Etude d un Transformateur

Dimension: px
Commencer à balayer dès la page:

Download "Etude d un Transformateur"

Transcription

1 2AP Promo 2012 ARNOULD Mathilde CHAIX Cécile RENAUDIN Gaëlle Etude d un Transformateur INTRODUCTION L objectif de ce TP est de : Mettre en pratique nos connaissances de première année Comprendre un outil utile au fonctionnement de la plupart de nos appareils électriques et électroniques Assembler plusieurs phénomènes physiques pour n en faire plus qu un Connaître les grandeurs associées au transformateur

2 Préliminaire : Un transformateur a pour rôle de convertir les valeurs de tension et d'intensité du courant délivrées par une source d'énergie électrique alternative, en un système de tension et de courant de valeurs différentes, continues. Les transformateurs généralement utilisés dans les maisons transforment une tension de 240 V en une tension plus petite, adaptée aux appareils électroménagers utilisés. Le transformateur utilisé pour l'expérience est constitué d un aimant (le noyau) et de deux bobines en cuivre qui ne sont reliées entre elles que par un champ magnétique. Tension efficace : Nous avons mesuré à l aide d un voltmètre et d un oscilloscope la tension efficace délivrée par un générateur de courant. Cette expérience nous a permis de mettre en évidence que la tension écrite sur le voltmètre n est pas la même que l amplitude observée sur l oscilloscope. En effet, nous avons remarqué que : U eff = U o / 2 La tension délivrée par un générateur de courant/ au secteur est de 230V, c est-à-dire U eff = 230V ainsi l amplitude de la tension du secteur est de 325V. Etude du rapport de transformation : Manipulation n 1 : La bobine 1 Constitue le primaire du générateur et la bobine 2 constitue le secondaire. Cas n Nombre de spires pour le primaire Nombre de spires pour le secondaire Valeur de U 1 (en Volt) Valeur de U 2 (en Volt) n 2 / n 1 U 2 / U ,63 3,027 0,5 0, ,64 1,509 0,25 0, ,64 0,748 0,125 0, ,63 1,498 0,25 0,26 Analyse des résultats : Relation entre n 1, n 2, U 1 et U 2 : Nous avons remarqué que : U 2 / U 1 n 2 / n 1 La relation exacte est : 0,9 *U 2 / U 1 = n 2 / n 1

3 Le voltmètre en alternatif mesure la tension efficace (U eff ). Pour une impédance quelconque, nous avons : U eff = U 0 / 2. La puissance consommée par le composant : P = U eff * I eff + φ, or pour une impédance z = R, le déphasage φ=0. Visualisation à l oscilloscope des tensions issues des bobines primaires et secondaires Légende : CH1 : Bobine 1, Primaire CH2 : Bobine 2, Secondaire Sur le graphique nous pouvons relever les valeurs suivantes : V cc = 2 * amplitude = 18,6 V, nous avons donc une amplitude de 9,3 V. Manipulation n 2 : La bobine 1 Constitue le primaire du générateur et la bobine 2 constitue le secondaire. Cas n Nombre de spires pour le primaire Nombre de spires pour le secondaire Valeur de I 1 (en Ampères) Valeur de I 2 (en Ampères) n 2 / n 1 I 1 / I ,178 0,320 0,5 0, ,175 0,628 0,25 0, ,046 0,324 0,125 0, ,046 0,164 0,25 0,28 Analyse des résultats : Relation entre n 1, n 2, I 1 et I 2 : Nous avons remarqué que : n 2 / n 1 I 1 / I 2 La relation exacte est : 0,9 * (n 2 / n 1 ) = I 1 / I 2 Manipulation n 3 :

4 Inversion des bobines, la bobine 2 devient la primaire (n 2 =250) et la bobine 2 devient la secondaire (n 1 =500). I 1 = 0,685 A et I 2 = 0,318 A U 1 = 6,55 V et U 2 = 12,16 V Remarque : Nous avons remarqué que lorsqu on inverse les bobines, l intensité est multipliée par 4 en entrée et elle ne change pas en sortie, pour la tension c est l inverse : la tension en entrée est la même et elle est multipliée par 4 en sortie. Lorsque nous avons remplacé l alimentation alternative par une alimentation continue, nous avons pu observer une tension de sortie nulle. Il est vrai qu un transformateur fonctionne uniquement en alternatif si on le met en continue, nous devrons procéder à une première technique dite redressage puis une deuxième le lissage. Ces étapes seront vues à la suite du TP. La tension du secteur est de 230V. Explication physique pour décrire le fonctionnement d un transformateur : Nous avons vu précédemment qu un transformateur est constitué de deux bobines et d un aimant. En effet, un champ magnétique se produit entre les deux bobines par le biais de l aimant. Le courant crée un premier champ électrique avec la bobine primaire puis il se propage dans le noyau. Ensuite, le courant passe par la deuxième bobine dite secondaire, qui crée un courant de sortie différent de celui d entrée puisque les bobines sont différentes. L auto transformateur correspond à un transformateur dont les bobines dites primaires et secondaires sont remplacées par un enroulement simple. Manipulation n 4 : Transformateur Torique La bobine de 60 spires est la primaire, la secondaire est celle de 20 spires. La tension d entrée appliquée est de 1V et la fréquence de 1000Hz. n 1 / n 2 = 3 V cc1 = 5,12 / 2 V cc2 = 1,76 / 2 d'où : V cc1 / V cc2 = 2,9 3 = n 1 / n 2 On en conclue que les tensions sont liées aux spires appliquées. Ainsi les résultats auraient pu être anticipés puisque les formules sont identiques à celles vues précédemment.

5 Légende : Visualisation à l oscilloscope des tensions issues des bobines primaires et secondaires Bobine primaire Bobine secondaire On peut observer que la courbe issue de la bobine primaire a une amplitude plus importante que celle de la bobine secondaire. De plus, les spires appliquées à la première bobine sont plus importantes que celles de la deuxième, on peut donc en déduire que ces grandeurs sont liées et elles sont vérifiées par le calcul. Rendement d un transformateur : Le rendement est l'énergie qui est perdue dans un dispositif lors du fonctionnement, il est compris entre 0 et 1. Le rapport des puissances en entrée et en sortie donne le rendement (r). Manipulation n 5 : Dans ce cas nous prenons : n 1 = 500 et n 2 = 250 P entrée = 0,42 Watts U sortie = 2,30 V et R = 15 Ω d'où Psortie = U sortie / R = 0,37 Watts Nous avons donc : r = Psortie / P entrée = 0,88. Le rendement est de 88%. Les pertes énergétiques peuvent être dues à un dégagement de chaleur induit par l effet Joule. L expression de la puissance s écrit : P = ri 2 Ordre de grandeur du rendement d un transformateur (trouvé sur internet) : r th = 1 En effet, le rendement idéal d un transformateur est égal à 1 mais il peut être inférieur. Le rapport effectué est la puissance fournie en entrée sur la puissance absorbée.

6 Redressage et lissage : Redressage Manipulation n 6 : Le nombre de spire du primaire est de 500, le secondaire a 250 spires. Caractéristiques d une diode : La première est celle de laisser passer le courant dans un sens, on parle alors de diode passante et de le bloquer dans l autre sens, on parle alors de diode bloquée. A noter que la diode n est pas symétrique par rapport à l origine contrairement à une lampe ou un résistor. Caractéristique tension courant d une diode Visualisation à l oscilloscope des tensions issues des bobines primaires et secondaires Légende : Bobine primaire Bobine secondaire

7 Lors du redressement les tensions négatives sont supprimées. Lissage Avec le condensateur, il y a une transformation de la tension alternative en une tension continue qui a la valeur des crêtes maximum. En effet, cette nouvelle tension varie à la manière d une exponentielle décroissante (e -t/rc ). Ainsi la tension ne va pas descendre jusque 0 et l amplitude sera moins importante : la courbe paraîtra plus «lisse». Visualisation à l oscilloscope des tensions issues des bobines primaires et secondaires Légende : Bobine primaire Bobine secondaire Avec R = Ω : τ est trop grand, on ne voit pas la charge et la décharge. Avec R = 20 Ω, pour pouvoir voir l allure de la charge et de la décharge. Avec un condensateur plus petit, la décharge est complète. Pont de Greatz : Intérêt du pont de Greatz : Le pont de Graetz est constitué de 4 diodes deux passantes et deux bloquées. Il ne nécessite pas de transformateur spécial et la valeur des diodes bloquées est égale à l inverse de la tension maximale appliquée au pont.

8 Légende : Schéma représentant le pont de Graetz Diodes bloquées Diodes passantes Sens de passage du courant Lorsqu il y a une arche négative elle devient positive. Utilisation pratique d un transformateur : EDF possède une filiale RTE qui s occupe des lignes de transport de l énergie électrique. En ce qui concerne la structure des lignes électriques, elles sont en alliage d aluminium permettant le transport du courant alternatif. Un câble supplémentaire dit de garde protège les lignes de la foudre. Une Haute Tension est caractérisée par un voltage compris entre et volts, elles sont utilisées par les industries et les lignes de voies ferrées. En ce qui concerne le transport électrique dans les milieux ruraux et l interconnexion des centrales électriques, le voltage est compris entre et volts, elles sont dites de très hautes tensions. L utilisation de ces tensions élevées sont utilisées dû fait que les lignes sont longues et donc des pertes d énergie sont occasionnées. En effet, tout matériau a une résistivité propre qui peut se traduire par dégagement de chaleur, ici l ordre de résistivité des câbles est de 1 ohm par kilomètre. Rôle d un transformateur dans une utilisation pratique : Plusieurs types de transformateurs existent dans la vie courante. Nous pouvons citer le transformateur électrique qui a pour but soit d élever la tension soit de l abaisser. Un transformateur va permettre d adapter la tension délivrée dans les prises électriques à la tension que demandent les appareils électriques de notre quotidien ; évitant ainsi d abimer ces appareils électriques par surtension.

9 Conclusion : Ce TP nous a permis de mettre en pratique nos connaissances théoriques acquises l an passé en électricité et champ magnétique par le biais du fonctionnement d un transformateur. En effet, nous avons pu observer qu un adaptateur secteur est constitué d un transformateur, d un pont de diodes dit de Graetz et d un condensateur. Le fait de lier ces composants permet de créer un adaptateur secteur qui permet de transformer la tension reçue par la société EDF en une tension adaptée à l appareil électroménager ou autre que nous souhaitons utiliser. Transformateur Pont de Graetz Condensateur

Étude d un transformateur

Étude d un transformateur Vivien KOTLER Aurélien UNFER 2AP ENSGSI Étude d un transformateur Introduction : L objectif de ce TP est d étudier le principe le fonctionnement d un transformateur et les applications dans la vie de tous

Plus en détail

TP PHYSIQUE ETUDE D UN TRANSFORMATEUR

TP PHYSIQUE ETUDE D UN TRANSFORMATEUR MAHU Gaëtan MEYER Vivien SERRIERE Ludivine TP PHYSIQUE ETUDE D UN TRANSFORMATEUR 1/11 PRELIMINAIRES Un transformateur est un convertisseur permettant de modifier les valeurs de tension et d'intensité du

Plus en détail

Étude des redresseurs à diodes (redresseurs non commandés)

Étude des redresseurs à diodes (redresseurs non commandés) Étude des redresseurs à diodes (redresseurs non commandés) Première partie : généralités 1. Rappels sur les diodes En électronique de puissance, la diode est utilisée comme un interrupteur unidirectionnel

