Présentation HP Big Data et stockage Big Data et Cloud

Dimension: px
Commencer à balayer dès la page:

Download "Présentation HP Big Data et stockage Big Data et Cloud"

Transcription

1 Présentation HP Big Data et stockage Big Data et Cloud Didier Kirszenberg Directeur du programme rchitecture Critique et décisionnelle HP rance Le 20 ars Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

2 Du Cloud au Big Data et réciproquement Les impacts sur le stockage Deux effets de mode, recherche de solution simple à opérer Cloud 2 Capacité de puissance informatique générique pour traiter en tant que service les demandes métiers Critères stockage : Gros volume centralisé extensible, partitionnable, tolèrent aux pannes, allocation dynamique, optimisation automatique Exemple : SR Big Data Capacité de puissance informatique spécifique pour donner du sens à de grands volumes de donnée Critères stockage : garantie I/O, scalabilité, faible coût Exemple : acebook Solon BIG DT 20 ars 2012 ny Workload, nywhere, nytime

3 Business Intelligence Big Data et Cloud La Taxonomie selon HP Reporting qui peut être Big Data et dans le Cloud Reporting prédéfini, reporting ad-hoc, dashboard, PKI nalytique souvent Big Data et parfois dans le Cloud nalyse prédictive, analyse descriptive, analyse comportementale, calcul de risques, clusters/segmentation/classification, corrélation, analyse geospatiale Traitement des données semi structurées classique du Big Data Reporting, dashboard, PKI, nalyse prédictive, analyse comportementale, calcul de risques, clusters/segmentation/classification, corrélation, Transformation de données Traitement des données non structurées Recherche via indexation, phonémisation, lexicographie, nalyse descriptive 3 Solon BIG DT 20 ars 2012

4 HP Database achine Cloud + IO garantie

5 HP Database achine Technologie Standard + Garantie IO Scalabilité Robustesse Jusqu a 80 cores 2 To Ram rchit Prema ISSION-CRITICL DB INRSTRUCTURE H & Perf Capacitive uto Tiering SSD C ST../.. Hautes Performances I/O lash PCI Card Hautes Performances et capacités I/O lash Bay 5 Solon BIG DT 20 ars 2012

6 La Latence au cœur des performances décisionnelles PCIe provides the maximum benefit for flash effectiveness C 8 ms SSD 3 ms SN L1, L2 & L3 CPU Cache DR 0,001 ms ioemory 0,025 ms 0,2 ms 0,1 ms Nanoseconds ccess Delay in Time illiseconds 6 Solon BIG DT 20 ars 2012

7 HP 3PR l offre de stockage Utility Storage Stockage pour les prochaines années ULTI-TENNT Isolement pour performance et sécurité des différents services EICCE Réduit jusqu à 50% le besoin de stockage, alloue automatiquement le stockage le moins couteux EDERE Charge équilibrée entre plusieurs systèmes Gestion du stockage au niveau global du Datacenter UTONOIC ugmenter l efficacité des administrateurs de 10x igration et techno refresh «self service» 7 Solon BIG DT 20 ars 2012

8 Stockage 3PR pour le Cloud 4 sur 5 des services providers et hébergeurs du Gartner Q utilisent 3PR uniquement 3PR Utility Storage solution faite pour le Cloud Solon BIG DT 20 ars 2012

9 Cas Client : DWH Big Data Opérateur Telco 150To Challenge Batch DWH en moins de 5h inimiser les risques et TCO Respecter standard client Solution HP Haute Performance max H acteur de succès Connaissance des techniques de parallélisation Oracle pproche standard Résultat Batch DWH sur HP: 32 minutes TCO 60% du prix des ppliances concurrentes 3PR replication Bénéfices client Le meilleur TCO Continuité applicative rchitecture générique (Cloud) 9 Solon BIG DT 20 ars 2012

10 HP Vertica Solution analytique en colonne

11 Column Store Sort and Encode for Speed Student_ID Name Cappiello, Emilia Dalal, lana Orner, Katy rigo, vis Stober, Saundra Borba, ilagros Sosnowski, Hillary Nibert, Emilia Popovic, Tanisha Schreckengost, ax Porcelli, Darren Sinko, Erik Tarvin, Julio Lessig, Elnora Thon, ax Trembley, llyson Gender Class Sophomore Senior Senior reshman Sophomore reshman Senior reshman Sophomore Sophomore Score Grade D C D D C D B D B ooter goes here Solon BIG DT 20 ars 2012

12 Column Store Sort and Encode for Speed Gender Class Grade Score Sophomore D 62 Senior 92 C 76 Senior D reshman 96 D 68 Sophomore 59 reshman 95 Senior C 76 D 67 reshman 91 Sophomore B 85 D 63 Sophomore B Name Cappiello, Emilia Dalal, lana Orner, Katy rigo, vis Stober, Saundra Borba, ilagros Sosnowski, Hillary Nibert, Emilia Popovic, Tanisha Schreckengost, ax Porcelli, Darren Sinko, Erik Tarvin, Julio Lessig, Elnora Thon, ax Trembley, llyson Student_ID Columns used in predicates Correlated values indexed by preceding column values ooter goes here Solon BIG DT 20 ars 2012

13 Column Store Sort and Encode for Speed Gender Class Grade Score reshman 95 reshman Senior C D D Sophomore D 62 Sophomore reshman Sophomore D B Sophomore B 85 Senior C 76 Senior D 64 Name Popovic, Tanisha Borba, ilagros Stober, Saundra Trembley, llyson Orner, Katy Lessig, Elnora Sosnowski, Hillary Dalal, lana Cappiello, Emilia Nibert, Emilia Sinko, Erik Porcelli, Darren Thon, ax Tarvin, Julio Schreckengost, ax rigo, vis Student_ID Columns used in predicates Correlated values indexed by preceding column values ooter goes here Solon BIG DT 20 ars 2012

14 Column Store Sort and Encode for Speed Gender Class Grade Score reshman 95 reshman offset offset C D D Senior 92 Sophomore D 62 Sophomore 2 nd 3 rd 59 reshman 91 I/O I/O D 67 Sophomore B 82 Sophomore B 85 Senior C 76 Senior D 64 1 st I/O Reads entire column 4 th I/O Name Popovic, Tanisha Borba, ilagros Stober, Saundra Trembley, llyson Orner, Katy Lessig, Elnora Sosnowski, Hillary Dalal, lana Cappiello, Emilia Nibert, Emilia Sinko, Erik Porcelli, Darren Thon, ax Tarvin, Julio Schreckengost, ax rigo, vis Student_ID Example query: select avg( Score ) from example where Class = and Gender = and Grade = ooter goes here Solon BIG DT 20 ars 2012

15 Vertica onctions principales Stockage en colonne Compression avancée rchitecture assivement Parallèle (PP) -> Stockage sur les disques des serveurs Design automatique de la database Tolérance aux pannes natives Interface SQL Standard Bénéfices nalytiques: Performance sans agrégat ni indexes Extrapolation des manquants dans les séries onction d analyse de données semistructurées comme géo-localisation, IP, URL/URI Solon BIG DT 20 ars 2012

16 Cas Client : Social Graphing nalytics - Zynga ooter goes here

17 HP Hadoop Reference rchitecture Solution no SQL pour données semi-structurées

18 Hadoop pour quels besoins? ccès à de grosses volumétries de données «historiques» S appuie sur une architecture de type assivement Parallèle High Performance Computing «HPC» dresser l évolutivité scale-out -> on utilise les disques des nœuds de calcul. Traitement de différents formats/répartitions de données lgorithme «apreduce» remplace les requêtes et les data-sets en éléments plus pertinents -> SQL est remplacé par Pig et/ou Hive 18

19 Hadoop : les enjeux au niveau configuration Yahoo! : nœuds Principal challenge : scalabilité Principal contrainte : le réseau Entreprise type : 66 nœuds (Hadoop World Summit, 2010) Principale contrainte : les I/O disques ujourd hui plus de 190 paramètres dans Hadoop Où appliquer l efforts d optimisation : réseau? Disques par nœuds? Scalabilité du stockage linéaire, mais pas la scalabilité des traitements 19

20 HP CU Gestion des fermes de calcul ide au tuning du développement Opérer 10, 100, 1000 systèmes comme un seul dresse Vertica et Hadoop 20

21 L environnement HP RI L. Cherkasova HP Labs - In Proc. of 8 th IEEE/C Intl. Conference on utonomic Computing (ICC), June, 2011 RI: utomated Resource Inference and llocation for apreduce Environments Une offre avancée HP Hadoop avec un ensemble de brevets et outils d analyse des charges et de performance Outil de «profiling» de travaux Dimensionne les ressources pour respecter les SLOs des travaux Gestion de la charge applicative orienté SLO Hadoop Environnement de simulation pour les administrateurs afin de déterminer l effet de scénarios et évaluer la charge Optimisation des travaux apreduce job pour une meilleure performance et optimisation de l utilisation du cluster ressource

22 HP utonomy Solution no SQL pour données non-structurées

23 Proposition de Valeur utonomy Big Data Indexe la donnée en la laissant là où elle est -> Que dit-on de mon entreprise sur acebook? Traite tous types de données dont l image et le son (400+ connecteurs) -> Si on peut donner du sens à la voix et à l image il devient économiquement intéressant de la stocker. ccès en «langage naturel» onctions analytiques intégrées Solon BIG DT 20 ars 2012

24 Real-Time essaging Compliance ournit à terminaux utilisateurs multi-lingues : Taxonomic Categorization, Search, lert, conceptually Cluster, Heat aps, Summarize sur : Tous les nouveaux articles (200k par jour) 40 millions s par jour 1.26 illion Trading lerts par jour 2.1 million taxonomy nodes Temps de réponse garantis sur les alertes SL de 100ms Jusqu à s par seconde Solon BIG DT 20 ars 2012

