Machine de Turing. Intelligence Artificielle et Systèmes Formels Master 1 I2L
|
|
|
- Eveline Laberge
- il y a 8 ans
- Total affichages :
Transcription
1 Machine de Turing Intelligence Artificielle et Systèmes Formels Master 1 I2L Sébastien Verel [email protected] verel Université du Littoral Côte d Opale Laboratoire LISIC Equipe CAMOME
2 Objectifs de la séance 08 Connaitre la définition d une machine de Turing Savoir exécuter une machine de Turing Savoir définir le langage reconnu par une machine de Turing Savoir définir la fonction calculée par une machine de Turing Savoir définir une machine de Turing pour reconnaître un langage ou calculer une fonction Connaitre la thèse de Church-Turing Savoir que le problème de l arrêt est non calculable Questions principales du jour : Qu est-ce qu une procédure effective?
3 Plan 1 Introduction 2 Machine de Turing 3 Fonction calculée, Indécidabilité
4 Introduction D après P. Dehornoy, université de Caen Automate : modèle abstrayant la notion de calcul sans écriture L est décidable par automate si pour tout mot w de L, on peut répondre à la question w appartient-il à L? en lisant le mot et en utilisant la mémoire finie. Machine de Turing : modèle analogue avec une notion plus élaborée de calcul L est décidable par automate si pour tout mot w de L, on peut répondre à la question w appartient-il à L? en lisant le mot et en utilisant la mémoire finie mais aussi en écrivant des informations sur un support illimité Version formalisée du calcul mental Version formalisée du calcul au sens général
5 La machine d A. Turing Motivation Machine abstraite crée par Alan Turing, 1936 Alan M. Turing, On computable numbers with an application to the Entsheidungsproblem, Proc. London Math. Society, 2, 42, pp , Date du premier ordinateur? Précurseur théorique des machines Participe à la construction de système de décryptage pendant la seconde guerre mondiale reposant sur ces principes Modèle de calcul parmi les plus commodes Tous les ordinateurs sont équivalents à cette petite machine
6 La machine d A. Turing Motivation Machine abstraite crée par Alan Turing, 1936 Alan M. Turing, On computable numbers with an application to the Entsheidungsproblem, Proc. London Math. Society, 2, 42, pp , Date du premier ordinateur? 1941 le Z3, 1944 le ASCC/Mark1 Précurseur théorique des machines Participe à la construction de système de décryptage pendant la seconde guerre mondiale reposant sur ces principes Modèle de calcul parmi les plus commodes Tous les ordinateurs sont équivalents à cette petite machine
7 Introduction par les langages Langages Grammaires Procédure effective 3 Rationnels régulières à droite ou A a, A ab, A ɛ Automates réguliers A, B N a T finis (régulières à gauche) 2 algébriques algébriques, non-contextuelles Automates ou A α à pile non-contextuels A N α (N T ) 1 contextuelles, monotones Machine de Turing contextuels α β ou A ɛ à l espace α, β (N T ), A axiome linéairement borné α β 0 récursivement contextuelles avec effacement énumérables α β Machine de Turing α (N T ) + β (N T ) aucune contrainte
8 Caractéristiques d un automate fini Automate fini Etats : mémoire finie, Lecture des symboles, Programme : fonction de transition d états états a b b a 1 2 b 3 a a b 4 a,b a a b a 1
9 Caractéristiques d un automate fini Automate fini Etats : mémoire finie, Lecture des symboles, Programme : fonction de transition d états états a b b a 1 2 b 3 a a b 4 a,b a a b a 2
10 Caractéristiques d un automate fini Automate fini Etats : mémoire finie, Lecture des symboles, Programme : fonction de transition d états états a b b a 1 2 b 3 a a b 4 a,b a a b a 3
11 Caractéristiques d un automate fini Automate fini Etats : mémoire finie, Lecture des symboles, Programme : fonction de transition d états états a b b a 1 2 b 3 a a b 4 a,b a a b a 1
12 Caractéristiques d un automate fini Automate fini Etats : mémoire finie, Lecture des symboles, Programme : fonction de transition d états états a b b a 1 2 b 3 a a b 4 a,b a a b a 2
13 Caractéristiques d une machine de Turing Support illimité de l information : Ruban a a b a 1 Machine de Turing Etats : mémoire finie, Lecture des symboles du ruban, Ecriture sur le ruban Programme : fonction de transition d états et de déplacement et d écriture
14 Premier exemple Fonction de transition Ancien état Symbole lu Symbole écrit Mouv. Nouvel état arrêt 1 a b 1 b a 1 a a b a 1
15 Premier exemple Fonction de transition Ancien état Symbole lu Symbole écrit Mouv. Nouvel état arrêt 1 a b 1 b a 1 a a b a 1 b a b a 1
16 Transition : Tableau à double entrée a b 1 b,, 1 a,, 1,, arrêt a a b a 1 Exo Exécutez la machine de Turing ci-dessus et décrivez sa fonction de calcul.
17 Exemple plus sophistiqué a b 0 a,, 0 b,, 0,, 1 1 b,, 1 a,, 1,, arrêt a a b a b a
18 Langage décidé par une machine de Turing a b 0,, 1 refusé accepté 1 a,, 1 b,, 1,, 2 2 refusé,, 3 3 a,, 3 b,, 3,, 0 a a a b b b a a a b a b Exo Exécutez la machine de Turing sur les mots ci-dessus et décrivez le langage reconnu.
19 Définition formelle Machine de Turing (MT) Une machined e Turing à un ruban infini est septuplet (Q, Γ, Σ, δ, q 0, B, F ) où : Q ensemble fini d état, Γ alphabet fini des symboles du ruban, Σ Γ alphabet fini des symboles d entrée, B Γ \ Σ symbole particulier dit blanc q 0 état initial F ensemble des états acceptants δ relation de transition La MT est déterministe si pour chaque chaque configuration, elle a au plus une possibilité d évolution.
20 Relation de transition Relation de transition δ Q Γ Q Γ {, } Notation d une règle : q, σ q, σ, m Prédécesseur : q : état courant de la machine σ symbole lu sur le ruban Successeur : q : nouvel état de la machine σ symbole à écrire sur le ruban m déplacement de la tête de lecture Relation de transition : sous forme de table ou de diagramme
21 Notion de configuration La configuration d une MT décrit l état général de la machine : état du ruban, état courant de la machine et position de la tête de lecture. (f, q, p) f : IN Γ le ruban q Q l état de la machine p IN la position sur le ruban La relation de transition permet alors de calculer chaque élément de la nouvelle configuration.
22 Langage reconnu Le langage accepté par M = (Q, Γ, Σ, δ, q 0, B, F ) est défini par : L(M) = {w Σ tels que : } l état initial de M est q 0 le mot w est écrit sur le ruban la tête de lecture est positionnée sur la première lettre de w M atteint un état acceptant de F en un nombre fini d étape cf. exercice 1 fiche 08
23 Classe de langages Une MT s arrête lorsque elle atteint un état final elle ne peut plus effectuer de transition Langage récursif Un langage reconnu par une MT qui s arrête sur tous les mots en entrée est dit langage récursif Langage récursivement énumérable Un langage reconnu par une MT qui s arrête sur tous les mots du langage (et peut ne pas s arrêter sur les autres) est dit langage récursivement énumérable engendré par une grammaire de type 0.
24 Fonction calculée par une machine de Turing La sortie d une MT est le mot inscrit sur le ruban lorsque la MT s arrête. Fonction calculée La fonction calculée f par une MT M est définie par : A toute entrée x sur laquelle M s arrête, on associe la sortie y : f (x) = y Aucune image n est associée au mot x sur lequel M ne s arrête pas.
25 MT équivalente On peut imaginer beaucoup de variantes de MT : sur un demi ruban sur deux ou plusieurs rubans la tête de lecture peut être stationnaire non-déterminisme écrire ou non de symbole blanc... Et pourtant, elles sont toutes équivalentes (reconnaissance du même langage ou fonction calculée identique) La machine de Turing semble bien représenter une notion de calcul par une procédure effective.
26 MT universelle Machine de Turing universelle Une machine de Turing universelle est capable de simuler le comportement de n importe quelle autre machine de Turing. Existence Par exemple, en utilisant 2 rubans : sur un ruban le programme de la machine de Turing originale sur l autre ruban le calcul de cette machine
27 Fonctions calculables Thèse de Church-Turing Les fonctions calculables par une procédure effective le sont par une machine de Turing. Modélisation de la notion de calcul et procédure effective Ce n est pas un résultat que l on peut démontrer Fonctions calculables par MT = fonctions définies par λ-calcul de Chruch Base de la théorie de la calculabilité Alonzo Church ( ), mathématicien, logicien américain. Tous les ordinateurs sont équivalents à une machine de Turing...
28 Fonctions non-calculables Exercice L ensemble des machines de Turing est-il dénombrable? Existe-il un ensemble de fonctions non-dénombrables? Existe-t-il des fonctions non calculables?
29 Décidabilité Définition Une famille dénombrable de propriétés P(x) est décidable si sa fonction caractéristiques f P est calculable. { 1 si P(x) est vrai, f P = 0 si P(x) est faux.
30 Première fonction non calculable, indécidabilité Fonction qui associe l arrêt d une machine de Turing : { 1 si la machine de Turing M s arrête sur l entrée e A(M, e) = 0 sinon. Problème de l arrêt La fonction A, qui associe l arrêt d une machine de Turing, est non calculable. Preuve : argument diagonal Supposons qu il existe une MT MA qui calcule la fonction A soit la machine : { si MA(e, e) = 1 alors boucle infinie MD(e) = si MA(e, e) = 0 alors terminer Contradiction en analysant MA(MD, MD)
31 Conséquences Impact pratique Pas de débugger parfait qui prédit l arrêt ou non d un programme! Ramasse-miette : libérer une zone mémoire lorsqu elle n est plus utilisée Détection de virus...
Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/
Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes
Machines virtuelles Cours 1 : Introduction
Machines virtuelles Cours 1 : Introduction Pierre Letouzey 1 [email protected] PPS - Université Denis Diderot Paris 7 janvier 2012 1. Merci à Y. Régis-Gianas pour les transparents Qu est-ce qu une
Algorithmes récursifs
Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément
Modèles de Calcul. Yassine Lakhnech. 2007/08 Université Joseph Fourier Lab.: VERIMAG. [email protected]. Modèles de Calcul Start p.
Modèles de Calcul Yassine Lakhnech [email protected] 2007/08 Université Joseph Fourier Lab.: VERIMAG Modèles de Calcul Start p.1/81 Équipe pédagogique Cours : Saddek Bensalem et Yassine Lakhnech
"Calcul et hyper-calcul"
"Calcul et hyper-calcul" Mémoire de Master 2 (LoPHISS) Université de Paris 1 (Panthéon-Sorbonne) par Héctor Zenil Chávez Sous la direction de M. Jacques Dubucs 20 octobre 2006 2 Table des matières 1 Introduction
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
UTILISER UN SITE COLLABORATIF
Sites collaboratifs Pléiade : guide utilisateur détaillé 1 Sites collaboratifs Pléiade : guide utilisateur détaillé UTILISER UN SITE COLLABORATIF COMMENT UTILISER LE BLOG Sites collaboratifs Pléiade :
Table des matières. Introduction
Table des matières 1 Formalisation des virus informatiques 2 1.1 Les machines de Turing........................ 2 1.2 Formalisation de Fred Cohen..................... 2 1.2.1 Définition d un virus informatique..............
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Chap 4: Analyse syntaxique. Prof. M.D. RAHMANI Compilation SMI- S5 2013/14 1
Chap 4: Analyse syntaxique 1 III- L'analyse syntaxique: 1- Le rôle d'un analyseur syntaxique 2- Grammaires non contextuelles 3- Ecriture d'une grammaire 4- Les méthodes d'analyse 5- L'analyse LL(1) 6-
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Modèles et simulations informatiques des problèmes de coopération entre agents
Modèles et simulations informatiques des problèmes de coopération entre agents Bruno Beaufils LIFL Axe CIM Équipe SMAC Laboratoire d'informatique Plan 1. Motivations 2. Dilemme itéré du prisonnier 3. Simulations
6 - La conscience est-elle un processus algorithmique?
6 - La conscience est-elle un processus algorithmique? par Hervé Zwirn Le problème de la conscience est sans doute l'un des plus difficiles sinon le plus difficile auquel on puisse s'attaquer. J'en veux
LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION
LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION DES NOMBRES par Jean-Luc BREGEON professeur formateur à l IUFM d Auvergne LE PROBLÈME DE LA REPRÉSENTATION DES NOMBRES On ne conçoit pas un premier enseignement
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Cours 1 : La compilation
/38 Interprétation des programmes Cours 1 : La compilation Yann Régis-Gianas [email protected] PPS - Université Denis Diderot Paris 7 2/38 Qu est-ce que la compilation? Vous avez tous déjà
Algorithmique et Programmation Fonctionnelle
Algorithmique et Programmation Fonctionnelle RICM3 Cours 9 : Lambda-calcul Benjamin Wack Polytech 2014-2015 1 / 35 La dernière fois Typage Polymorphisme Inférence de type 2 / 35 Plan Contexte λ-termes
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Trois nouveaux formulaires sont donc nécessaires : Pour l affichage de la liste, un formulaire de sortie WEB_Liste associé à la table des [Films] ;
De la base 4D au site Web 20 Conception des formulaires Web Trois nouveaux formulaires sont donc nécessaires : Pour le dialogue, un formulaire WEB_Trouver associé à la table des [Paramètres] ; Pour l affichage
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Évaluation et implémentation des langages
Évaluation et implémentation des langages Les langages de programmation et le processus de programmation Critères de conception et d évaluation des langages de programmation Les fondations de l implémentation
STAGE IREM 0- Premiers pas en Python
Université de Bordeaux 16-18 Février 2014/2015 STAGE IREM 0- Premiers pas en Python IREM de Bordeaux Affectation et expressions Le langage python permet tout d abord de faire des calculs. On peut évaluer
CARTE DE VOEUX À L ASSOCIAEDRE
CARTE DE VOEUX À L ASSOCIAEDRE JEAN-LOUIS LODAY Il y a cinq ans le Centre International de Rencontres Mathématiques de Luminy a envoyé ses voeux avec la carte ci-dessus. L illustration choisie par Robert
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application
Université de Provence Licence Math-Info Première Année V. Phan Luong Algorithmique et Programmation en Python Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application 1 Ordinateur Un
Algorithme. Table des matières
1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............
La mesure de Lebesgue sur la droite réelle
Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et
Cours 1 : Qu est-ce que la programmation?
1/65 Introduction à la programmation Cours 1 : Qu est-ce que la programmation? Yann Régis-Gianas [email protected] Université Paris Diderot Paris 7 2/65 1. Sortez un appareil qui peut se rendre
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Projet Matlab : un logiciel de cryptage
Projet Matlab : un logiciel de cryptage La stéganographie (du grec steganos : couvert et graphein : écriture) consiste à dissimuler une information au sein d'une autre à caractère anodin, de sorte que
Initiation à la Programmation en Logique avec SISCtus Prolog
Initiation à la Programmation en Logique avec SISCtus Prolog Identificateurs Ils sont représentés par une suite de caractères alphanumériques commençant par une lettre minuscule (les lettres accentuées
Cours d algorithmique pour la classe de 2nde
Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage
Informatique Générale
Informatique Générale Guillaume Hutzler Laboratoire IBISC (Informatique Biologie Intégrative et Systèmes Complexes) [email protected] Cours Dokeos 625 http://www.ens.univ-evry.fr/modx/dokeos.html
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Rappel. Analyse de Données Structurées - Cours 12. Un langage avec des déclaration locales. Exemple d'un programme
Rappel Ralf Treinen Université Paris Diderot UFR Informatique Laboratoire Preuves, Programmes et Systèmes [email protected] 6 mai 2015 Jusqu'à maintenant : un petit langage de programmation
La persistance des nombres
regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...
Informatique Machines à calculer en théorie et en pratique
Licence Physique-Chimie Histoire des Sciences Informatique Machines à calculer en théorie et en pratique Notes de Cours 1 Introduction Étymologie En Allemagne (1957) le terme «Informatik» est créé par
MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.
Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne
Coûts, avantages et inconvénients des différents moyens de paiement
Coûts, avantages et inconvénients des différents moyens de paiement Présentation de l'étude de la Banque nationale de Belgique à la conférence de l'esta (Valence, le 15 mai 2006) Historique de l'étude
3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes
PLAN CYCLE DE VIE D'UN LOGICIEL EXPRESSION DES BESOINS SPÉCIFICATIONS DU LOGICIEL CONCEPTION DU LOGICIEL LA PROGRAMMATION TESTS ET MISE AU POINT DOCUMENTATION CONCLUSION C.Crochepeyre Génie Logiciel Diapason
Encryptions, compression et partitionnement des données
Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des
Plan du cours 2014-2015. Cours théoriques. 29 septembre 2014
numériques et Institut d Astrophysique et de Géophysique (Bât. B5c) Bureau 0/13 email:[email protected] Tél.: 04-3669771 29 septembre 2014 Plan du cours 2014-2015 Cours théoriques 16-09-2014 numériques pour
Le Dessin Technique.
Jardin-Nicolas Hervé cours 1 / 9. Modélisation et représentation d un objet technique. La modélisation et la représentation d un objet sont deux formes de langage permettant de définir complètement la
Présentation du langage et premières fonctions
1 Présentation de l interface logicielle Si les langages de haut niveau sont nombreux, nous allons travaillé cette année avec le langage Python, un langage de programmation très en vue sur internet en
Fondements de l informatique Logique, modèles, et calculs
Fondements de l informatique Logique, modèles, et calculs Cours INF423 de l Ecole Polytechnique Olivier Bournez Version du 20 septembre 2013 2 Table des matières 1 Introduction 9 1.1 Concepts mathématiques........................
Le modèle standard, SPE (1/8)
Le modèle standard, SPE (1/8) Rappel : notion de grammaire mentale modulaire Les composants de la grammaire : module phonologique, sémantique syntaxique Syntaxe première : elle orchestre la relation mentale
Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation
Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Logique : ENSIIE 1A - contrôle final
1 Logique : ENSIIE 1A - contrôle final - CORRIGÉ Mardi 11 mai 2010 - Sans documents - Sans calculatrice ni ordinateur Durée : 1h30 Les exercices sont indépendants. Exercice 1 (Logique du premier ordre
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions
Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental
MATHEMATIQUES ET SCIENCES POUR L INGENIEUR
MASTER SCIENCES, TECHNOLOGIES, SANTE/STAPS MATHEMATIQUES ET SCIENCES POUR L INGENIEUR Informatique www.univ-littoral.fr OBJECTIFS DE LA FORMATION Le master Informatique se compose de deux parcours et se
Comment créer un nouveau compte? 1/2- Pour le consommateur
Comment créer un nouveau compte? 1/2- Pour le consommateur Cette procédure va vous permettre de créer un compte. Tous les logiciels Photo & Book que vous allez créer, que ce soit pour un consommateur ou
MPI Activité.10 : Logique binaire Portes logiques
MPI Activité.10 : Logique binaire Portes logiques I. Introduction De nombreux domaines font appel aux circuits logiques de commutation : non seulement l'informatique, mais aussi les technologies de l'asservissement
MIS 102 Initiation à l Informatique
MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
Peut-on tout programmer?
Chapitre 8 Peut-on tout programmer? 8.1 Que peut-on programmer? Vous voici au terme de votre initiation à la programmation. Vous avez vu comment représenter des données de plus en plus structurées à partir
Exclusion Mutuelle. Arnaud Labourel Courriel : [email protected]. Université de Provence. 9 février 2011
Arnaud Labourel Courriel : [email protected] Université de Provence 9 février 2011 Arnaud Labourel (Université de Provence) Exclusion Mutuelle 9 février 2011 1 / 53 Contexte Epistémologique
www.h-k.fr/publications/objectif-agregation
«Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
Cours 7 : Utilisation de modules sous python
Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est
Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test
Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite
Durée estimée :1 journée Date de la réalisation : 2011. Description Fournisseur Référence Nombre PU HT LM35CZ, LM35AZ LM35DZ
001 Titre : Mesure de température interfacée par carte Arduino Type de réalisation : montage électronique, de surveillance de température Concepteur : C. Rouviere Coordonnées : Laboratoire lbv villefranche/mer
Cours d Informatique
Cours d Informatique 1ère année SM/SMI 2007/2008, Info 2 Département de Mathématiques et d Informatique, Université Mohammed V [email protected] [email protected] 2007/2008 Info2, 1ère année SM/SMI 1
Consigne : je remplis le tableau en tenant compte des informations de la ligne supérieure et de la colonne de gauche (droite pour les gauchers)
Découverte du monde : traiter deux informations Compétence : Savoir utiliser un tableau à double entrée. Matériel : - un plateau de jeu quadrillé : cinq lignes et cinq colonnes, - quatre pièces "couleur",
Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Consignes pour les travaux d actualité Premier quadrimestre
Consignes pour les travaux d actualité Premier quadrimestre Principes de base Durant le premier semestre, vous serez amenés à remettre un travail effectué en groupe. Le but de celui-ci est de s intéresser
Compter à Babylone. L écriture des nombres
Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens
TP 1. Prise en main du langage Python
TP. Prise en main du langage Python Cette année nous travaillerons avec le langage Python version 3. ; nous utiliserons l environnement de développement IDLE. Étape 0. Dans votre espace personnel, créer
Chapitre 4 : Guide de Mouvement et Masque
Cours Flash Chapitre 4 : Guide de Mouvement et Masque Rappel : les fichiers fla et swf sont dans le fichier «4_Guide de mouvement et masque.zip». SOMMAIRE 1 OBJECTIFS DU CHAPITRE... 1 2 INTRODUCTION...
Définitions. Numéro à préciser. (Durée : )
Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.
Le langage C. Séance n 4
Université Paris-Sud 11 Institut de Formation des Ingénieurs Remise à niveau INFORMATIQUE Année 2007-2008 Travaux pratiques d informatique Le langage C Séance n 4 But : Vous devez maîtriser à la fin de
Introduction à l algorithmique et à la programmation (Info 2)
Introduction à l algorithmique et à la programmation (Info 2) Premier cours: présentation du module, codage et définition de l algorithmique Matthieu Puigt IUT du Littoral Côte d Opale DUT Génie Industriel
Cours Composant 2. Qualité logicielle et spécications algébriques
UPMC Paris Universitas Master Informatique STL Cours Composant 2. Qualité logicielle et spécications algébriques c 2005-2008 Frédéric Peschanski UPMC Paris Universitas 24 février 2008 c 2005-2008 Frédéric
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
Suivant les langages de programmation, modules plus avancés : modules imbriqués modules paramétrés par des modules (foncteurs)
Modularité Extensions Suivant les langages de programmation, modules plus avancés : modules imbriqués modules paramétrés par des modules (foncteurs) généricité modules de première classe : peuvent être
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans
Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans [email protected] Plan 1. Un peu de
COMMENT REDIGER UN RAPPORT TECHNIQUE?
COMMENT REDIGER UN RAPPORT TECHNIQUE? Christiaens Sébastien Université de Liège Département PROMETHEE Institut de Mécanique et de Génie Civil, Bât. B52 Chemin des Chevreuils, 1 B-4000 Liège, Belgique Janvier
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile
TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile Dans ce TP, vous apprendrez à définir le type abstrait Pile, à le programmer en Java à l aide d une interface
Rappels Entrées -Sorties
Fonctions printf et scanf Syntaxe: écriture, organisation Comportement Données hétérogènes? Gestion des erreurs des utilisateurs 17/11/2013 Cours du Langage C [email protected] ibrahimguelzim.atspace.co.uk
Intégrale de Lebesgue
Intégrale de Lebesgue L3 Mathématiques Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2014 version du 2/12/14 Table des matières 1 Tribus (σ-algèbres) et mesures 1 1.1 Rappels ensemblistes..............................
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Une nouvelle manière de collaborer
Une nouvelle manière de collaborer Imaginez la collaboration autrement! «La technologie interactive de SMART facilite le changement culturel au sein de notre organisation. Elle permet à nos équipes de
Un modèle stochastique du taux d intérêt implicite en microcrédit
Un modèle stochastique du taux d intérêt implicite en microcrédit PHEAKDEI MAUK, MARC DIENER LABORATOIRE J.A. DIEUDONNÉ Dixième colloque des jeunes probabilistes et statisticiens CIRM Marseille 16-20 avril
PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?
PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS? Pierre Baumann, