parallèle, on a Ceq = C1 + C. xercices QCM Fiche 3 Attention On remarquera que les règles d associations des résistances et celles d associations des condensateurs se trouvent inversées. Les règles qui régissent l association de bobines sont les mêmes que celles qui concernent les résistances : les inductances s additionnent lorsque les bobines sont placées en série. Leurs inverses s ajoutent lorsqu elles sont placées en parallèle. L ensemble des résultats présentés ici se généralisent sans problème à l association série ou parallèle de n éléments différents. Il est possible de simplifier les circuits électriques en calculant les valeurs équivalentes d une combinaison plus ou moins complexe de dipôles. On procède alors de proche en proche en recherchant les associations les plus simples et en réduisant ainsi pas à pas le circuit initial. Chapitre 1 7

18 fiche 4 Les régimes électriques dans les circuits Selon la forme de la tension (ou du courant) délivrée par le générateur qui alimente un circuit, on dit que ce circuit fonctionne selon un certain régime. 1. Le régime continu Lorsqu un circuit est alimenté par un générateur qui délivre une tension constante, on dit qu il fonctionne en régime continu. Les régimes continus font partie des régimes dits permanents ou établis. Dans un circuit fonctionnant en régime continu, toutes les tensions et tous les courants dans le circuit sont en général continus. Rappel Les grandeurs continues sont notées avec des lettres majuscules ( pour une tension, par exemple). n régime continu, un élément inductif (une bobine) n a aucun effet. Son équation de fonctionnement montre que, parcourue par un courant constant quelconque, une bobine présente toujours une différence de potentiel nulle à ses bornes : ut () = L di fi ut () = 0sii= C te. dt Un condensateur, en régime continu, n est parcouru par aucun courant : ut () = 1 it () dt it () ut () C Ú fi = 0si = C te. Remarque Si aucun courant ne peut traverser un condensateur en régime continu, tout condensateur qui se voit imposer une tension U présente bel et bien une charge emmagasinée Q telle que Q = CU. Un condensateur parfait possède en outre la propriété de conserver cette charge emmagasinée, une fois l alimentation U coupée. Ceci, bien évidemment, à condition qu il soit isolé, c est-à-dire que ses deux bornes ne soient reliées à aucun autre circuit.. Le régime sinusoïdal Lorsqu un circuit est alimenté par un générateur qui délivre une tension sinusoïdale et () = 0 cosw t, le régime sera dit sinusoïdal ou harmonique. Les régimes sinusoïdaux font également partie des régimes dits permanents ou établis. Dans un circuit fonctionnant en régime sinusoïdal, tensions et courants sont tous sinusoïdaux, de même pulsation w que la source de tension, mais présentant a priori des déphasages. 8

19 3. Le régime transitoire Les régimes transitoires correspondent en général au passage d un régime permanent à un autre régime permanent. Ces changements de régime sont la plupart du temps dus à l ouverture ou à la fermeture d un interrupteur dans le circuit ou encore à la présence de composants agissant comme des interrupteurs. K A B e (t ) A B e (t ) a b c Figure 4.1 Dans le circuit représenté sur la figure 4.1.a, le dipôle AB est alimenté par un générateur parfait de tension constante par l intermédiaire d un interrupteur K. Lorsqu on ferme l interrupteur, tout se passe comme si on passait brusquement d un régime permanent et ()= 0 à un autre régime permanent e()= t. Le dipôle est en quelque sorte alimenté par la tension e() t (figure 4.1.b). Il suffit de considérer que l instant t = 0 correspond à l instant de fermeture de l interrupteur. Comme un interrupteur n est pas un élément linéaire, on préfère utiliser le modèle représenté sur la figure 4.1.b, dans lequel le circuit est linéaire (schéma sans interrupteur), mais dans lequel la forme de la tension d alimentation n est pas constante mais se présente sous la forme d un échelon (figure 4.1.c). 0 t xercices QCM Fiche 4 Important Les régimes transitoires peuvent intervenir aussi bien à l ouverture qu à la fermeture d interrupteurs, ou encore au basculement de commutateurs. D une manière générale, le régime transitoire conduit toujours le système vers un régime permanent. Les problèmes à résoudre sont en général toujours les mêmes : il s agit de déterminer tensions et courants dans le circuit. Comme celui-ci n est pas alimenté par une tension constante ou sinusoïdale, tous les courants et toutes les tensions dans le circuit seront a priori variables. La résolution des problèmes d électricité en régime transitoire se traduit en général par des équations différentielles. Les plus simples, comme par exemple les équations différentielles linéaires à coefficients constants d ordre peu élevé se résolvent directement avec une relative facilité. Pour les autres, des outils plus performants seront nécessaires comme la transformée de Laplace, voire des méthodes numériques. Chapitre 1 9