25 CONCLUSION

26 Quelle solution pour quel besoin? Reporting SQL 26 Offre «Database achine», technologie Cloud + garantie IO Offre conjointe HP icrosoft ast Track et Enterprise Data Warehouse nalytique SQL Offre «Database achine», technologie Cloud + garantie IO Offre HP Vertica Traitement données semi-structurées hors SQL HP Reference rchitecture Hadoop apreduce nalyse de données non structurées hors SQL Offre HP utonomy Solon BIG DT 20 ars 2012

27 Stockage dans le domaine des Big Data Volume of data PB HP Vertica HP Hadoop apreduce Reference rchitecture TB GB HP Database machine HP utonomy Structured data Semi-structured data Unstructured data 27 Solon BIG DT 20 ars 2012

28

Introduction au Massive Data

Introduction au Massive Data Introduction au Massive Data Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

Exadata Storage Server et DB Machine V2

<Insert Picture Here> Exadata Storage Server et DB Machine V2 Exadata Storage Server et DB Machine V2 Croissance de la Volumétrie des Données Volumes multipliés par 3 tous les 2 ans Evolution des volumes de données 1000 Terabytes (Données) 800

Plus en détail

Hadoop, les clés du succès

Hadoop, les clés du succès Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com #solconnect13 SOLUTIONS ADAPTEES AUX BESOINS CLIENTS Mobile/Cloud Data Serving and Transaction Processing Mobile Storefront JSON Database

Plus en détail

CONSOTEL : Leader de l édition TEM grâce aux performances des solutions Oracle

CONSOTEL : Leader de l édition TEM grâce aux performances des solutions Oracle CONSOTEL : Leader de l édition TEM grâce aux performances des solutions Oracle Interview «CONSOTEL» du 11 Octobre 2011, postée sur : http://www.itplace.tv Christian COR, Directeur Associé Brice Miramont,

Plus en détail

HP World Tour, Big Data

HP World Tour, Big Data HP World Tour, Big Data Florence Laget - Directeur Big Data France Laurent Ridoux Chief Technologist Big Data France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein

Plus en détail

Kick Off SCC 2015. EMC l offre EXTREMIO. fmarti@fr.scc.com Philippe.rolland@emc.com. Vers de nouveaux horizons

Kick Off SCC 2015. EMC l offre EXTREMIO. fmarti@fr.scc.com Philippe.rolland@emc.com. Vers de nouveaux horizons Kick Off SCC 2015 EMC l offre EXTREMIO fmarti@fr.scc.com Philippe.rolland@emc.com Vers de nouveaux horizons Context Marché Les baies de stockages traditionnelles ont permis de consolider fortement Les

Plus en détail

Gamme Serveurs HP ProLiant Rack

Gamme Serveurs HP ProLiant Rack Gamme Serveurs HP ProLiant Rack Janvier 2015 Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. La gamme de produits la plus

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Bonnes pratiques / Optimisation des environnements

Bonnes pratiques / Optimisation des environnements Bonnes pratiques / Optimisation des environnements Pascale Borla-Salamet Oracle France Stockage et SAP, quel constat? Des bases de données souvent volumineuses Des délais de rétention

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Kick Off SCC 2015 Comment faire de votre infrastructure de stockage une source d économie? Vers de nouveaux horizons

Kick Off SCC 2015 Comment faire de votre infrastructure de stockage une source d économie? Vers de nouveaux horizons Kick Off SCC 2015 Comment faire de votre infrastructure de stockage une source d économie? Vers de nouveaux horizons cloud analytics mobile social 2015 Alain Cézard Alain.cezard@fr.ibm.com Comment faire

Plus en détail

ENVIRONNEMENTS ORACLE CRITIQUES AVEC VMAX 3

ENVIRONNEMENTS ORACLE CRITIQUES AVEC VMAX 3 ENVIRONNEMENTS ORACLE CRITIQUES AVEC VMAX 3 AVANTAGES CLES CRITIQUES Puissance Stockage hybride avec des niveaux de service performants optimisés pour le Flash à grande échelle, pour les charges applicatives

Plus en détail

BI Haute performance. Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull

BI Haute performance. Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull BI Haute performance Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull Bull aujourd'hui - La seule expertise 100% européenne des infrastructures et des applications critiques - Une

Plus en détail

Big Data. Les problématiques liées au stockage des données et aux capacités de calcul

Big Data. Les problématiques liées au stockage des données et aux capacités de calcul Big Data Les problématiques liées au stockage des données et aux capacités de calcul Les problématiques liées au Big Data La capacité de stockage - Traitement : Ponctuel ou permanent? - Cycle de vie des

Plus en détail

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité

Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Stratégie et Vision de SAP pour le secteur Banque- Assurance: Data-Management, BI, Mobilité Patrice Vatin Business Development SAP FSI Andrew de Rozairo Business Development Sybase EMEA Septembre 2011

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

PERF UG. Programmation réactive. Février 2014

PERF UG. Programmation réactive. Février 2014 PERF UG Programmation réactive Février 2014 1 Sommaire Contexte Architectures Architecture des Tirs Protocole de test Résultats 2 Contexte 3 Contexte Recevoir en temps réel des informations de capteur

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

LA PROTECTION DES DONNEES : ENTRE CONFIANCE & AGILITE JEUDI 19 NOVEMBRE 2015. François-Christophe JEAN DPS Field Technology Officer

LA PROTECTION DES DONNEES : ENTRE CONFIANCE & AGILITE JEUDI 19 NOVEMBRE 2015. François-Christophe JEAN DPS Field Technology Officer LA PROTECTION DES DONNEES : ENTRE CONFIANCE & AGILITE JEUDI 19 NOVEMBRE 2015 François-Christophe JEAN DPS Field Technology Officer . 2020 : Un nouveau monde numérique 7 milliards de personnes connectées

Plus en détail

IT SERVICES BUSINESS STORAGE DATA AUDIT PARTNERSHIP INTEGRATOR SECURITY PLANNING PRIVATE AGILITY DYNAMIC PUBLIC TECHNOLOGY SOLUTIONS MANAGEMENT

IT SERVICES BUSINESS STORAGE DATA AUDIT PARTNERSHIP INTEGRATOR SECURITY PLANNING PRIVATE AGILITY DYNAMIC PUBLIC TECHNOLOGY SOLUTIONS MANAGEMENT ACTIVE BUSINESS TALENT ANSWERS DESIGN AUDIT HYBRID DRP PRIVATE SOFTWARE ENGINEERING AGILITY DYNAMIC DEPLOY SECURITY COMPUTE USER Initialisation démonstration EVO:RAIL PROVISIONING ORCHESTRATION WORKLOAD

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

LES SOLUTIONS D INFRASTRUCTURES CONVERGENTES POUR TRANSFORMER VOTRE DATACENTER. François BOTTON Product Marketing Manager

LES SOLUTIONS D INFRASTRUCTURES CONVERGENTES POUR TRANSFORMER VOTRE DATACENTER. François BOTTON Product Marketing Manager LES SOLUTIONS D INFRASTRUCTURES CONVERGENTES POUR TRANSFORMER VOTRE DATACENTER François BOTTON Product Marketing Manager LES PRIORITÉS DES DSI UNE MEILLEURE AGILITÉ Le déploiement rapide d'applications

Plus en détail

Big Data par l exemple

Big Data par l exemple #PARTAGE Big Data par l exemple Alexandre Chauvin Hameau Directeur de la production Malakoff Médéric @achauvin CT BIG DATA 10/12/2015 Soyons pragmatiques BIG DATA beaucoup de bruit pour des choses finalement

Plus en détail

Protection des données et des mobiles de l'entreprise

Protection des données et des mobiles de l'entreprise Protection des données et des mobiles de l'entreprise Sommaire Votre entreprise et les enjeux aujourd'hui La gestion de sauvegarde InSync Le partage de fichier (File share) La sécurité et la protection

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

KARMA Le système de Revenue Management d'air France KLM avec Hadoop

KARMA Le système de Revenue Management d'air France KLM avec Hadoop KARMA Le système de Revenue Management d'air France KLM avec Hadoop Conférence BIG DATA - Master MBDS Université de Nice Sophia Antipolis 16 Décembre 2014 Martial AYAS maayas@airfrance.fr 2 Agenda 1. Présentation

Plus en détail

Que gagneriez-vous en passant sur Exadata? Partie I Mesurez l activité éligible au SmartScan

Que gagneriez-vous en passant sur Exadata? Partie I Mesurez l activité éligible au SmartScan Que gagneriez-vous en passant sur Exadata? Partie I Mesurez l activité éligible au SmartScan Franck Pachot, dbi-services - pour en faire la Database Machine avec laquelle Oracle propose le Hardware et

Plus en détail

WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD

WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD Xe, RAFF et StableTrac sont des marques de Western Digital

Plus en détail

C-JDBC. Emmanuel Cecchet INRIA, Projet Sardes. http://sardes.inrialpes.fr

C-JDBC. Emmanuel Cecchet INRIA, Projet Sardes. http://sardes.inrialpes.fr Emmanuel Cecchet INRIA, Projet Sardes http://sardes.inrialpes.fr Plan Motivations Idées principales Concepts Caching Perspectives /ObjectWeb 15 octobre 2002 Emmanuel.Cecchet@inrialpes.fr 2 - Motivations

Plus en détail

Infrastructure Management

Infrastructure Management Infrastructure Management Service de Supervision et gestion des infrastructures informatiques DATASHEET Présentation générale Netmind Infrastructure Management (NIM) est un service de supervision et de

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Introduction aux bases de données NoSQL

Introduction aux bases de données NoSQL Introduction aux bases de données NoSQL Khaled Tannir ets@khaledtannir.net Montréal - 23 Juillet 2015 Qui suis-je? Khaled TANNIR Big Data Architect Lead 20 ans d expérience ets@khaledtannir.net @khaled_tannir

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

«Scale-to-fit» Storage

«Scale-to-fit» Storage LIVRE BLANC «Scale-to-fit» Storage Faites évoluer votre stockage de façon totalement transparente grâce au «Scale-to-Fit» de Nimble Storage. Ce livre blanc explique comment les solutions Nimble Storage