Plus en détail

Chapitre 7 TENSIONS ALTERNATIVES ET CONTINUES

Chapitre 7 TENSIONS ALTERNATIVES ET CONTINUES Chapitre 7 TENSIONS ALTERNATIVES ET CONTINUES I) Les différents types de tensions Définition : La tension aux bornes d un générateur caractérise le signal électrique (énergie électrique) que délivre ce

Plus en détail

TRANSFORMATEUR MONOPHASE

TRANSFORMATEUR MONOPHASE TRANSFORMATEUR MONOPHASE Les parties à préparer avant la séance sont encadrées. Au début de chaque séance, l enseignant vérifiera que ce travail de préparation a bien été réalisé. OBJECTIFS DE LA MANIPULATION

Plus en détail

LA BOBINE ET LE DIPOLE RL

LA BOBINE ET LE DIPOLE RL LA BOBINE ET LE DIPOLE RL Prérequis 1. Cocher les ou la bonne réponse Un champ magnétique peut être produit par : un aimant permanant un corps isolant un corps aimanté un fil de cuivre un solénoïde parcourue

Plus en détail

Chapitre n 9 : Circuits alimentés en courant alternatif

Chapitre n 9 : Circuits alimentés en courant alternatif 5 ème OS Chapitre n 9 : Circuits alimentés en courant alternatif Considérations historiques La plupart des lampes de l époque étaient de basse résistance et devaient être montées en série, fonctionnant

Plus en détail

REDRESSEMENT ET FILTRAGE

REDRESSEMENT ET FILTRAGE TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI REDRESSEMENT ET FILTRAGE OBJECTIFS Utilisation de diodes pour redresser une tension alternative Puis filtrage passe-bas de la tension redressée pour

Plus en détail

Étude des redresseurs à diodes (redresseurs non commandés)

Étude des redresseurs à diodes (redresseurs non commandés) Étude des redresseurs à diodes (redresseurs non commandés) Première partie : généralités 1. Rappels sur les diodes En électronique de puissance, la diode est utilisée comme un interrupteur unidirectionnel

Plus en détail

LES FONCTIONS ELECTRONIQUES

LES FONCTIONS ELECTRONIQUES Chapitre 7 Leçon 1 LES FONCTIONS ELECTRONIQUES Etablissement : Ecole Préparatoire Elala Professeur : NAJJAR Ahmed AU : 2010/2011 I/ Mise en situation : Le moteur de la mini perceuse fonctionne sous une

Plus en détail

LA THEORIE SUR L ELECTRICITE

LA THEORIE SUR L ELECTRICITE Cours d électricité LA THEORIE SUR L ELECTRICITE LES NOTIONS DE BASE Le courant alternatif PARTIE N 3 : LES PUISSANCES TABLE DES MATIERES 1. La puissance en courant alternatif... 1.1. La puissance instantanée...

Plus en détail

Production et transport de l électricité

Production et transport de l électricité Plan 1. Production d une tension alternative I. QUELLE EST LA NATURE DE LA TENSION FOURNIE PAR UNE GÉNÉRATRICE DE BICYCLETTE? 1. Matériel. 2. Protocole. 3. Tension fournie par une génératrice de bicyclette.

Plus en détail

Conversion de puissance Chap2 Transformateur

Conversion de puissance Chap2 Transformateur Conversion de puissance Chap2 Transformateur 1. Etude du transformateur idéal 1.1. Description du transformateur 1.2. Hypothèses du modèle de transformateur idéal 1.3. Loi de transformation des tensions

Plus en détail

Puissances électriques

Puissances électriques Puissances électriques Table des matières 1. Introduction...2 2. Définition...3 2.1. Cas du courant continu.3 2.2. Cas du courant alternatif...3 2.3. Puissance apparente...5 2.4. Puissance réactive...5

Plus en détail

ETUDE D ÉLÉMENTS CONSTITUANT UN FOUR À MICRO-ONDES

ETUDE D ÉLÉMENTS CONSTITUANT UN FOUR À MICRO-ONDES ETUDE D ÉLÉMENTS CONSTITUANT UN FOUR À MICRO-ONDES Dans la suite du document, ce symbole signifie «Appeler l examinateur». L organe essentiel d un four à micro-ondes est le magnétron, c est un oscillateur

Plus en détail

LE TRANSFORMATEUR MONOPHASE

LE TRANSFORMATEUR MONOPHASE LE TRANSFORMATEUR MONOPHASE I) Généralité sur le transformateur : 1) Définition : Le transformateur a pour but de modifier les amplitudes des grandeurs électriques alternatives : il transforme des signaux

Plus en détail

~ - 1. Définition. 2. Rappel des grandeurs en sinusoïdal. i = Imax. sin (ω.t)

~ - 1. Définition. 2. Rappel des grandeurs en sinusoïdal. i = Imax. sin (ω.t) 1. Définition La conversion du courant alternatif en courant continu est réalisée par un convertisseur appelé redresseur. La charge elle peut être résistive, inductive ou capacitif ; elle est alimentée

Plus en détail

Activité expérimentale n 1 : circuit électrique de chauffage d une habitation.

Activité expérimentale n 1 : circuit électrique de chauffage d une habitation. Noms : Prénoms : Classe : Sujet à rendre obligatoirement avec le compte- rendu de TP Activité expérimentale n 1 : circuit électrique de chauffage d une habitation. Barème S approprier /3,5 Communiquer

Plus en détail

Étude du condensateur

Étude du condensateur Étude du condensateur EE 1400 32123 Mode d emploi Version 01 202 1. Introduction Le matériel expérimenté ci-dessous a été développé dans le cadre du programme d'électrocinétique en 5 e sciences générales.