20 fiche 5 Les lois de Kirchhoff en régime continu 1. Définitions Réseau électrique : toute association simple ou complexe de dipôles interconnectés, alimentée par un générateur. Branche : partie dipolaire d un réseau parcourue par un même courant. Nœud d un réseau : tout point du réseau commun à plus de deux branches. Maille d un réseau : tout chemin constituant une boucle et formé de plusieurs branches. Sur le circuit de la figure 5.1, l association de R 1, R, R 3, R 4 et R 5 formant le dipôle AC constitue un réseau électrique alimenté par le générateur de tension. A, B, C et D sont les nœuds de ce réseau. Le schéma montre trois mailles. Il en existe d autres, par exemple, en partant du point A, on peut définir une maille qui comprend R, R 3 et R 5, qui passe par D, puis C et qui rejoint A en incluant R 1. R R3 I A I 0 B I 3 I 1 3 R1 1 R4 4 R5 5 maille 1 I 4 maille maille 3 C D Figure 5.1. La loi des nœuds La somme des courants se dirigeant vers un nœud est égale à la somme des courants qui sortent de ce nœud. Ou encore : la somme algébrique des courants dirigés vers un nœud d un circuit est nulle (en comptant positivement les courants dirigés vers le nœud et en comptant négativement ceux qui en sortent). Cette loi exprime le fait qu il ne peut pas y avoir accumulation de charges en un point quelconque d un conducteur du réseau. Dans l exemple de la figure 5.1, on pourra écrire entre autres équations : I0 = I1 + I et I = I3 + I4. 10

21 3. La loi des mailles La somme algébrique des différences de potentiel le long d une maille, obtenue en parcourant la maille dans un sens donné, est nulle. Les différences de potentiel orientées dans le même sens que le sens de parcours de la maille sont comptées positivement. Les différences de potentiel orientées dans le sens opposé au sens de parcours de la maille sont comptées négativement. Ainsi, dans l exemple de la figure 5.1 : Maille 1 : - 1 = 0 Maille : - - = 0 Note Maille : = 0 Les lois de Kirchhoff sont présentées ici en régime continu (lettres majuscules pour les tensions et les courants). n réalité, elles restent valables quel que soit le régime. xercices QCM Fiche 5 4. La loi des nœuds généralisée Dans un dispositif électrique quelconque, la somme algébrique des courants entrant (ou sortant négativement) dans une surface fermée est nulle : Â I i = 0 (figure 5.). n i= 1 I 1 I circuit I n I 3 Figure 5. D un point de vue pratique, cela signifie que dans un circuit complexe, on peut définir arbitrairement un contour fermé et appliquer la loi des nœuds aux bornes de ce contour. Remarque Il est assez rare d utiliser les lois de Kirchhoff pour résoudre entièrement un problème d électricité. n effet, elles génèrent beaucoup d équations et beaucoup d inconnues et on leur préfère des théorèmes plus puissants. Chapitre 1 11

22 fiche 6 Le théorème de Millman Le théorème de Millman permet d exprimer le potentiel en un nœud quelconque d un réseau en fonction des potentiels aux nœuds voisins. Il est une conséquence de la loi des nœuds et peut donc être utilisé à sa place. L avantage réside dans le fait qu on exprime des relations sans courant, uniquement à l aide de tensions. n utilisant à la fois le théorème de Millman et la loi des mailles, on dispose de deux outils qui permettent de résoudre pratiquement n importe quel problème d électrocinétique. Considérons un nœud quelconque d un circuit (figure 6.1). Ce nœud est relié à n points du circuit par l intermédiaire de n branches possédant chacune une résistance R i. Soient V i les tensions aux n points voisins du nœud X. V 3 V R R 3 V 1 R 1 X R i V i V X R n V n Figure 6.1 Le potentiel V X s exprime en fonction des potentiels aux nœuds voisins de la manière suivante : n V1 V Vn Vi  R R Rn i Ri VX = 1 = = n R R R  1 n i = 1 R i On peut définir également la conductance d un dipôle résistif par l inverse de sa résistance. Soit : Gi = 1 unité : siemens R ( S ). Ainsi, le théorème de Millman peut aussi s écrire : i V n  i X = = 1 n  i= 1 GV i G i i. 1

23 Ce qui revient à dire que le potentiel en un nœud quelconque d un circuit est la moyenne des potentiels aux nœuds voisins, pondérée par les conductances des différentes branches. xemple On considère le circuit de la figure 6. dans lequel on cherche à calculer le potentiel au point A. L application du théorème de Millman en ce point est immédiate. Attention : même si la résistance R 3 est reliée à la masse et qu elle ne correspond à aucun terme au numérateur, elle est néanmoins présente au dénominateur. 1 = 10V R 1= 10 Ω R 3= 0 Ω A Figure 6. R = 5 Ω = 5V xercices QCM Fiche R R R VA = R R R 1 3 = = 5,7 V Le théorème de Millman est un outil extrêmement intéressant, surtout si on le compare aux lois de Kirchhoff : Comme il découle de la loi des nœuds mais ne met en équation que des tensions, il permet de limiter le nombre de variables introduites dans les équations. Il permet de cibler le calcul d un potentiel particulier ou d une différence de potentiels donnée en n écrivant qu une seule ligne de calcul. Ne pas oublier que bien souvent, on cherche la valeur d une tension particulière et que la connaissance de toutes les grandeurs électriques, courants ou tensions, en tout point du circuit, ne sert pas à grand chose. Il s applique tout aussi bien en régime continu qu en régime variable. Dans le cas de circuits plus complexes que celui qui est présenté dans l exemple précédent, il suffit souvent d appliquer plusieurs fois le théorème de Millman pour obtenir les grandeurs recherchées. Peu d équations seront générées avec, par conséquent, moins de risque d erreur de calculs. Si c est un courant qui est recherché, par exemple dans une résistance, penser à utiliser le théorème de Millman pour trouver d abord la tension aux bornes de cette résistance. Chapitre 1 13

24 fiche 7 Les ponts diviseurs 1. Le pont diviseur de tension Le circuit de la figure 7.1 représente un pont de deux résistances placées en série et alimentées par un générateur de tension parfait. Les deux résistances sont ainsi parcourues par le même courant. I R 1 A R V A Figure 7.1 On s intéresse au potentiel V A au point A, point commun aux deux résistances R 1 et R, autrement dit, à la tension aux bornes de R. Par simple application de la loi d Ohm, on peut écrire : I =. R1 + R R D où : VA = R + R. 1 Le principe du pont diviseur de tension Le potentiel au point commun de deux résistances est égal à la tension qui règne aux bornes de l ensemble multiplié par la résistance connectée au potentiel le plus bas et divisé par la somme des deux résistances. Le potentiel au point A est donc égal à une fraction de la tension, d où la dénomination de pont diviseur de tension. Important Le principe du pont diviseur de tension ne peut s appliquer que si les deux résistances sont parcourues par le même courant. 14

25 . Le pont diviseur de courant Le circuit de la figure 7. représente un pont de deux résistances placées en parallèle et alimentées par un générateur de courant parfait. Les trois dipôles sont ainsi soumis à la même différence de potentiel U. I R1 I I 1 Figure 7. On s intéresse aux valeurs des deux courants I 1 et I qui parcourent respectivement les deux résistances R 1 et R. Si on considère que la source de courant alimente l association en parallèle des deux résistances, on obtient, par une simple application de la loi d Ohm : Par conséquent : ÏI Ô Ì ÔI ÓÔ 1 U = RR 1 R + R I. 1 R U R = = R R R I U R1 = = R R + R I 1 U xercices QCM Fiche 7 Le principe du pont diviseur de courant Lorsqu une source de courant I alimente deux résistances associées en parallèle, chacune des résistances est parcourue par le courant I multiplié par la valeur de l autre résistance et divisé par la somme des deux. Les principes du pont diviseur de tension ou de courant sont a priori très simples mais restent d une utilité capitale dans bon nombre d applications. Ils permettent en effet d avoir un accès immédiat à une grandeur électrique donnée en faisant le minimum de calculs. Il convient toutefois de bien retenir les conditions dans lesquelles s appliquent ces principes, en particulier le fait que le diviseur de tension est caractérisé par la circulation du même courant dans les deux résistances. Chapitre 1 15

26 fiche 8 Le principe de superposition Dans un circuit linéaire possédant plusieurs générateurs de tension, et à condition que ces sources soient indépendantes, tout potentiel en un point quelconque (ou tout courant dans une branche du circuit) est égal à la somme des potentiels (ou des courants) créés séparément par chaque générateur, les autres générateurs étant éteints, c est-à-dire courtcircuités. Si le circuit contient des générateurs de courant, le principe reste valable si les sources sont indépendantes : on effectue les calculs avec chaque source prise séparément en remplaçant les générateurs de courant par des circuits ouverts. Le principe de superposition étant une conséquence directe de la linéarité des composants du circuit, il est généralisable à tout régime de fonctionnement et à tout circuit contenant uniquement des composants linéaires. Dès lors qu un circuit contient des éléments non linéaires, par exemple des diodes, ce principe ne peut plus s appliquer. Il ne s applique pas non plus au calcul des puissances. xemple Dans le circuit de la figure 8.1, on cherche à calculer le courant I dans la résistance R 3. I R 1= 10Ω 1= 10V I 0 = 01, A R = 5 Ω = 0V Figure 8.1 D après le principe de superposition, ce courant est la somme de trois courants I 1, I et I 3 correspondant respectivement aux contributions de chaque générateur 1, et I 0. On calcule alors successivement chaque courant en ne laissant subsister, à chaque fois, qu un seul des trois générateurs. Avec 1 seul, (figure 8.), on a : 1 10 I1 = = = 066, A. R + R 15 1 Pour calculer I, il suffit de court-circuiter 1, de laisser I 0 éteinte (en circuit ouvert) et de «rallumer» pour obtenir : 0 I =- =- =-, 133A. R + R

27 I 1 R 1= 10Ω 1= 10V Figure 8. R = 5 Ω Pour le calcul de I 3 (figure 8.3), le circuit est un simple pont diviseur de courant : I 3 R1 = R R I 0 = 0, 066 A. + 1 R 1 = 10Ω R = 5 Ω I 0 = 01, A I 3 xercices QCM Fiche 8 Figure 8.3 Au final, on fait la somme algébrique des trois courants calculés indépendamment : I = I1 + I + I3 = 0, 66-1, , 066 = -0, 6 A. Rappel Lorsqu on annule un générateur de tension, on le court-circuite, et lorsqu on annule un générateur de courant, on le remplace par un circuit ouvert. Le principe de superposition ne s applique pas aux puissances électriques. Cela signifie que la puissance consommée par un dipôle n est pas égale à la somme des puissances qu il consomme en provenance de chacun des générateurs. n effet, la puissance étant le produit de la tension et du courant, ce n est pas une forme linéaire. Or, le principe de superposition est une conséquence directe de la linéarité des circuits. On pourra utiliser le principe de superposition pour déterminer courants et tensions dans les dipôles qui nous intéressent mais on ne fera le calcul des puissances qu à la fin, une fois reconstituées les grandeurs électriques totales. D une manière générale, le principe de superposition ne s applique pas non plus en présence de dipôles non linéaires (diode par exemple). Fiche 13, 14 Chapitre 3 Chapitre 1 17