Plus en détail

Mission. SOFT COMPUTING et les projets Big Data. Un positionnement de spécialistes

Mission. SOFT COMPUTING et les projets Big Data. Un positionnement de spécialistes SOFT COMPUTING et les projets Big Data Mission Un positionnement de spécialistes Sur le moyen terme, nous sommes profondément convaincus que les organisations qui tireront leur épingle du jeu et feront

Plus en détail

Baromètre des solutions de stockage

Baromètre des solutions de stockage Baromètre des solutions de stockage Octobre Etude réalisée par pour Descriptif de l'étude L'objectif de cette étude est de disposer d'un indicateur de suivi dans le temps pour : Apprécier la vitesse de

Plus en détail

Les journées SQL Server 2013

Les journées SQL Server 2013 Les journées SQL Server 2013 Un événement organisé par GUSS Les journées SQL Server 2013 Romain Casteres MVP SQL Server Consultant BI @PulsWeb Yazid Moussaoui Consultant Senior BI MCSA 2008/2012 Etienne

Plus en détail

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr SQL-ON-HADOOP Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr Données structurées (RDBMS) Exiger de strictement être organisé Annexer à RDBMS sans couture Consultable

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

EMC Enterprise Hybrid Cloud. Emmanuel Bernard Advisory vspecialist EMC Emmanuel.bernard@emc.com @veemanuel

EMC Enterprise Hybrid Cloud. Emmanuel Bernard Advisory vspecialist EMC Emmanuel.bernard@emc.com @veemanuel EMC Enterprise Hybrid Cloud Emmanuel Bernard Advisory vspecialist EMC Emmanuel.bernard@emc.com @veemanuel Copyright 2014 EMC Corporation. All rights reserved. # Nouveau programme IT Défis métiers actuels

Plus en détail

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages 1 Mehdi LOUIZI Plan Pourquoi Hadoop? Présentation et Architecture Démo Usages 2 Pourquoi Hadoop? Limites du Big Data Les entreprises n analysent que 12% des données qu elles possèdent (Enquête Forrester

Plus en détail

Architectures d implémentation de Click&DECiDE NSI

Architectures d implémentation de Click&DECiDE NSI Architectures d implémentation de Click&DECiDE NSI de 1 à 300 millions de ligne de log par jour Dans ce document, nous allons étudier les différentes architectures à mettre en place pour Click&DECiDE NSI.

Plus en détail

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group 1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et

Plus en détail

Système de Stockage Sécurisé et Distribué

Système de Stockage Sécurisé et Distribué Système de Stockage Sécurisé et Distribué Philippe Boyon philippe.boyon@active-circle.com ACTIVE CIRCLE QUI SOMMES NOUS? Editeur français, spécialiste du stockage de fichiers et de la gestion de données

Plus en détail

Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE

Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE Dossier Spécial DE NOUVELLES PERSPECTIVES POUR UNE BUSINESS INTELLIGENCE AGILE L es utilisateurs du décisionnel réclament plus de souplesse. Les approches mixtes, classiques et liées aux Big Data, répondent

Plus en détail

Module MLBDA Master Informatique Spécialité DAC. Cours 10 NoSQL

Module MLBDA Master Informatique Spécialité DAC. Cours 10 NoSQL Module MLBDA Master Informatique Spécialité DAC Cours 10 NoSQL Systèmes NoSQL (not only SQL) Systèmes qui abandonnent certaines propriétés des SGBDR (one size does not fit all): Le langage d interrogation

Plus en détail

Solutions Serveurs Dell PowerEdge

Solutions Serveurs Dell PowerEdge Solutions Serveurs Dell PowerEdge 2 Dell est n 1 mondial des plates-formes Intel* Société créée en 1984, fournisseur d infrastructures : platesformes Intel; Dell a livré +35 Millions d unités en 2003 Systèmes

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

L UNIVERS INSTANTANÉ:

L UNIVERS INSTANTANÉ: L UNIVERS INSTANTANÉ: Samy Benzekry Speaker Name Title 2011 Hewlett-Packard Development Company, 2010 L.P. Hewlett-Packard Development Company, L.P. The information contained herein is subject to change

Plus en détail

SQL Server 2012 et SQL Server 2014

SQL Server 2012 et SQL Server 2014 SQL Server 2012 et SQL Server 2014 Principales fonctions SQL Server 2012 est le système de gestion de base de données de Microsoft. Il intègre un moteur relationnel, un outil d extraction et de transformation

Plus en détail

Découverte et investigation des menaces avancées INFRASTRUCTURE

Découverte et investigation des menaces avancées INFRASTRUCTURE Découverte et investigation des menaces avancées INFRASTRUCTURE AVANTAGES CLÉS Infrastructure RSA Security Analytics Collecte distribuée grâce à une architecture modulaire Solution basée sur les métadonnées

Plus en détail

L'ÉNERGIE DANS LES BASES DE DONNÉES

L'ÉNERGIE DANS LES BASES DE DONNÉES L'ÉNERGIE DANS LES BASES DE DONNÉES Amine Roukh Faculté des Sciences Exactes & Informatique Université de Mostaganem amineroukh@gmail.com CONTEXTE L'amélioration de performance des systèmes informatiques

Plus en détail

Hibernate vs. le Cloud Computing

Hibernate vs. le Cloud Computing Hibernate vs. le Cloud Computing Qui suis-je? Julien Dubois Co-auteur de «Spring par la pratique» Ancien de SpringSource Directeur du consulting chez Ippon Technologies Suivez-moi sur Twitter : @juliendubois

Plus en détail

Transformation IT de l entreprise BIG DATA, MÉTIERS ET ÉVOLUTION DES BASES DE DONNÉES

Transformation IT de l entreprise BIG DATA, MÉTIERS ET ÉVOLUTION DES BASES DE DONNÉES Transformation IT de l entreprise BIG DATA, MÉTIERS ET ÉVOLUTION DES BASES DE DONNÉES M a l g r é s o n ca r act è r e en apparence multiforme un enjeu central s est progressivement affirmé en matière

Plus en détail

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca Une brève introduction aux Données Massives - Challenges et perspectives Romain Picot-Clémente Cécile Bothorel Philippe Lenca Plan 1 Big Data 2 4Vs 3 Hadoop et son écosystème 4 Nouveaux challenges, nouvelles

Plus en détail

OVESYS EXADATA PARTNER OF THE YEAR 2011

OVESYS EXADATA PARTNER OF THE YEAR 2011 OVESYS EXADATA PARTNER OF THE YEAR 2011 Interview «OVESYS groupe OVERLAP» du 12 Janvier 2012, postée sur : http://www.itplace.tv Stéphane IAICH, OVESYS, Business Development Manager (BDM) Marc NDIAYE,

Plus en détail

L'adaptateur de la série QLE10000 garantit des avantages applicatifs grâce à la mise en cache E/S

L'adaptateur de la série QLE10000 garantit des avantages applicatifs grâce à la mise en cache E/S L'adaptateur de la série QLE10000 garantit des avantages applicatifs grâce à la mise en cache E/S La technologie de mise en cache FabricCache de QLogic offre des performances évolutives aux applications

Plus en détail

Cassandra et Spark pour gérer la musique On-line

Cassandra et Spark pour gérer la musique On-line Cassandra et Spark pour gérer la musique On-line 16 Juin 2015 @ Paris Hammed RAMDANI Architecte SI 3.0 et BigData mramdani@palo-it.com +33 6 80 22 20 70 Appelez-moi Hammed ;-) (Sidi Mo)Hammed Ramdani @smramdani

Plus en détail

Photobox Amazon RedShift. Maxime Mézin Data Foundation Manager

Photobox Amazon RedShift. Maxime Mézin Data Foundation Manager Photobox Amazon RedShift Maxime Mézin Data Foundation Manager Présentation de Photobox Leader Européen du tirage et du livre photo 25 millions de clients 17 pays, dernière ouverture il y a 6 mois en Australie

Plus en détail

Présentation des. MicroStrategy 10.

Présentation des. MicroStrategy 10. Présentation des nouveautés de MicroStrategy 10. microstrategy.com/analytics 1 M MicroStrategy 10. Une véritable révolution. MicroStrategy 10 représente une étape majeure dans l évolution de la suite MicroStrategy

Plus en détail

Benchmark Clouds Iaas publics

Benchmark Clouds Iaas publics Benchmark Clouds Iaas publics (taille medium, linux) Pour obtenir l étude complète, envoyez un mail à contact@gekko.fr France Q1 2016 A propos de Gekko Gekko a été créée par une équipe de professionnels

Plus en détail

APX et VCE, Modèle d industrialisation de l intégration et du déploiement. Olivier BERNARD, VCE

APX et VCE, Modèle d industrialisation de l intégration et du déploiement. Olivier BERNARD, VCE APX et VCE, Modèle d industrialisation de l intégration et du déploiement Olivier BERNARD, VCE Généralisation des réseaux, suprématie d IP Consumérisation des terminaux informatiques Evolution vers une

Plus en détail

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique Vos experts Big Data contact@hurence.com Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB

Plus en détail

SAP HANA: note de synthèse

SAP HANA: note de synthèse Préface: Au cœur des nombreux défis que doivent relever les entreprises, l informatique se doit de soutenir les évolutions, d aider au développement de nouveaux avantages concurrentiels tout en traitant

Plus en détail

Pascale Borla-Salamet Consultante Avant Vente Oracle France. Oracle Exadata Performance et Optimisation de votre Datawarehouse

Pascale Borla-Salamet Consultante Avant Vente Oracle France. Oracle Exadata Performance et Optimisation de votre Datawarehouse Pascale Borla-Salamet Consultante Avant Vente Oracle France Oracle Exadata Performance et Optimisation de votre Datawarehouse Agenda Les nouveaux challenges Exadata Storage Server Oracle Database Machine

Plus en détail

ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE

ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE Mémoires 2010-2011 www.euranova.eu MÉMOIRES ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE Contexte : Aujourd hui la plupart des serveurs d application JEE utilise des niveaux de cache L1

Plus en détail

Solution de gestion des journaux pour le Big Data

Solution de gestion des journaux pour le Big Data Solution de gestion des journaux pour le Big Data PLATE-FORME ÉVOLUTIVE D INFORMATIONS SUR LES JOURNAUX POUR LA SÉCURITÉ, LA CONFORMITÉ ET LES OPÉRATIONS INFORMATIQUES Plus de 1 300 entreprises de secteurs

Plus en détail

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data

LE BIG DATA. TRANSFORME LE BUSINESS Solution EMC Big Data LE BIG DATA Solution EMC Big Data TRANSITION VERS LE BIG DATA En tirant profit du Big Data pour améliorer leur stratégie et son exécution, les entreprises se démarquent de la concurrence. La solution EMC

Plus en détail

Atelier BNP le 28 Mars 2013 Assurances, mutuelles : Les nouveaux défis de la communication multicanal

Atelier BNP le 28 Mars 2013 Assurances, mutuelles : Les nouveaux défis de la communication multicanal Atelier BNP le 28 Mars 2013 Assurances, mutuelles : Les nouveaux défis de la communication multicanal Solution HP Exstream Philippe Bessis Business Development Manager HP Exstream HP Exstream est une solution

Plus en détail

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation. Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data Qui sommes-nous? Société de stratégie et de consulting IT spécialisée en ebusiness, Cloud Computing, Business

Plus en détail

NAS SAN Les nouvelles solutions de stockage

NAS SAN Les nouvelles solutions de stockage Exposé réseau du 11 janvier 2006 NAS SAN Les nouvelles solutions de stockage David Komar Guillaume Le Cam Mathieu Mancel Sommaire Ħ Introduction Ħ La solution NAS Ħ La solution SAN Ħ Comparaison Ħ Cohabitation

Plus en détail

Solution d archivage

Solution d archivage Solution d archivage Storage Magazine Security Product of the Year June 06 Computer Technology Review Editor s s Choice November 05 ITPRO Editor s s Choice Jan 07 www.rise.fr 01 47 55 79 62 marketing@rise.fr

Plus en détail

Pourquoi choisir le pc hp dc5800?

Pourquoi choisir le pc hp dc5800? Pourquoi choisir le pc hp dc5800? Août 2008 2007 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Positionnement Desktop 2008 7000 Series 5000

Plus en détail

VIRTUALISATION : MYTHES & RÉALITÉS

VIRTUALISATION : MYTHES & RÉALITÉS VIRTUALISATION : MYTHES & RÉALITÉS Virtualisation Définition Marché & Approche Microsoft Virtualisation en PME Quel(s) besoin(s) Quelle(s) approche(s) Témoignage Client Mr Rocher, DSI CESML Questions /

Plus en détail

Exploiter les statistiques d utilisation de SQL Server 2008 R2 Reporting Services

Exploiter les statistiques d utilisation de SQL Server 2008 R2 Reporting Services Exploiter les statistiques d utilisation de SQL Server 2008 R2 Reporting Services Nous verrons dans cet article comment exploiter simplement les données de Log de SQL Server 2008 R2 Reporting Services

Plus en détail

Arian Papillon a.papillon@datafly.fr

Arian Papillon a.papillon@datafly.fr Arian Papillon a.papillon@datafly.fr Eléments de monitoring Compteurs de performances DMV s et DBCC Evènements (jobs, services, ) Stratégies (policies) Traces Plans d exécution Outils de mesure Multiples,

Plus en détail

1 ère Partie Stratégie et Directions Stockage IBM

1 ère Partie Stratégie et Directions Stockage IBM Cédric ARAGON Directeur des Ventes de Stockage IBM France 1 ère Partie Stratégie et Directions Stockage IBM Agenda Les défis actuels posés par la croissance des volumes de données IBM: acteur majeur sur

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

Solution de sauvegarde EMC NetWorker pour SAP HANA

Solution de sauvegarde EMC NetWorker pour SAP HANA Solution de sauvegarde EMC NetWorker pour SAP HANA Protection des données pour le Big Data Copyright 2014 EMC Corporation. Tous droits réservés. 1 L importance de SAP HANA HANA répond aux principales priorités

Plus en détail

DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE. Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data»

DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE. Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data» DU RÉSEAU AU BIG DATA UNE OFFRE GLOBALE DE GESTION DE LA DONNÉE Bruno Fleisch - Responsable Produits Tarik Hakkou Responsable du pôle «Data» BT, UN LEADER MONDIAL BT est l une des premières entreprises

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

CAHIER DES CHARGES et D.P.G.F. Lot n 1 - VIRTUALISATION

CAHIER DES CHARGES et D.P.G.F. Lot n 1 - VIRTUALISATION CAHIER DES CHARGES et D.P.G.F. Lot n 1 - VIRTUALISATION 1. ENONCE Migration d une architecture bis serveur physique vers la virtualisation avec ajout d un serveur de messagerie et un serveur de contrôle

Plus en détail

Gamme Serveurs HP ProLiant Tower

Gamme Serveurs HP ProLiant Tower Gamme Serveurs HP ProLiant Tower Janvier 2015 La gamme de produits la plus large Software-defined et cloud-ready Workload-optimized Optimized Pour les applications traditionnelles HP OneView HP Helion

Plus en détail

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC

FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS. Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC FAITES DE LA DONNÉE LE MOTEUR DE VOTRE BUSINESS Alexandre Vasseur Responsable Avant-Vente Europe du Sud Pivotal, EMC 1 Big Data = Volume, Variété, Vélocité et Valorisation Internet des objets Informations

Plus en détail

Maarch Framework 3 - Maarch. Tests de charge. Professional Services. http://www.maarch.fr. 11, bd du Sud Est 92000 Nanterre

Maarch Framework 3 - Maarch. Tests de charge. Professional Services. http://www.maarch.fr. 11, bd du Sud Est 92000 Nanterre Maarch Professional Services 11, bd du Sud Est 92000 Nanterre Tel : +33 1 47 24 51 59 Fax : +33 1 47 24 54 08 Maarch Framework 3 - Maarch PS anime le développement d un produit d archivage open source

Plus en détail

La Compression, une fonctionnalité extraordinaire pour la Haute Volumétrie.

La Compression, une fonctionnalité extraordinaire pour la Haute Volumétrie. La Compression, une fonctionnalité extraordinaire pour la Haute Volumétrie. Philippe de Saint Aignan, Administrateur Senior OCP Oracle Présentation du mercredi 29 juin 2011- Hôtel

Plus en détail

REQUEA Sizing REQUEA DEIMENSIONNEMENT DU SERVEUR APPLICATIF REQUEA. REQUEA - Sizing des Serveurs d Applications REQUEA. Requea

REQUEA Sizing REQUEA DEIMENSIONNEMENT DU SERVEUR APPLICATIF REQUEA. REQUEA - Sizing des Serveurs d Applications REQUEA. Requea REQUEA - Sizing des Serveurs d Applications REQUEA REQUEA Requea 1 Bd Vivier Merle Tour Société Suisse Lyon, 693 REQUEA Sizing DEIMENSIONNEMENT DU SERVEUR APPLICATIF REQUEA T +33 ()4 72 11 44 87 F +33

Plus en détail

PRÉSENTATION ANALYTIQUE DE LA BAIE EMC XTREMIO

PRÉSENTATION ANALYTIQUE DE LA BAIE EMC XTREMIO PRÉSENTATION ANALYTIQUE DE LA BAIE EMC XTREMIO INFORMATIONS SUR L ENTREPRISE XtremIO développe des systèmes de stockage de données d entreprise entièrement basés sur des supports à accès aléatoire, tels

Plus en détail

PACKS DE VIRTUALISATION HP

PACKS DE VIRTUALISATION HP PACKS DE VIRTUALISATION HP Les Packs de virtualisation en deux mots 10 configurations prétestées par HP Du pack pour débuter dans la virtualisation à l infrastructure haute disponibilité Toujours la même

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Business Intelligence Pour une vision mondiale centralisée et fiable de «Liquidity & Treasury»

Business Intelligence Pour une vision mondiale centralisée et fiable de «Liquidity & Treasury» Business Intelligence Pour une vision mondiale centralisée et fiable de «Liquidity & Treasury» Jean-Pierre Demont Responsable Applications, Production & Support ALM&T chez BNP Paribas CIB. 28 septembre

Plus en détail

NIMBUS TRAINING. Mise en œuvre d une SGBD dans toutes les étapes du projet. Déscription. Objectifs. Publics. Durée. Pré-requis

NIMBUS TRAINING. Mise en œuvre d une SGBD dans toutes les étapes du projet. Déscription. Objectifs. Publics. Durée. Pré-requis Mise en œuvre d une SGBD dans toutes les étapes du projet. Déscription A partir des retours d expérience, et des préconisations des éditeurs, présenter les facteurs clés de succès et les bonnes pratiques

Plus en détail

ORACLE 10g Découvrez les nouveautés. Jeudi 17 Mars Séminaire DELL/INTEL/ORACLE

ORACLE 10g Découvrez les nouveautés. Jeudi 17 Mars Séminaire DELL/INTEL/ORACLE ORACLE 10g Découvrez les nouveautés Jeudi 17 Mars Séminaire DELL/INTEL/ORACLE Le Grid Computing d Entreprise Pourquoi aujourd hui? Principes et définitions appliqués au système d information Guy Ernoul,

Plus en détail

au Centre Inter-établissement pour les Services Réseaux Cédric GALLO

au Centre Inter-établissement pour les Services Réseaux Cédric GALLO au Centre Inter-établissement pour les Services Réseaux Cédric GALLO En théorie Introduction Présentation de l ESXi VMFS Virtual Center Vsphere Client Converter Vmotion High Availability/DRS/DPM Gestion

Plus en détail