Algorithmique P2. HeapSort et files de priorité Ulg, Renaud Dumont
|
|
|
- Lucile Bourget
- il y a 10 ans
- Total affichages :
Transcription
1 Algorithmique P2 HeapSort et files de priorité Ulg, Renaud Dumont
2 Structure de tas - arbre Un tas est une structure de données qui Permet un nouveau type de tri (Tri par tas) Permet l'implémentation de files de priorité Permet des méthodes de compression (Huffman) Un tas peut être vu comme un tableau ou comme un arbre binaire partiellement complet
3 Structure de tas - tableau On représente un tas par un tableau A possédant 2 attributs Longueur[A] : nombre d'éléments du tableau Taille[A] : nombre d'éléments du tas rangés dans le tableau Conséquence : Aucun élément après A[Taille[A]] n'est un élément du tas (avec Taille[A] <= Longueur[A])
4 Indice et parentée La racine de l'arbre est A[1], et étant donné l'indice i d'un nœud, on calcule aisément les indices suivants Parent(i) : retourner i/2 Gauche(i) : retourner 2i Droite(i) : retourner 2i+1
5 Type de tas On distingue deux types de tas Tas max (binary maxheap) "tas" Propriété : A[Parent(i)]>=A[i] La valeur d'un nœud est au plus égale à celle de son parent La racine contient la valeur la plus grande Les valeurs sont conservées dans les nœuds internes
6 Type de tas Tas min (binary minheap) Propriété : A[Parent(i)]<=A[i] La valeur d'un nœud est au minimum égale à celle de son parent La racine contient la valeur la plus petite Les valeurs sont conservées dans les nœuds internes Pour l'algorithme de tri par tas, le tas max est utilisé
7 Tas Pour simplifier les représentations suivantes, les feuilles ne seront pas explicitement représentées Les nœuds (internes) conservent en réalité une paire clef-valeur Heaps Presentation, Goodrich & Tamassia, 2002
8 Hauteur d'un tas Théorème : un tas de n nœuds a une hauteur O(log n) Démo : Soit h, la hauteur d'un tas de n nœuds Puisqu'il y a 2 i nœuds au niveau i = 0, 1, 2,, h-2 et au moins un nœud interne au niveau h-1 on a n >= h-2 +1=2 h Donc n >= 2 h-1, càd h >= log n +1 Conséquence les opérations proportionnelle à h sont O(log n)
9 Conservation de la structure de tas Entrée : tableau A et un indice i Condition : les arbres binaires Gauche(i) et Droite(i) sont des tas max A[i] peut être plus petit que ses enfants (et donc un tri est nécessaire) La procédure Entasser-Max va faire évoluer l'arbre afin d'obtenir un tas max en i
10 Entasser-Max
11 Heapify) Construction du tas ( (Heapify A partir d'un tableau A[1..n] avec n=longueur[a], on peut construire un tas. Les éléments du sous-tableau A[( n/2 +1)..n] sont les feuilles de l'arbre Chacun d'eux est donc un tas à 1 élément De ce fait, il vient
12
13 Construction Invariant de la boucle Au début de chaque itération de la boucle "pour", chaque nœud i+1, i+2,, n est la racine d'un tas max. Initialisation Avant la première itération de la boucle, i=n/2 Chaque nœud n/2 + 1, n/2 + 2, n est une feuille et donc un tas max. Conservation de l'invariant Les fils de i sont des éléments d'indice supérieur à i ce sont des tas max Entasser-Max(A,i) fait de i une racine d'un tas max Terminaison Par construction, chaque nœud est la racine d'un tas max, et en particulier le nœud 1.
14 Construction Théorème : Heapify est O(n) Démo : Complexité dépendante de Entasser-Max avec h[a] Opérations d'échange : Pour le niveau 0, pour un nœud, h échanges (au max) Pour le niveau 1, pour un nœud, h-1 échanges (au max) Pour le niveau i, pour un nœud, h-i échanges (au max)
15 Construction Au niveau i, il y a 2 i nœuds Le nombre total d'échanges pour ces 2 i nœuds est donc majoré par 2 i (h-i) Le nombre total d'échanges pour tous les nœuds est donc majoré par h h h i h j h j 2 ( h i) 2 = j = 2 2 j en posant j=h-i. Or, h j= 0 Donc, j 2 j 2 h h j h 2 2 j 2.2 = 2n j= 0 i= 0 j= 0 j= 0 O(n)
16 Tri par tas (HeapSort HeapSort) Construction d'un tas max à partir d'un tableau A[1..n] où n = longueur[a] Ensuite, A[1] contenant l'élément de valeur la plus élevée, on peut l'échanger avec A[n]. On retire le nœud "n" du tas (Taille[A]-1) et on réorganise A[1..(n-1)] pour qu'il corresponde à un tas max. On répète l'opération jusqu'à ce que le tas ait une taille de 1.
17
18 Tri par tas Tri O(n log n) Appel à Construire-Tas-Max : O(n) Dans la boucle "pour" : n appels Appel à Entasser-Max : O(log n) Boucle : O(n log n) Complexité totale : O(n log n) Et si le tableau est déjà trié? HeapSort mélange les premiers éléments du tableau pour la construction du tas
19 Files de priorité ( (Priority Structure de données permettant de gérer un ensemble S d'éléments auxquels on associe une "clé" Cette clé permet la définition des priorités Application directe de la structure de tas 4 opérations (File-Max) Maximum(S) Extraire-Max(S) Augmenter-Clé(S,x,k) Priority Queue) Insérer(S,x) Si on inverse l'ordre des priorités, on obtient les opérations symétriques (Minimum, Extraire-Min, Diminuer-Clé) File-Min Utilisation : Cas d'une liste de tâches sur un ordinateur La file de priorité gère les tâches en attente selon leur priorité Quand une tâche est terminée, on exécute la tâche de priorité la plus élevée suivante Il est possible d'insérer dans la file une tâche, éventuellement prioritaire.
20 Files de priorité (max) Retourner l'élément ayant la clé maximale Retourner l'élément ayant la clé maximale en le supprimant de la file Parcours DownHeap Reconstruction du tas en déplaçant le nœud courant de haut en bas Echange avec le fils de clé maximale ( Entasser-Max) Arrêt quand feuille ou clé supérieure à celles des 2 fils.
21 Files de priorité Augmenter la valeur d'une clé Parcours UpHeap Reconstruction du tas en déplaçant le nœud courant du bas vers le haut Echange avec le père (1 seul choix possible) Arrêt quand racine ou clé inférieure à celle du père
22 Files de priorité Insérer un élément
23 Files de priorité Comment implémenter une pile à l'aide d'une file de priorité? File-max Priorité : date d'insertion Comment implémenter une file à l'aide d'une file de priorité? File-Min Priorité : date d'insertion Comment implémenter une file aléatoire (enqueue, dequeue aléatoire) à l'aide d'une file de priorité? Priorités aléatoires entre 0 et 1
24 Algorithmique P2 Une application des arbres : le codage de Huffman Ulg, Renaud Dumont
25 Codage de Huffman Soit une suite de caractères et une table des fréquences d'occurrences de ces caractères Exemple Fichiers de caractères 6 caractères et nombre d'occurrences associé Longueur fixe : bits Longueur variable : bits Gain d'environ 25%
26 Codage de Huffman Codage préfixe Aucun mot de code n'est préfixe d'un autre La chaine abc sera représentée par la concaténation des codes respectifs de a, b et c soit a = 0, b = 101, c = Avantage : décodage simplifié car absence d'ambiguïté Identification du premier code, traduction, suppression Exemple La chaine sera décodée en 0,0,101,1101 et donc aabe
27 Huffman Représentation sous forme d'un arbre Arbre binaire dont les feuilles sont les caractères donnés Le code associé à un caractère = chemin de la racine à ce caractère avec 0 = vers le fils à gauche 1 = vers le fils à droite
28 Codage de Huffman Codage optimal = arbre localement complet Si C est l'alphabet dont sont issus les caractères Alors l'arbre représentant un codage préfixe optimal possède exactement C feuilles (une par lettre de l'alphabet) et C-1 nœuds internes. Codage de taille fixe Codage optimal
29 Codage de Huffman Chaque feuille est étiquetée avec un caractère et sa fréquence d'apparition. Chaque nœud interne est étiqueté avec la somme des fréquences des feuilles de ses sous-arbres. Principe : Fusionner les objets (feuilles ou nœuds) dont les fréquences d'apparition sont les plus faibles.
30 Codage de Huffman Construction de l'arbre Soit un alphabet C de n caractères dont chaque caractère a une fréquence f[c] On construit l'arbre de bas en haut Au départ des C feuilles, on effectue C -1 fusions Une file de priorité min Q, dont les clés sont prises dans f, permet d'identifier les 2 objets les moins fréquents à fusionner Le résultat d'une fusion est un nouveau nœud dont la fréquence est la somme des deux objets fusionnés.