28 fiche 9 Les théorèmes de Thévenin et Norton Les théorèmes de Thévenin et de Norton sont sans doute les théorèmes les plus puissants et les plus importants de l électrocinétique. Leur maîtrise permet bien souvent de résoudre des problèmes complexes en un minimum de temps et en manipulant très peu d équation. 3. Le théorème de Thévenin n régime continu, tout réseau linéaire dipolaire est équivalent à un générateur de tension dit de Thévenin, de force électromotrice 0 et de résistance interne r (figure 9.1). La résistance r est égale à la résistance équivalente du réseau lorsque tous ses générateurs sont éteints. La tension 0 est égale à la tension à vide du réseau (lorsque I = 0 dans le circuit de la figure 9.1). I I U r 0 U= 0 ri U= 0 si I= 0 (tension à vide) Figure 9.1 Remarque Puisqu il s agit de déterminer un générateur de tension équivalent à un dipôle, nous employons bien évidemment la convention générateur. 4. Le théorème de Norton Le théorème de Norton propose un autre dipôle simple équivalent à tout réseau dipolaire. n régime continu, tout réseau linéaire dipolaire est équivalent à un générateur de courant dit de Norton, de courant I et de résistance interne r (figure 9.) égale à la résistance interne du générateur de Thévenin. La résistance r est égale à la résistance équivalente du réseau lorsque tous ses générateurs sont éteints. On utilise volontiers le terme de conductance interne g pour qualifier 1 /r. 18

29 Le courant I est égal au courant de court-circuit du dipôle (courant circulant dans le dipôle lorsque l on court-circuite ses deux bornes). I U I= I0 + U/ r Figure 9. I 0 I= I0 siu= 0 (court-circuit) 5. L équivalence Thévenin Norton Un générateur de tension de Thévenin, de force électromotrice et de résistance interne r est équivalent à un générateur de Norton, de courant I0 = et de même résistance R interne r (figure 9.3). r U xercices QCM Fiche 9 r I 0 = / r r Figure 9.3 Les théorèmes de Thévenin et de Norton sont utiles lorsque l on recherche une grandeur électrique particulière, par exemple le courant dans une résistance placée dans un circuit complexe. On considère alors que cette résistance est alimentée par le reste du circuit que l on isole ainsi et dont on cherche l équivalent de Thévenin ou de Norton. Pour ce faire, on peut invoquer directement l un des deux théorèmes ou encore effectuer des transformations Thévenin Norton et Norton Thévenin successives jusqu à réduire le circuit à sa plus simple expression. Chapitre 1 19

30 fiche 10 Les circuits linéaires en régime sinusoïdal Le régime sinusoïdal constitue, après le régime continu, le régime électrique le plus couramment utilisé. Les électriciens ont introduit des modèles théoriques très intéressants qui permettent d utiliser en régime sinusoïdal les mêmes lois et théorèmes qu en régime continu. Ce chapitre est consacré à une première approche simple grâce à laquelle nous allons introduire la notion d impédance réelle et celle de valeur efficace, deux concepts essentiels en électronique. 1. Définitions et principes fondamentaux L étude des circuits linéaires en régime sinusoïdal correspond à l étude des réseaux électriques composés uniquement d éléments linéaires (résistances, condensateurs et auto-inductances, notamment), alimentés par des sources de tension ou de courant sinusoïdales. Pour une source de tension, on considérera en général : et () = 0 coswt Très souvent, on parle également de signal sinusoïdal. La tension 0 représente l amplitude de la tension sinusoïdale (en volts), w est sa pulsation en radians par seconde. On définit à partir de ces grandeurs, les paramètres suivants : f = w p T : fréquence du signal en hertz (Hz) 1 p = = f w : période en secondes. Fiche 4 Le régime sinusoïdal fait partie (avec le régime continu) des régimes permanents (par opposition aux régimes variables ou transitoires). Pour diverses raisons, l énergie électrique est fournie sous la forme d un signal sinusoïdal. Ceci confère à l étude des circuits en régime sinusoïdal un intérêt primordial. Propriété fondamentale Dans un circuit linéaire fonctionnant en régime sinusoïdal, tous les courants et toutes les tensions dans le circuit sont sinusoïdaux, de même pulsation que la source d alimentation du circuit. Ces grandeurs électriques possèdent des amplitudes qui dépendent bien évidemment des éléments du circuit, mais aussi de la pulsation w de la source. De plus, toutes ces grandeurs présentent la plupart du temps des déphasages par rapport à la source principale. 0

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

Le transistor bipolaire

Le transistor bipolaire IUT Louis Pasteur Mesures Physiques Electronique Analogique 2ème semestre 3ème partie Damien JACOB 08-09 Le transistor bipolaire I. Description et symboles Effet transistor : effet physique découvert en

Plus en détail

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B. Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant. - Le régime linéaire. Le courant collecteur est proportionnel

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1 1 Introduction Un convertisseur statique est un montage utilisant des interrupteurs à semiconducteurs permettant par une commande convenable de ces derniers de régler un transfert d énergie entre une source

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Université Mohammed Khidher Biskra A.U.: 2014/2015

Université Mohammed Khidher Biskra A.U.: 2014/2015 Uniersité Mohammed Khidher Biskra A.U.: 204/205 Faculté des sciences et de la technologie nseignant: Bekhouche Khaled Matière: lectronique Fondamentale hapitre 4 : Le Transistor Bipolaire à Jonction 4..