Plus en détail

1 ) Transformateur monophasé. 1.1) Définition

1 ) Transformateur monophasé. 1.1) Définition Chapitre B...Transformateur monophasé ) Transformateur monophasé.) Définition Un transformateur est un quadripôle formé de deux enroulements enlaçant un circuit magnétique commun. C est une machine statique

Plus en détail

U = R x I CAP PRO E. ELECTROTHECHNIQUE 1ère et 2ème année

U = R x I CAP PRO E. ELECTROTHECHNIQUE 1ère et 2ème année U = R x I P = U x I I1 I2 U1 U2 U3 I3 1ère et 2ème année : LE COURANT CONTINU sa lettre de désignation Q ampère.heure ou coulombs son unité Ah ou C I ampère A U t P R volt seconde ou heure watt watt.heure

Plus en détail

Cours d électronique

Cours d électronique Cours d électronique LA HEORIE SUR L ELECRONIQUE LES COMPOSANS DE BASE PARIE N 3 : LE REDRESSEMEN ABLE DES MAIERES 1. Le redressement... 2 1.1. Le redressement monophasé simple alternance... 2 1.1.1. Définition

Plus en détail

COURS DE SCIENCES PHYSIQUES Classe de BAC PRO

COURS DE SCIENCES PHYSIQUES Classe de BAC PRO NOM et Prénom de l élève : COURS DE SCIENCES PHYSIQUES Classe de BAC PRO ACTIVITÉS 1 L INTENSITÉ D UN COURANT 2 LA TENSION ÉLECTRIQUE 3 RÉSISTANCE ÉLECTRIQUE LOI D OHM 4 PUISSANCE ÉLECTRIQUE 5 L ÉNERGIE

Plus en détail

Chap2 Transformateur

Chap2 Transformateur Chap2 Transformateur 1. Etude du transformateur idéal 1.1. Description du transformateur 1.2. Hypothèses du modèle de transformateur idéal 1.3. Loi de transformation des tensions 1.4. Loi de transformation

Plus en détail

CH IX) Courant alternatif Oscilloscope.

CH IX) Courant alternatif Oscilloscope. CH IX) Courant alternatif Oscilloscope. Il existe deux types de courant, le courant continu et le courant alternatif. I) Courant alternatif : Observons une coupe transversale d une «dynamo» de vélo. Galet

Plus en détail

Déterminer le sens du courant induit dans la spire sachant que B z. (t) est une fonction croissante du temps.

Déterminer le sens du courant induit dans la spire sachant que B z. (t) est une fonction croissante du temps. PC 13/14 TD INDUCTION AC1 : Loi de Lenz On considère une spire circulaire (C) fixe, conductrice de résistance R soumise à un champ magnétique extérieur uniforme variable et orthogonal à la surface du circuit

Plus en détail

P15 Induction et auto-induction

P15 Induction et auto-induction Induction et auto-induction Le phénomène d induction correspond à l apparition dans un conducteur d une force électromotrice lorsque celui-ci est soumis à un champ magnétique variable. Ceci peut alors

Plus en détail

N.L.Technique FONCTION ALIMENTER : GRANDEURS ELECTRIQUES S.CHARI

N.L.Technique FONCTION ALIMENTER : GRANDEURS ELECTRIQUES S.CHARI N.L.Technique FONCTON ALMENTER : GRANDERS ELECTRQES S.CHAR. Le courant électrique n courant électrique (déplacement de porteur des charges) ne peut s'établir que dans un circuit électrique fermé. Circuit

Plus en détail

Chapitre 2 Étude du ferromagnétisme et de ses applications Introduction à la conversion électronique de la puissance

Chapitre 2 Étude du ferromagnétisme et de ses applications Introduction à la conversion électronique de la puissance Sommaire Chapitre 1 Le transformateur monophasé parfait.................... 5 Méthodes : l essentiel ; mise en œuvre........................ 19 Exercices : énoncés, indications, solutions......................

Plus en détail

Chapitre 2 : Plan du chapitre. 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif

Chapitre 2 : Plan du chapitre. 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif Chapitre 2 : Le régime alternatif (AC 1 Plan du chapitre 1. Grandeur alternative 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif 2 Plan du chapitre 1.

Plus en détail

maximale. Qu appelle-t-on le phénomène qui se produit? c. À quelle condition ce phénomène se produit-t-il? Montrer que N 1 obéit à cette condition.

maximale. Qu appelle-t-on le phénomène qui se produit? c. À quelle condition ce phénomène se produit-t-il? Montrer que N 1 obéit à cette condition. Prof : Barhoumi Ezzedine Classe : 4 ème Math A.S. : 213/214 Tunisie - Sidi Bouzid - Lycée de Cebbala Les oscillations électriques forcées Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance

Plus en détail

Corrigé du devoir n 1

Corrigé du devoir n 1 Corrigé du devoir n 1 Il est fortement conseillé de lire l'ensemble des énoncés avant de commencer. Exercice 1 (15 points) L'étude porte sur la comparaison de deux architectures de réseau comportant deux

Plus en détail

Chapitre 7 : Le dipôle RL

Chapitre 7 : Le dipôle RL Connaissances et savoir-faire exigibles : Chapitre 7 : Le pôle RL (1) (2) (3) (4) (5) (6) (7) (8) Connaître la représentation symbolique d une bobine. En utilisant la convention récepteur, savoir orienter

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Mécanique Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND LE PUBLIE EN ANNEXE DE L ARRETE

Plus en détail

I Le panneau solaire. II La commande moteur par pont en H K A K A 2. Mode de fonctionnement. 0 0 Moteur à l arrêt. 0 1 Monter.

I Le panneau solaire. II La commande moteur par pont en H K A K A 2. Mode de fonctionnement. 0 0 Moteur à l arrêt. 0 1 Monter. I Le panneau solaire Le panneau solaire permet de transformer l'énergie solaire en énergie électrique. La batterie stocke cette énergie électrique. La batterie doit pouvoir fournir assez d'énergie pour

Plus en détail

Les courants d aimantations

Les courants d aimantations Les courants d aimantations En magnétoscopie, dans la majorité des cas, le courant électrique est utilisé pour générer le champ magnétique dans les pièces. Le courant est réglé pour obtenir une valeur

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Table des matières 1. Principe de fonctionnement... 2. Schéma équivalent du moteur à courant continu... 3. Alimentation du moteur... 4. Variation de vitesse

Plus en détail

Chapitre 3 : l énergie électrique

Chapitre 3 : l énergie électrique STI2D Chapitre 3 : l énergie électrique Partie 7 : conversions Pré-requis : Connaissance générales sur l'électricité Connaissances générales sur l'énergie Les composants de l électronique Compétences visées

Plus en détail

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2 BTS 2004 - L'installation électrique d'un atelier de teinture de tissus est alimenté par l'intermédiaire d'un transformateur monophasé (1), de rapport de transformation m = 0, 15 et de puissance nominale

Plus en détail

. LE TRANSFORMATEUR REEL

. LE TRANSFORMATEUR REEL Transfo réel - Cours - 1/19. LE TRANSFORMATEUR REEL. I Présentation Le transformateur est un convertisseur statique, alternatif / alternatif. Il est soit élévateur, soit abaisseur de tension ou de courant.

Plus en détail

II.1 Généralités sur le Transformateur Monophasé

II.1 Généralités sur le Transformateur Monophasé Chapitre II Modélisation et Simulation des Transformateurs Electriques 15 II.1 Généralités sur le Transformateur Monophasé II.1.1 Rôle L'utilisation des transformateurs électriques ont pour rôle de changer

Plus en détail

Le courant alternatif

Le courant alternatif Le courant alternatif Exercices d'application : 1 la fréquence d un courant alternatif est de 40 Hz. Calculer ses période et pulsation 2 un courant d appel téléphonique à une fréquence de 25 Hz et une

Plus en détail

Milieux magnétiques. Aimantation

Milieux magnétiques. Aimantation Milieux magnétiques Aimantation La différence entre courants «libres» et courants «liés» La définition du vecteur aimantation La définition du vecteur excitation magnétique L équation de Maxwell-Ampère

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Table des matières 1. Principe de fonctionnement... 2. Schéma équivalent du moteur à courant continu... 3. Alimentation du moteur... 4. Variation de vitesse

Plus en détail

EXAMEN #3 ÉLECTRICITÉ ET MAGNÉTISME 40% de la note finale

EXAMEN #3 ÉLECTRICITÉ ET MAGNÉTISME 40% de la note finale EXAMEN #3 ÉLECTRICITÉ ET MAGNÉTISME 40% de la note finale Hiver 2013 Nom : Chaque question à choix multiples vaut 2 points 1. Une sphère métallique de rayon a possède une charge de 5 µc. Elle est entourée

Plus en détail

Chapitre 2 Transformateurs et Redresseurs à diodes

Chapitre 2 Transformateurs et Redresseurs à diodes Chapitre Transformateurs et Redresseurs à diodes Frédéric Gillon - Iteem Sommaire La conversion d énergie Équations Physiques de la conversion d énergie magnétique Le Transformateur Monophasé Le Transformateur

Plus en détail

LA THEORIE SUR L ELECTRICITE

LA THEORIE SUR L ELECTRICITE Cours d électricité LA THEORIE SUR L ELECTRICITE LES NOTIONS DE BASE Le courant alternatif La théorie sur l électricité - les notions de base - AC - Table des matières générales TABLE DES MATIERES PARTIE

Plus en détail

Oscillations libres dans un circuit RLC. Extrait de l introduction du sujet LIBAN 2003 : Application des oscillations électriques

Oscillations libres dans un circuit RLC. Extrait de l introduction du sujet LIBAN 2003 : Application des oscillations électriques I. Exemple d application d un circuit LC. Oscillations libres dans un circuit RLC Extrait de l introdtion du sujet LIBAN 003 : Application des oscillations électriques Dans cette partie, on étudie une

Plus en détail

GENERALITES SUR LES MACHINES SYNCHRONES

GENERALITES SUR LES MACHINES SYNCHRONES GENERALITES SUR LES MACHINES SYNCHRONES 1. Constitution 1-1. Rotor = inducteur Il est constitué d un enroulement parcouru par un courant d excitation Ie continu créant un champ magnétique 2p polaire. Il

Plus en détail

TP N 4 MESURE DES CARACTERISTIQUES DES SIGNAUX ALTERNATIFS

TP N 4 MESURE DES CARACTERISTIQUES DES SIGNAUX ALTERNATIFS TP N 4 MESURE DES CARACTERISTIQUES DES SIGNAUX ALTERNATIFS OBJECTIF Mesurer les grandeurs qui caractérisent les signaux alternatifs à savoir la fréquence et le déphasage entre deux signaux moyennant les

Plus en détail

Chap.2 Dipôles linéaires

Chap.2 Dipôles linéaires Chap. Dipôles linéaires 1. Généralités sur les dipôles 1.1. Les différents types de dipôles 1.. La caractéristique courant-tension (ou tension-courant) d un dipôle 1.3. Point de fonctionnement du dipôle

Plus en détail

Transformateur. 1 Présentation. 1.1 Schéma. 1.2 Principe de fonctionnement. Pour information Rappel

Transformateur. 1 Présentation. 1.1 Schéma. 1.2 Principe de fonctionnement. Pour information Rappel 1 Présentation 11 Schéma 12 Principe de fonctionnement Pour information 121 Rappel Loi de Faraday : une variation de flux à travers une spire créer une fém e Inversement une fém e dans une spire crée une

Plus en détail

/40 Evaluation des connaissances de Physique-Chimie

/40 Evaluation des connaissances de Physique-Chimie NOM : Prénom : classe : 2 /40 Evaluation des connaissances de Physique-Chimie Cocher la bonne réponse. Il n existe qu une réponse correcte par question. /20 Chimie /3 Les matériaux et l air 1) L aluminium

Plus en détail

Objectifs généraux Compétences socles compétences terminales

Objectifs généraux Compétences socles compétences terminales Objectifs généraux Compétences socles compétences terminales a Mout.1 04/02/00 Nom du professeur : Jacobs Henry Année scolaire : 200 /200. Intitulé du cours : électricité (Degré complet) Classe : 3.Q.

Plus en détail

Pour produire de l'électricité en grandes quantités, il faut transformer une source d'énergie fournie par la nature.

Pour produire de l'électricité en grandes quantités, il faut transformer une source d'énergie fournie par la nature. Pour produire de l'électricité en grandes quantités, il faut transformer une source d'énergie fournie par la nature. Cette opération est réalisée dans des centrales électriques. Il faut distinguer deux

Plus en détail

Cours La puissance électrique

Cours La puissance électrique Classe : 2ME BEP Métiers de l électrotechnique PUISSANCE ET ENERGIE Lieu : Salle de cours & salle de mesures Objectif Identifier la notion de puissance, d énergie et de rendement. Savoirs : S 0.1 : Circuits

Plus en détail

COURANT CONTINU : LES LOIS GENERALES

COURANT CONTINU : LES LOIS GENERALES CORNT CONTN : LE LO GENERLE Le courant électrique 1) Déplacement des charges électriques Le courant électrique est la manifestation du déplacement de charges électriques. Le sens conventionnel du courant

Plus en détail

Etude du fonctionnement d un transformateur monophasé

Etude du fonctionnement d un transformateur monophasé NOM : prénom : Grille d évaluation Etude du fonctionnement d un transformateur monophasé Les compétences à développer en sciences appliquées. Les compétences évaluées dans ce TP. C02 : Choisir une solution

Plus en détail

M ) {( R ), ( B ), ( C )} = UDM

M ) {( R ), ( B ), ( C )} = UDM Exercice 1 :(bac 98) Le circuit électrique de la figure-2 comporte en série : - un résistor ( R ) de résistance R = 80 Ω - une bobine ( B ) d inductance L et de résistance propre r. - un condensateur (

Plus en détail

Etude de la résonance série

Etude de la résonance série Circuit électrique comprenant une bobine (L, r), un condensateur C et une résistance R montés en série Etude de la résonance série i A u L Bobine L = 1 H r = 1,5 Ω i GBF u u C Condensateur C =,1 µf B u

Plus en détail

1.1) Rappel sur les grandeurs sinusoïdales

1.1) Rappel sur les grandeurs sinusoïdales Les redresseurs effectuent la conversion du courant alternatif en courant continu. 1) Rôle d un redresseur Le redresseur permet d alimenter un récepteur en courant redressé à tension fixe. Dans le cas

Plus en détail

COURS DE SCIENCES PHYSIQUES Classe de BAC STAV

COURS DE SCIENCES PHYSIQUES Classe de BAC STAV NOM et Prénom de l élève : COURS DE SCIENCES PHYSIQUES Classe de BC STV CTIVITÉS 1 L INTENSITE ÉLECTRIQUE 2 L TENSION ÉLECTRIQUE 3 RÉSISTNCE ÉLECTRIQUE LOI D OHM 4 PUISSNCE ÉLECTRIQUE EN COURNT CONTINU

Plus en détail

Activité : Transport et distribution de l énergie électrique

Activité : Transport et distribution de l énergie électrique 1STL Date : Activité : Transport et distribution de l énergie électrique Thème du programme : Habitat Sous-thème : Gestion de l énergie dans l habitat Type d activités : Activité documentaire, Activité

Plus en détail

La grandeur mesurée est l intensité et l unité est l Ampère de symbole : A Multiple et sous multiple : le milliampère (ma) ; 1 A 1000 ma

La grandeur mesurée est l intensité et l unité est l Ampère de symbole : A Multiple et sous multiple : le milliampère (ma) ; 1 A 1000 ma ctivité ① Connaître la grandeur et l unité de l intensité électrique. Faire un schéma d un circuit électrique et indiquer le sens du courant 1- Sens du courant et Nature du courant De nombreuses expériences

Plus en détail

Séquence 13 : mesure des tensions alternatives Cours niveau troisième

Séquence 13 : mesure des tensions alternatives Cours niveau troisième Séquence 13 : mesure des tensions alternatives Cours niveau troisième Objectifs : - Comprendre les courbes affichées par un oscilloscope (oscillogramme) - Savoir mesurer la fréquence d une tension périodique

Plus en détail

Circuit fixe dans un champ magnétique variable

Circuit fixe dans un champ magnétique variable Circuit fixe dans un champ magnétique variable II. Auto-induction 1. Flux propre et inductance propre Soit un circuit filiforme ( par exemple une bobine ) parcouru par un courant d intensité. Ce circuit

Plus en détail

PC A DOMICILE WAHAB DIOP LSLL

PC A DOMICILE WAHAB DIOP LSLL cos PC A DOMICILE - 779165576 WAHAB DIOP LSLL P13-OSCILLATIONS E L E C T R I Q U E S F O R C E E S E N R TRAVAUX DIRIGES TERMINALE S 1 On donne deux tensions sinusoïdales, exprimées en volts u 1 = 3cos(250t)

Plus en détail

3. Comportement d'une bobine idéale sur une tension sinusoïdale

3. Comportement d'une bobine idéale sur une tension sinusoïdale 3. Comparaison: tension continue et tension sinusoïdale sur une bobine presque idéale montage: valeurs mesurées: tension continue: tension sinusoïdale: 7,5V 3A 7,5V 3A 2,5Ω EFF, EFF, X X 5V 8,8mA EFF,

Plus en détail

I Le pont tout thyristors :

I Le pont tout thyristors : I Le pont tout thyristors : T.P. Le redressement commandé : le pont tout thyristors. I.1 Présentation du montage (Charge R-L ou R-L-E ; conduction ininterrompue): i CH u TH1 u TH2 TH 1 TH 2 u L u i i TH1

Plus en détail

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine I- Généralités Le point commun des méthodes de production d électricité par éolienne, centrale hydraulique ou centrale nucléaire est la transformation (ou conversion) mécanique/électrique. Elle est présente

Plus en détail

FICHE MATIERE. Utilisation de la Diode à Jonction en Redressement

FICHE MATIERE. Utilisation de la Diode à Jonction en Redressement FICH MATIR Unité d enseignement : lectronique 1 CU n 1 : lectronique Générale Chapitre 2 Utilisation de la Diode à Jonction en Redressement Nombre d heures/chapitre : 8h Cours intégré Système d évaluation

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET EII 2

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET EII 2 TP EII.2 Page 1/5 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET EII 2 Ce document comprend : - une fiche descriptive du sujet destinée à l examinateur : Page 2/5 -

Plus en détail

Le régime sinusoïdal

Le régime sinusoïdal Un peu d'histoire : À la suite de l'invention de la lampe à incandescence par Edison en 1878, un grand nombre d'installations s'équipe en générateur à courant continu pour l'éclairage. Parallèlement, un

Plus en détail

Chapitre 4 : Puissance et énergie

Chapitre 4 : Puissance et énergie Chapitre 4 : Puissance et énergie Puissance électrique 1. expression générale de la puissance 2. cas particuliers, la résistance 3. mesure de la puissance Energie électrique 1. Relation entre puissance

Plus en détail

Les adaptateurs d énergie

Les adaptateurs d énergie 1- Adapter l énergie électrique Afin d adapter l énergie électrique aux besoins, il existe plusieurs solutions suivant la nature de la charge. Nous nous intéresserons ici au problème de l adaptation de

Plus en détail

ETUDE DES OSCILLATIONS MECANIQUE FORCEES

ETUDE DES OSCILLATIONS MECANIQUE FORCEES EXERCICE 1 ETUDE DES OSCILLATIONS MECANIQUE FORCEES A/ Un pendule élastique horizontal est formé d'un ressort (R) à spires non jointives, de masse négligeable, de raideur K=20N.m -1 dont l'une de ses extrémités

Plus en détail

ÉLECTRONIQUE DES CIRCUITS INTÉGRÉS DIODES DOCUMENT DE SYNTHÈSE

ÉLECTRONIQUE DES CIRCUITS INTÉGRÉS DIODES DOCUMENT DE SYNTHÈSE ÉLECTRONIQUE DES CIRCUITS INTÉGRÉS DIODES DOCUMENT DE SYNTHÈSE Ressources pédagogiques: http://cours.espci.fr/site.php?id=37 Forum aux questions : https://iadc.info.espci.fr/bin/cpx/mforum et cliquer sur

Plus en détail

ELECTRICI TE. Dr CHIALI N.

ELECTRICI TE. Dr CHIALI N. ELECTRICI TE Dr CHIALI N. Introduction I. Les charges électriques II. Le courant électrique 1. Le circuit électrique 2. Les effets du courant 3. Sens conventionnel du courant 4. Le courant continu et alternatif

Plus en détail

Chapitre 8P : TRANSFERTS D ENERGIE DANS UN CIRCUIT ELECTRIQUE

Chapitre 8P : TRANSFERTS D ENERGIE DANS UN CIRCUIT ELECTRIQUE P3P électrodynamique Chapitre 8P 1 ère S Chapitre 8P TRANSFERTS D ENERGE DANS UN CRCUT ELECTRQUE Lors du passage du courant électrique, le générateur transfère une partie de son énergie aux récepteurs

Plus en détail

A1.2. Conversions d énergie

A1.2. Conversions d énergie 1.2. Conversions d énergie Mise en situation ujourd hui, en dehors des véhicules automobiles qui y viennent lentement, nous «consommons» principalement de l énergie qui nous arrive sous forme électrique

Plus en détail

STPI1 P3-Electricité. CM1 Lois générales des circuit électriques, générateurs, dipôles

STPI1 P3-Electricité. CM1 Lois générales des circuit électriques, générateurs, dipôles STPI1 P3-Electricité CM1 Lois générales des circuit électriques, générateurs, dipôles 1 Générateur de tension Générateur idéal de tension : entretient entre ses bornes une différence de potentiel (tension)

Plus en détail

Cours d électronique

Cours d électronique Cours d électronique LA THEORIE SUR L ELECTRONIQUE LES COMPOSANTS DE BASE PARTIE N 6 : LE DIAC La théorie sur l électronique - les composants de base - Le diac TABLE DES MATIERES 1. La description... 2

Plus en détail

CIRCUITS A COURANT ALTERNATIFS. Circuit uniquement résistant.

CIRCUITS A COURANT ALTERNATIFS. Circuit uniquement résistant. CICUITS A COUANT ALTENATIFS. Circuit uniquement résistant. Soient : U la tension efficace aux bornes du circuit de résistance (sans self ni capacité), I l'intensité efficace du courant; on démontre que

Plus en détail

Chapitre 13 Machines électromagnétiques

Chapitre 13 Machines électromagnétiques Chapitre 13 Machines électromagnétiques INTRODUCTION 3 1. LES TRANSFORMATEURS 5 1.1. Le transformateur monophasé 5 1.1.1. Constitution 5 1.1.2. Principe 5 1.1.3. Définitions et symboles 6 1.1.4. Grandeurs

Plus en détail

tout droit est réservé à l auteur ( SFAXI SALAH : professeur hors classes)

tout droit est réservé à l auteur ( SFAXI SALAH : professeur hors classes) 4eme/math Sc/tec/info PROBLEME N1 On réalise entre deux points A et M d un circuit un montage série comportant un résistor de résistance r=40ω, une bobine d inductance L et de résistance R=13Ω et un condensateur

Plus en détail

Corrigé de TD-Transformateur-monophasé

Corrigé de TD-Transformateur-monophasé Corrigé de TD-Transformateur-monophasé Exercice 1 Soit un transformateur parfait 380v/220v 50 Hz de puissance apparente nominale S=2 kva. 1. Calculer les courants nominaux I 1N, I 2N et le rapport de transformation

Plus en détail

Etude de systèmes /Modélisation BTS1. SOUS SYSTEME: Redressement Mono alternance

Etude de systèmes /Modélisation BTS1. SOUS SYSTEME: Redressement Mono alternance Etude de systèmes /Modélisation BTS1 SOUS SYSTEME: Redressement Mono alternance Durée: 4 séquences Détermination de valeurs efficace et moyenne Domaine électrotechnique : Utilisation du multimètre et oscilloscope

Plus en détail

Chapitre 3 : Le transformateur

Chapitre 3 : Le transformateur I Présentation 1. Constitution 2. Symbole et convention Chapitre 3 : Le transformateur II Transformateur parfait en sinusoïdal 1. relation entre les tensions 2. formule de Boucherot 3. les intensités 4.

Plus en détail

Prétest Forme C SCP Corrigé

Prétest Forme C SCP Corrigé Prétest Forme C SCP 4011 Corrigé Centre de formation professionnelle de Tracy Modifié par le Centre St-François-Xavier 16 mai 2007 1. Thème Définition Exemple Conducteur. Matériau qui ne transmet pas d

Plus en détail

Chapitre 2 : Courant alternatif

Chapitre 2 : Courant alternatif Chapitre 2 : Courant alternatif I. Définition Un courant alternatif est un courant dont l intensité : varie périodiquement en fonction du temps =+ avec la période présente alternativement des valeurs positives

Plus en détail

ELECTICITE II ETUDE DE L ALIMENTATION DE SECOURS D UNE ALARME

ELECTICITE II ETUDE DE L ALIMENTATION DE SECOURS D UNE ALARME ELECTICITE II ETUDE DE L ALIMENTATION DE SECOURS D UNE ALARME Etude du transformateur Etude du redressement ÉTUDE D UN TRANSFORMATEUR PAR CANDIDAT : - un oscilloscope ; - deux voltmètres ou multimètres

Plus en détail

Electromagnétisme. Electromagnetism. Maquette alternateur de démonstration Alternator demonstration scale model. Réf :

Electromagnétisme. Electromagnetism. Maquette alternateur de démonstration Alternator demonstration scale model. Réf : Electromagnetism rançais p 1 English p 10 Version : 8006 Maquette alternateur de démonstration lternator demonstration scale model 1 Généralités 1.1 But de l appareil La maquette alternateur de démonstration

Plus en détail

Nom prénom Alimentation continue BAC Pro SEN

Nom prénom Alimentation continue BAC Pro SEN L alimentation est chargée de convertir la tension alternative (AC) du secteur EDF en tensions continues (DC) plus faibles permettant d alimenter les différents composants des systèmes électroniques. La

Plus en détail

UTILISATION DU GBF ET DE L OSCILLOSCOPE

UTILISATION DU GBF ET DE L OSCILLOSCOPE Sciences et Technologies de l Industrie et du Développement Durable La chaine d information numérique 1 ère STI2D CI10 : Validation de la commande d un système tp sin UTILISATION DU GBF ET DE L OSCILLOSCOPE

Plus en détail

Physique appliquée BTS 1 Electrotechnique

Physique appliquée BTS 1 Electrotechnique Physique appliquée BTS 1 Electrotechnique Redressement non commandé Redressement non commandé Page 1 sur 19 1. La diode à jonction PN... 3 2. Le pont de diode PD2... 5 2.1. Le schéma... 5 2.2. Forme d'onde

Plus en détail

TP mesures électriques MESURE DES PUISSANCES. e- Pour le circuit tension du wattmètre, remplir le tableau suivant :

TP mesures électriques MESURE DES PUISSANCES. e- Pour le circuit tension du wattmètre, remplir le tableau suivant : TP6: I- BUT : MESURE DES PUISSANCES Le but de cette manipulation est d étudier les appareils, les méthodes et les schémas de mesure de la puissance en courant continu et en courant alternatif monophasé

Plus en détail

Les transformateurs monophasés

Les transformateurs monophasés monophasés Un transformateur électrique est une machine électrique qui permet de de modifier les valeurs de tension et d'intensité du courant délivrées par une source d'énergie électrique alternative,

Plus en détail

Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé

Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé 1. Valeur efficace d une tension et d un courant (rappels de PCSI) 1.1. Valeur moyenne d une tension (ou d un courant) périodique 1..

Plus en détail

Le Transformateur BT/BT :

Le Transformateur BT/BT : Le Transformateur BT/BT : 1) Deux types de transformateur : a) Le transformateur à isolement principal : Définition : Le transformateur à isolement principal assure une isolation des parties actives dangereuses

Plus en détail

Comment sont alimentés nos appareils électriques?

Comment sont alimentés nos appareils électriques? Chapitre 2 - ELECTRICITE 1 Comment sont alimentés nos appareils électriques? Objectifs - Etre capable d utiliser un voltmètre - Etre capable d utiliser un ampèremètre - Connaitre le montage en série et

Plus en détail