31 Codage de Huffman
Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation
Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des
ARBRES BINAIRES DE RECHERCHE
ARBRES BINAIRES DE RECHERCHE Table de symboles Recherche : opération fondamentale données : éléments avec clés Type abstrait d une table de symboles (symbol table) ou dictionnaire Objets : ensembles d
Compression de Données - Algorithme de Huffman Document de Conception
ROLLET Samuel SALLE Jennifer Compression de Données - Algorithme de Huffman Document de Conception Projet d'algorithmique et Structure des Données 1 SOMMAIRE 1. Domaine d application....4 1.1 Objectifs
Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte
Projet d informatique M1BI : Compression et décompression de texte Le but de ce projet est de coder un programme réalisant de la compression et décompression de texte. On se proposera de coder deux algorithmes
1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert
1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes
Les structures de données. Rajae El Ouazzani
Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l
SUPPORT DE COURS. Dr. Omari Mohammed Maître de Conférences Classe A Université d Adrar Courriel : [email protected]
Dr. Omari Mohammed Maître de Conférences Classe A Université d Adrar Courriel : [email protected] SUPPORT DE COURS Matière : Algorithmiques et Structures de Données 1 Niveau : 2 ème Année Licence en Informatique
Quelques Algorithmes simples
Quelques Algorithmes simples Irène Guessarian [email protected] 10 janvier 2012 Je remercie Patrick Cegielski de son aide efficace pour la programmation Java ; la section sur le codage de Huffman a été
INF601 : Algorithme et Structure de données
Cours 2 : TDA Arbre Binaire B. Jacob IC2/LIUM 27 février 2010 Plan 1 Introuction 2 Primitives u TDA Arbin 3 Réalisations u TDA Arbin par cellules chaînées par cellules contiguës par curseurs (faux pointeurs)
CH.6 Propriétés des langages non contextuels
CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le
Les arbres binaires de recherche
Institut Galilée Année 2010-2011 Algorithmique et arbres L2 TD 6 Les arbres binaires de recherche Type en C des arbres binaires (également utilisé pour les ABR) : typedef struct noeud_s { struct noeud_s
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Algorithmes de recherche
Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème
Arbres binaires de recherche
1 arbre des comparaisons 2 recherche dichotomique l'arbre est recalculé à chaque recherche 2 5 3 4 7 9 1 6 1 2 3 4 5 6 7 9 10 conserver la structure d'arbre au lieu de la reconstruire arbre binaire de
Transmission d informations sur le réseau électrique
Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Définitions. Numéro à préciser. (Durée : )
Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.
LibreOffice Calc : introduction aux tableaux croisés dynamiques
Fiche logiciel LibreOffice Calc 3.x Tableur Niveau LibreOffice Calc : introduction aux tableaux croisés dynamiques Un tableau croisé dynamique (appelé Pilote de données dans LibreOffice) est un tableau
1 Recherche en table par balayage
1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément
Algorithmes d'apprentissage
Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt
Architecture des Systèmes d Information Architecture des Systèmes d Information
Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau
TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile
TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile Dans ce TP, vous apprendrez à définir le type abstrait Pile, à le programmer en Java à l aide d une interface
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas
Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France
Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes
Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot
Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Formats d images. 1 Introduction
Formats d images 1 Introduction Lorsque nous utilisons un ordinateur ou un smartphone l écran constitue un élément principal de l interaction avec la machine. Les images sont donc au cœur de l utilisation
DE L ALGORITHME AU PROGRAMME INTRO AU LANGAGE C 51
DE L ALGORITHME AU PROGRAMME INTRO AU LANGAGE C 51 PLAN DU COURS Introduction au langage C Notions de compilation Variables, types, constantes, tableaux, opérateurs Entrées sorties de base Structures de
Théorie et codage de l information
Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q
Prénom : Matricule : Sigle et titre du cours Groupe Trimestre INF1101 Algorithmes et structures de données Tous H2004. Loc Jeudi 29/4/2004
Questionnaire d'examen final INF1101 Sigle du cours Nom : Signature : Prénom : Matricule : Sigle et titre du cours Groupe Trimestre INF1101 Algorithmes et structures de données Tous H2004 Professeur(s)
Cours 1 : introduction
Cours 1 : introduction Modèle entité-association Exemple : Deux entités (produit et dépôt) sont mises en relation (stock). Une entité doit être constituée d un identifiant et peut être complétée par des
Jade. Projet Intelligence Artificielle «Devine à quoi je pense»
Jade Projet Intelligence Artificielle «Devine à quoi je pense» Réalisé par Djénéba Djikiné, Alexandre Bernard et Julien Lafont EPSI CSII2-2011 TABLE DES MATIÈRES 1. Analyse du besoin a. Cahier des charges
Ebauche Rapport finale
Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun>
94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Algorithmique, Structures de données et langage C
UNIVERSITE PAUL SABATIER TOULOUSE III Algorithmique, Structures de données et langage C L3 IUP AISEM/ICM Janvier 2005 J.M. ENJALBERT Chapitre 1 Rappels et compléments de C 1.1 Structures Une structure
La société Klippan France dont l usine est à Gournay-en-Bray en Normandie, La société Autoliv S.A. dont l usine est à Seclin dans le Nord, Normandie.
1 REMERCIEMENTS Tout d abord, je tiens à remercier M. Benoît MARSAUD, DG d Autoliv France, pour l accueil qu il m a réservé au sein de sa société. J adresse également mes remerciements à M. Fabrice COQUIN,
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
Chapitre 7. Récurrences
Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,
6. Hachage. Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses
6. Hachage Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses PLAN Définition Fonctions de Hachage Méthodes de résolution de collisions Estimation
chapitre 4 Nombres de Catalan
chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C
Centre CPGE TSI - Safi 2010/2011. Algorithmique et programmation :
Algorithmique et programmation : STRUCTURES DE DONNÉES A. Structure et enregistrement 1) Définition et rôle des structures de données en programmation 1.1) Définition : En informatique, une structure de
COUCHE 7/OSI : TRANSFERT DE FICHIERS FTAM
Service Application : FTAM 175 COUCHE 7/OSI : TRANSFERT DE FICHIERS FTAM Le transfert de fichiers entre systèmes hétérogènes correspond à un besoin fondamental. Il en est de même pour l'accès à des fichiers
MISE A NIVEAU INFORMATIQUE LANGAGE C - EXEMPLES DE PROGRAMMES. Université Paris Dauphine IUP Génie Mathématique et Informatique 2 ème année
2003-2004 Université Paris Dauphine IUP Génie Mathématique et Informatique 2 ème année MISE A NIVEAU INFORMATIQUE LANGAGE C - EXEMPLES DE PROGRAMMES Maude Manouvrier La reproduction de ce document par
Vers l'ordinateur quantique
Cours A&G Vers l'ordinateur quantique Données innies On a vu dans les chapîtres précédents qu'un automate permet de représenter de manière nie (et même compacte) une innité de données. En eet, un automate
Algorithmique et Programmation
École Supérieure d Ingénieurs de Poitiers Gea Algorithmique et Programmation Laurent Signac ii Algorithmique et programmation Gea Table des matières Avant Propos v Structures de données Notion de pointeur..............................................
Algorithmique I. [email protected] [email protected] [email protected]. Algorithmique I 20-09-06 p.1/??
Algorithmique I [email protected] [email protected] [email protected] Télécom 2006/07 Algorithmique I 20-09-06 p.1/?? Organisation en Algorithmique 2 séances par semaine pendant 8 semaines. Enseignement
CORRECTION EXERCICES ALGORITHME 1
CORRECTION 1 Mr KHATORY (GIM 1 A) 1 Ecrire un algorithme permettant de résoudre une équation du second degré. Afficher les solutions! 2 2 b b 4ac ax bx c 0; solution: x 2a Solution: ALGORITHME seconddegré
Cryptologie et physique quantique : Espoirs et menaces. Objectifs 2. distribué sous licence creative common détails sur www.matthieuamiguet.
: Espoirs et menaces Matthieu Amiguet 2005 2006 Objectifs 2 Obtenir une compréhension de base des principes régissant le calcul quantique et la cryptographie quantique Comprendre les implications sur la
Expérience 3 Formats de signalisation binaire
Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx
Chaine de transmission
Chaine de transmission Chaine de transmission 1. analogiques à l origine 2. convertis en signaux binaires Échantillonnage + quantification + codage 3. brassage des signaux binaires Multiplexage 4. séparation
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
Chapitre 13 Numérisation de l information
DERNIÈRE IMPRESSION LE 2 septembre 2013 à 17:33 Chapitre 13 Numérisation de l information Table des matières 1 Transmission des informations 2 2 La numérisation 2 2.1 L échantillonage..............................
Projet Matlab : un logiciel de cryptage
Projet Matlab : un logiciel de cryptage La stéganographie (du grec steganos : couvert et graphein : écriture) consiste à dissimuler une information au sein d'une autre à caractère anodin, de sorte que
introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives
introduction Chapitre 5 Images récursives http ://univ-tln.fr/~papini/sources/flocon.htm Récursivité http://www.poulain.org/fractales/index.html Image qui se contient elle-même 1 Exemples mathématiques
1 Introduction au codage
CélestineOscarDésiréAnatoleGastonEugène 1 Introduction au codage 1.1 Les ensembles L ensemble de tout les ensembles est Dieu lui-même. Kantor Ensemble des parties d un ensemble désigne l ensemble des sous-ensembles
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Les Fonctions de Hachage Temps de préparation :.. 2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury :..10 minutes GUIDE
Quelques algorithmes simples dont l analyse n est pas si simple
Quelques algorithmes simples dont l analyse n est pas si simple Michel Habib [email protected] http://www.liafa.jussieu.fr/~habib Algorithmique Avancée M1 Bioinformatique, Octobre 2008 Plan Histoire
Calculateur quantique: factorisation des entiers
Calculateur quantique: factorisation des entiers Plan Introduction Difficulté de la factorisation des entiers Cryptographie et la factorisation Exemple RSA L'informatique quantique L'algorithme quantique
Systèmes de transmission
Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un
Bases de programmation. Cours 5. Structurer les données
Bases de programmation. Cours 5. Structurer les données Pierre Boudes 1 er décembre 2014 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. Types char et
Algorithme. Table des matières
1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............
Codage d information. Codage d information : -Définition-
Introduction Plan Systèmes de numération et Représentation des nombres Systèmes de numération Système de numération décimale Représentation dans une base b Représentation binaire, Octale et Hexadécimale
Programmation Visual Basic. Visite guidée d'un programme Visual Basic 6.0
UNIVERSITE DES SCIENCES SOCIALES DE TOULOUSE Licence Professionnelles LSi Master FC IGSI Programmation Visual Basic Visite guidée d'un programme Visual Basic 6.0 1. un exemple d'application a) créer dans
NOTICE D' UTILISATION CAMWORKS FRAISAGE. Luc Vallée Lycée Blaise Pascal Segré
NOTICE D' UTILISATION Luc Vallée Lycée Blaise Pascal Segré FRAISAGE SOMMAIRE allée Sciences et techniques Fiche n 1 - Généralités principe....page 3 Fiche n 2 - Lancer une application fraisage...page 7
Compression Compression par dictionnaires
Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une
Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette
Compression et Transmission des Signaux Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette 1 De Shannon à Mac Donalds Mac Donalds 1955 Claude Elwood Shannon 1916 2001 Monsieur X 1951 2 Où
Traitement bas-niveau
Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.
Evaluation et mise en place d un serveur de messages pour Chamilo 2.0
Evaluation et mise en place d un serveur de messages pour Chamilo 2.0 Descriptif Dans ce projet, on va montrer l évaluation et la mise en place d un serveur de message pour Chamilo. Le but est d améliorer
Initiation à la programmation en Python
I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de
Introduction à MATLAB R
Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d
Algorithmique avec Algobox
Algorithmique avec Algobox 1. Algorithme: Un algorithme est une suite d instructions qui, une fois exécutée correctement, conduit à un résultat donné Un algorithme doit contenir uniquement des instructions
Chapitre 1 I:\ Soyez courageux!
Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel
Recherche dans un tableau
Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6
MIS 102 Initiation à l Informatique
MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ
Déroulement. Evaluation. Préambule. Définition. Définition. Algorithmes et structures de données 28/09/2009
Déroulement Algorithmes et structures de données Cours 1 et 2 Patrick Reuter http://www.labri.fr/~preuter/asd2009 CM mercredi de 8h00 à 9h00 (Amphi Bât. E, 3 ème étage) ED - Groupe 3 : mercredi, 10h30
Systemes d'exploitation des ordinateurs
! " #$ % $ &' ( $ plan_ch6_m1 Systemes d'exploitation des ordinateurs Conception de Systèmes de Gestion de la Mémoire Centrale Objectifs 1. Conception de systèmes paginés 2. Conception des systèmes segmentés
Système binaire. Algèbre booléenne
Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser
Introduction à la théorie des graphes. Solutions des exercices
CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti
Évaluation et optimisation de requêtes
Évaluation et optimisation de requêtes Serge Abiteboul à partir de tranparents de Philippe Rigaux, Dauphine INRIA Saclay April 3, 2008 Serge (INRIA Saclay) Évaluation et optimisation de requêtes April
INF 4420: Sécurité Informatique Cryptographie II
: Cryptographie II José M. Fernandez M-3106 340-4711 poste 5433 Aperçu Crypto II Types de chiffrement Par bloc vs. par flux Symétrique vs. asymétrique Algorithmes symétriques modernes DES AES Masque jetable
Chapitre 9. Algorithmique. Quelques définitions. L'informatique au lycée. http://ow.ly/36jth
L'informatique au lycée http://ow.ly/36jth On désigne par algorithmique l'ensemble des activités logiques qui relèvent des algorithmes ; en particulier, en informatique, cette discipline désigne l'ensemble
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
Cahier Technique. «Développer une application intranet pour la gestion des stages des étudiants» Antonin AILLET. Remi DEVES
Antonin AILLET Remi DEVES Thibaut AZZOPARDI 2 ème année de DUT Informatique Cahier Technique «Développer une application intranet pour la gestion des stages des étudiants» Encadré par Didier BOULLE Année
Université de Strasbourg UFR de Mathématique et d'informatique. L2 Informatique Semestres S3 et S4. Structures de Données et Algorithmes 1 et 2
Université de Strasbourg UFR de Mathématique et d'informatique L2 Informatique Semestres S3 et S4 Structures de Données et Algorithmes 1 et 2 Fiches d exercices année 2009 2010 1 2 Constructions de base
Conception. Génie Logiciel. Renaud Marlet. LaBRI / INRIA http://www.labri.fr/~marlet. (d'après A.-M. Hugues) màj 17/04/2007
1 Génie Logiciel (d'après A.-M. Hugues) Conception Renaud Marlet LaBRI / INRIA http://www.labri.fr/~marlet màj 17/04/2007 2 Position dans le cycle de vie Contexte : étant donnée une spécification (ce que
G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction
DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner
Notice d utilisation
Notice d utilisation Gestion des Dossiers et des Bases de Données Sommaire Préambule 1. Accès à la gestion des Dossiers et des Bases de Données 1.1 Accès «Ecole» 1.2 Accès «Entreprise» 1.3 Modification
CLIP. (Calling Line Identification Presentation) Appareil autonome affichant le numéro appelant
1. Besoin CLIP (Calling Line Identification Presentation) Appareil autonome affichant le numéro appelant ETUDE FONCTIONNELLE De très nombreux abonnés du réseau téléphonique commuté ont exprimé le besoin
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Introduction aux algorithmes répartis
Objectifs et plan Introduction aux algorithmes répartis Sacha Krakowiak Université Joseph Fourier Projet Sardes (INRIA et IMAG-LSR http://sardes.inrialpes.fr/people/krakowia! Introduction aux algorithmes
Fondements de l informatique Logique, modèles, et calculs
Fondements de l informatique Logique, modèles, et calculs Cours INF423 de l Ecole Polytechnique Olivier Bournez Version du 20 septembre 2013 2 Table des matières 1 Introduction 9 1.1 Concepts mathématiques........................
COMMUNICATEUR BLISS COMMANDE PAR UN SENSEUR DE POSITION DE L'OEIL
COMMUNICATEUR BLISS COMMANDE PAR UN SENSEUR DE POSITION DE L'OEIL J. TICHON(1) (2), J.-M. TOULOTTE(1), G. TREHOU (1), H. DE ROP (2) 1. INTRODUCTION Notre objectif est de réaliser des systèmes de communication
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Introduction a la recherche d information Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers pré[email protected] Département
Le Data Mining au service du Scoring ou notation statistique des emprunteurs!
France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative
Programmation C++ (débutant)/instructions for, while et do...while
Programmation C++ (débutant)/instructions for, while et do...while 1 Programmation C++ (débutant)/instructions for, while et do...while Le cours du chapitre 4 : le for, while et do...while La notion de
Licence Sciences, Technologies, Santé Mention Informatique Codage de l'information
1 Licence Sciences, Technologies, Santé Mention Informatique Codage de l'information année universitaire 2013-2014 Licence Creative Commons cbea 2 Introduction Objectifs du cours Le cours de Codage de