Plus en détail

Convertisseurs statiques d'énergie électrique

Convertisseurs statiques d'énergie électrique Convertisseurs statiques d'énergie électrique I. Pourquoi des convertisseurs d'énergie électrique? L'énergie électrique utilisée dans l'industrie et chez les particuliers provient principalement du réseau

Plus en détail

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) I. L'intérêt de la conversion de données, problèmes et définitions associés. I.1. Définitions:

Plus en détail

Donner les limites de validité de la relation obtenue.

Donner les limites de validité de la relation obtenue. olutions! ours! - Multiplicateur 0 e s alculer en fonction de. Donner les limites de validité de la relation obtenue. Quelle est la valeur supérieure de? Quel est le rôle de 0? - Multiplicateur e 0 s alculer

Plus en détail

Manuel d'utilisation de la maquette

Manuel d'utilisation de la maquette Manuel d'utilisation de la maquette PANNEAU SOLAIRE AUTO-PILOTE Enseignement au lycée Article Code Panneau solaire auto-piloté 14740 Document non contractuel L'énergie solaire L'énergie solaire est l'énergie

Plus en détail

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER Introduction à l électronique de puissance Synthèse des convertisseurs statiques Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER 28 janvier 2007 Table des matières 1 Synthèse des convertisseurs

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

Cours 9. Régimes du transistor MOS

Cours 9. Régimes du transistor MOS Cours 9. Régimes du transistor MOS Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 005 Dans ce document le transistor MOS est traité comme un composant électronique.

Plus en détail

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,

Plus en détail

M HAMED EL GADDAB & MONGI SLIM

M HAMED EL GADDAB & MONGI SLIM Sous la direction : M HAMED EL GADDAB & MONGI SLIM Préparation et élaboration : AMOR YOUSSEF Présentation et animation : MAHMOUD EL GAZAH MOHSEN BEN LAMINE AMOR YOUSSEF Année scolaire : 2007-2008 RECUEIL

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP. Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement

Plus en détail

sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati

sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati ÉLECTRICITÉ GÉNÉRALE Analyse et synthèse des circuits ÉLECTRICITÉ GÉNÉRALE

Plus en détail

Les transistors à effet de champ

Les transistors à effet de champ etour au menu! Les transistors à effet de champ 1 tructure A TANITO à JONCTION (JFET) Contrairement aux transistors bipolaires dont le fonctionnement repose sur deux types de porteurs les trous et les

Plus en détail

III Capteurs et actuateurs

III Capteurs et actuateurs III Capteurs et actuateurs Tous les systèmes électroniques ont en commun qu ils fonctionnent selon le principe ETS (Entrée, Traitement, Sortie) du traitement de l information. ENTRÉE TRAITEMENT SORTIE

Plus en détail

Chapitre 4 : Le transistor Bipolaire

Chapitre 4 : Le transistor Bipolaire LEEA 3 ème A, C. TELLIER, 28.08.04 1 Chapitre 4 : Le transistor Bipolaire 1. Structure et description du fonctionnement 1.1. Les transistors bipolaires 1.2 Le transistor NPN Structure intégrée d'un transistor

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Les transistors à effet de champ.

Les transistors à effet de champ. Chapitre 2 Les transistors à effet de champ. 2.1 Les différentes structures Il existe de nombreux types de transistors utilisant un effet de champ (FET : Field Effect Transistor). Ces composants sont caractérisés

Plus en détail

Les Mesures Électriques

Les Mesures Électriques Les Mesures Électriques Sommaire 1- La mesure de tension 2- La mesure de courant 3- La mesure de résistance 4- La mesure de puissance en monophasé 5- La mesure de puissance en triphasé 6- La mesure de

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Génie Industriel et Maintenance

Génie Industriel et Maintenance Génie Industriel et Maintenance Pour qu aucun de ces systèmes ne tombe en panne. Plan de la visite 1 2 3 6 4 5 Guide visite du département Génie Industriel et Maintenance 1 Salles Informatiques Utilisation

Plus en détail

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT OBJECTIFS Savoir utiliser le multimètre pour mesurer des grandeurs électriques Obtenir expérimentalement

Plus en détail

Acquisition et conditionnement de l information Les capteurs

Acquisition et conditionnement de l information Les capteurs Acquisition et conditionnement de l information Les capteurs COURS 1. Exemple d une chaîne d acquisition d une information L'acquisition de la grandeur physique est réalisée par un capteur qui traduit

Plus en détail

I- Définitions des signaux.

I- Définitions des signaux. 101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

Equipement. électronique

Equipement. électronique MASTER ISIC Les générateurs de fonctions 1 1. Avant-propos C est avec l oscilloscope, le multimètre et l alimentation stabilisée, l appareil le plus répandu en laboratoire. BUT: Fournir des signau électriques

Plus en détail

PRODUCTION, CONVERSION OU DISTRIBUTION DE L ÉNERGIE ÉLECTRIQUE

PRODUCTION, CONVERSION OU DISTRIBUTION DE L ÉNERGIE ÉLECTRIQUE XXXX H02 PRODUCTION, CONVERSION OU DISTRIBUTION DE L ÉNERGIE ÉLECTRIQUE XXXX APPAREILS POUR LA TRANSFORMATION DE COURANT ALTERNATIF EN COURANT ALTERNATIF, DE COURANT ALTERNATIF EN COURANT CONTINU OU VICE

Plus en détail

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension Cyril BUTTAY CEGELY VALEO 30 novembre 2004 Cyril BUTTAY Contribution à la conception

Plus en détail

CONVERTISSEURS NA ET AN

CONVERTISSEURS NA ET AN Convertisseurs numériques analogiques (xo Convertisseurs.doc) 1 CONVTIU NA T AN NOT PLIMINAI: Tous les résultats seront exprimés sous formes littérales et encadrées avant les applications numériques. Les

Plus en détail

Conception. de systèmes électroniques. analogiques

Conception. de systèmes électroniques. analogiques Christian JUTTEN Conception de systèmes électroniques analogiques Université Joseph Fourier - Polytech Grenoble Cours de deuxième année du département 3i Janvier 2007 Table des matières Modèle mathématique

Plus en détail

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS Matériel : Un GBF Un haut-parleur Un microphone avec adaptateur fiche banane Une DEL Une résistance

Plus en détail

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes

Plus en détail

MEMOIRES MAGNETIQUES A DISQUES RIGIDES

MEMOIRES MAGNETIQUES A DISQUES RIGIDES MEMOIRES MAGNETIQUES A DISQUES RIGIDES PARTIE ELECTRONIQUE Le schéma complet de FP5 est donnée en annexe. Les questions porterons sur la fonction FP5 dont le schéma fonctionnel de degré 2 est présenté

Plus en détail

SOMMAIRE. B5.1 Première approche

SOMMAIRE. B5.1 Première approche APPROCHE THEORIQE LES COMPOSANTS ELECTRONIQES B5 LES IOES SOMMAIRE B5.1 Première approche B5.2 e la jonction PN à la diode B5.3 Caractéristique d'une diode B5.4 Mécanisme de conduction d'une diode B5.5

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

3 ÉLÉMENTS forment un LABoratoire.

3 ÉLÉMENTS forment un LABoratoire. 3 ÉLÉMENTS forment un LABoratoire. L environnement d apprentissage COM3LAB combine l expérimentation et les avantages du e-learning interactif. La nouvelle unité centrale (console) est la jonction entre

Plus en détail

Gestion et entretien des Installations Electriques BT

Gestion et entretien des Installations Electriques BT Durée : 5 jours Gestion et entretien des Installations Electriques BT Réf : (TECH.01) ² Connaître les paramètres d une installation basse tension, apprendre les bonnes méthodes de gestion et entretien

Plus en détail

Le transistor bipolaire. Page N 6 Tranlin

Le transistor bipolaire. Page N 6 Tranlin V. Etude d'un montage à 1 transtor. (montage charge répart ac découplage d'émetteur Pour toute la suite, on utilera comme exemple le schéma suivant appelé montage charge répart ac découplage d'émetteur

Plus en détail

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure Introduction CORRECTION TP Multimètres - Mesures de résistances - La mesure d une résistance s effectue à l aide d un multimètre. Utilisé en mode ohmmètre, il permet une mesure directe de résistances hors

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Circuits intégrés micro-ondes

Circuits intégrés micro-ondes Chapitre 7 Circuits intégrés micro-ondes Ce chapitre sert d introduction aux circuits intégrés micro-ondes. On y présentera les éléments de base (résistance, capacitance, inductance), ainsi que les transistors

Plus en détail

Electron S.R.L. - MERLINO - MILAN ITALIE Tel (++ 39 02) 90659200 Fax 90659180 Web www.electron.it, e-mail electron@electron.it

Electron S.R.L. - MERLINO - MILAN ITALIE Tel (++ 39 02) 90659200 Fax 90659180 Web www.electron.it, e-mail electron@electron.it Electron S.R.L. Design Production & Trading of Educational Equipment B3510--II APPLIICATIIONS DE TRANSDUCTEURS A ULTRASONS MANUEL D IINSTRUCTIIONS POUR L ETUDIIANT Electron S.R.L. - MERLINO - MILAN ITALIE

Plus en détail

Charges électriques - Courant électrique

Charges électriques - Courant électrique Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant

Plus en détail

Solutions pour la mesure. de courant et d énergie

Solutions pour la mesure. de courant et d énergie Solutions pour la mesure de courant et d énergie Mesure et analyse de signal Solutions WAGO pour la surveillance et l économie d énergie Boucles de mesure Rogowski, série 855 pour la mesure non intrusive

Plus en détail

IUT DE NÎMES DÉPARTEMENT GEII ÉLECTRONIQUE DE PUISSANCE CONVERSION AC/DC AMÉLIORATION DU FACTEUR DE PUISSANCE

IUT DE NÎMES DÉPARTEMENT GEII ÉLECTRONIQUE DE PUISSANCE CONVERSION AC/DC AMÉLIORATION DU FACTEUR DE PUISSANCE IU DE NÎMES DÉPAREMEN GEII ÉLECRONIQUE DE PUISSANCE AMÉLIORAION DU FACEUR DE PUISSANCE Yaël hiaux yael.thiaux@iut-nimes.fr 13 septembre 013 able des matières 1 Généralités 3 1.1 Historique........................................

Plus en détail

Etude des convertisseurs statiques continu-continu à résonance, modélisation dynamique

Etude des convertisseurs statiques continu-continu à résonance, modélisation dynamique Etude des convertisseurs statiques continucontinu à résonance, modélisation dynamique J.P. Ferrieux, J. Perard, E. Olivier To cite this version: J.P. Ferrieux, J. Perard, E. Olivier. Etude des convertisseurs

Plus en détail

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

Semi-conducteurs. 1 Montage expérimental. Expérience n 29 Expérience n 29 Semi-conducteurs Description Le but de cette expérience est la mesure de l énergie d activation intrinsèque de différents échantillons semiconducteurs. 1 Montage expérimental Liste du matériel

Plus en détail

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1 Objet : Alimentation pour ordinateur portable et autre. Question posée par les membres du club d astronomie de Lavardac 47230. Est-il possible d augmenter l autonomie des ordinateurs portables (qui tout

Plus en détail

Module 3 : L électricité

Module 3 : L électricité Sciences 9 e année Nom : Classe : Module 3 : L électricité Partie 1 : Électricité statique et courant électrique (chapitre 7 et début du chapitre 8) 1. L électrostatique a. Les charges et les décharges

Plus en détail

Méthodes de Caractérisation des Matériaux. Cours, annales http://www.u-picardie.fr/~dellis/

Méthodes de Caractérisation des Matériaux. Cours, annales http://www.u-picardie.fr/~dellis/ Méthodes de Caractérisation des Matériaux Cours, annales http://www.u-picardie.fr/~dellis/ 1. Symboles standards et grandeurs électriques 3 2. Le courant électrique 4 3. La résistance électrique 4 4. Le

Plus en détail

Sciences physiques Stage n

Sciences physiques Stage n Sciences physiques Stage n C.F.A du bâtiment Ermont 1 Activité 1 : 1) Observer les plaquettes d appareils électriques suivantes et relever les indications utiles pour un utilisateur quelconque : Four électrique

Plus en détail

CHAPITRE IX : Les appareils de mesures électriques

CHAPITRE IX : Les appareils de mesures électriques CHAPITRE IX : Les appareils de mesures électriques IX. 1 L'appareil de mesure qui permet de mesurer la différence de potentiel entre deux points d'un circuit est un voltmètre, celui qui mesure le courant

Plus en détail

La polarisation des transistors

La polarisation des transistors La polarisation des transistors Droite de charge en continu, en courant continu, statique ou en régime statique (voir : le transistor) On peut tracer la droite de charge sur les caractéristiques de collecteur

Plus en détail

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Recommandations pour la définition des appareils de mesures utilisés en protection cathodique

Recommandations pour la définition des appareils de mesures utilisés en protection cathodique RECOMMANDATION PCRA 008 Janvier 2010 Rev. 0 Commission Protection Cathodique et Revêtements Associés Recommandations pour la définition des appareils de mesures utilisés en protection cathodique AVERTISSEMENT

Plus en détail

Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15

Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15 1 Démarrer... 2 1.1 L écran Isis... 2 1.2 Les barres d outils... 3 1.2.1 Les outils d édition... 3 1.2.2 Les outils de sélection de mode... 4 1.2.3 Les outils d orientation... 4 2 Quelques actions... 5

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes

Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes Avant Propos : Le sujet comporte deux parties : une partie théorique, jalonnée de questions (dans les cadres), qui doit être préparée

Plus en détail

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe. TD 11 Les trois montages fondamentaux.,.,. ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe ***exercice 11.1 On considère le montage ci-dessous : V = 10 V R 1 R s v e

Plus en détail

VIII- Circuits séquentiels. Mémoires

VIII- Circuits séquentiels. Mémoires 1 VIII- Circuits séquentiels. Mémoires Maintenant le temps va intervenir. Nous avions déjà indiqué que la traversée d une porte ne se faisait pas instantanément et qu il fallait en tenir compte, notamment

Plus en détail

NOTICE DOUBLE DIPLÔME

NOTICE DOUBLE DIPLÔME NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des

Plus en détail

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE 4. LES PUISSANCES LA NOTION DE PUISSANCE 88 CHAPITRE 4 Rien ne se perd, rien ne se crée. Mais alors que consomme un appareil électrique si ce n est les électrons? La puissance pardi. Objectifs de ce chapitre

Plus en détail

Mini_guide_Isis.pdf le 23/09/2001 Page 1/14

Mini_guide_Isis.pdf le 23/09/2001 Page 1/14 1 Démarrer...2 1.1 L écran Isis...2 1.2 La boite à outils...2 1.2.1 Mode principal...3 1.2.2 Mode gadgets...3 1.2.3 Mode graphique...3 2 Quelques actions...4 2.1 Ouvrir un document existant...4 2.2 Sélectionner

Plus en détail

A. N(p) B + C p. + D p2

A. N(p) B + C p. + D p2 Polytech Nice ELEC3 T.P. d'electronique TP N 7 S ACTIFS DU SECOND ORDRE 1 - INTRODUCTION Un quadripôle est dit avoir une fonction de transfert en tension, du second ordre, lorsque le rapport tension de

Plus en détail

Aiguilleurs de courant intégrés monolithiquement sur silicium et leurs associations pour des applications de conversion d'énergie

Aiguilleurs de courant intégrés monolithiquement sur silicium et leurs associations pour des applications de conversion d'énergie Aiguilleurs de courant intégrés monolithiquement sur silicium et leurs associations pour des applications de conversion d'énergie ABDELILAH EL KHADIRY ABDELHAKIM BOURENNANE MARIE BREIL DUPUY FRÉDÉRIC RICHARDEAU

Plus en détail

THESE DOCTEUR. Génie Electrique. Maxime MOREAU

THESE DOCTEUR. Génie Electrique. Maxime MOREAU N d ordre : 117 ECOLE CENTRALE DE LILLE THESE présentée en vue d obtenir le grade de DOCTEUR en Génie Electrique par Maxime MOREAU DOCTORAT DELIVRE PAR L ECOLE CENTRALE DE LILLE Modélisation haute fréquence

Plus en détail

Champ électromagnétique?

Champ électromagnétique? Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques

Plus en détail

La charge électrique C6. La charge électrique

La charge électrique C6. La charge électrique Fiche ACTIVIT UM 8. / UM 8. / 8. La charge électrique 8. La charge électrique C6 Manuel, p. 74 à 79 Manuel, p. 74 à 79 Synergie UM S8 Corrigé Démonstration La charge par induction. Comment un électroscope

Plus en détail

Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004. Cours de Génie Electrique G.

Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004. Cours de Génie Electrique G. Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004 Cours de Génie Electrique G. CHAGNON 2 Table des matières Introduction 11 1 Quelques mathématiques...

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires 25 Lechapitreprécédent avait pour objet l étude decircuitsrésistifsalimentéspar dessourcesde tension ou de courant continues. Par

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2 CHPITRE IX Modèle de Thévenin & modèle de Norton Les exercices EXERCICE N 1 R 3 E = 12V R 1 = 500Ω R 2 = 1kΩ R 3 = 1kΩ R C = 1kΩ E R 1 R 2 U I C R C 0V a. Dessiner le générateur de Thévenin vu entre les

Plus en détail

n 159 onduleurs et harmoniques (cas des charges non linéaires) photographie Jean Noël Fiorina

n 159 onduleurs et harmoniques (cas des charges non linéaires) photographie Jean Noël Fiorina n 159 photographie onduleurs et harmoniques (cas des charges non linéaires) Jean Noël Fiorina Entré chez Merlin Gerin en 1968 comme agent technique de laboratoire au département ACS - Alimentations Convertisseurs

Plus en détail

Numérisation du signal

Numérisation du signal Chapitre 12 Sciences Physiques - BTS Numérisation du signal 1 Analogique - Numérique. 1.1 Définitions. Signal analogique : un signal analogique s a (t)est un signal continu dont la valeur varie en fonction

Plus en détail

Electronique analogique

Electronique analogique Haute Ecole d'ingénierie et de Gestion du Canton de Vaud Département Technologies Industrielles Unité EAN Electronique analogique Des composants vers les systèmes i n s t i t u t d ' A u t o m a t i s

Plus en détail

Chapitre I La fonction transmission

Chapitre I La fonction transmission Chapitre I La fonction transmission 1. Terminologies 1.1 Mode guidé / non guidé Le signal est le vecteur de l information à transmettre. La transmission s effectue entre un émetteur et un récepteur reliés

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Introduction Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Le terme électricité provient du grec ἤλεκτρον

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

ELP 304 : Électronique Numérique. Cours 1 Introduction

ELP 304 : Électronique Numérique. Cours 1 Introduction ELP 304 : Électronique Numérique Cours 1 Introduction Catherine Douillard Dépt Électronique Les systèmes numériques : généralités (I) En électronique numérique, le codage des informations utilise deux

Plus en détail

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F Chapitre 7 : CHARGES, COURANT, TENSION S 3 F I) Electrostatique : 1) Les charges électriques : On étudie l électricité statique qui apparaît par frottement sur un barreau d ébonite puis sur un barreau

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

Jouve, 18, rue Saint-Denis, 75001 PARIS

Jouve, 18, rue Saint-Denis, 75001 PARIS 19 à Europâisches Patentamt European Patent Office Office européen des brevets Numéro de publication : 0 645 740 A1 12 DEMANDE DE BREVET EUROPEEN @ Numéro de dépôt : 94402079.1 @ Int. ci.6: G07B 17/04,

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations Valérie Pommier-Budinger Bernard Mouton - Francois Vincent ISAE Institut Supérieur de l Aéronautique et de

Plus en détail

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef

Plus en détail

Projet de synthèse de l'électronique analogique : réalisation d'une balance à jauges de contrainte

Projet de synthèse de l'électronique analogique : réalisation d'une balance à jauges de contrainte J3eA, Journal sur l enseignement des sciences et technologies de l information et des systèmes, Volume 4, HorsSérie 2, 20 (2005) DOI : http://dx.doi.org/10.1051/bibj3ea:2005720 EDP Sciences, 2005 Projet

Plus en détail

EP 2 339 758 A1 (19) (11) EP 2 339 758 A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: 29.06.2011 Bulletin 2011/26

EP 2 339 758 A1 (19) (11) EP 2 339 758 A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: 29.06.2011 Bulletin 2011/26 (19) (12) DEMANDE DE BREVET EUROPEEN (11) EP 2 339 758 A1 (43) Date de publication: 29.06.2011 Bulletin 2011/26 (21) Numéro de dépôt: 09179459.4 (51) Int Cl.: H04B 1/69 (2011.01) H03K 5/08 (2006.01) H03K

Plus en détail

Notions fondamentales sur le démarrage des moteurs

Notions fondamentales sur le démarrage des moteurs Notions fondamentales sur le démarrage des moteurs Démarrage traditionnel Démarreur progressif, convertisseur de fréquence Motor Management TM Préface Ce manuel technique sur le démarrage des moteurs fait

Plus en détail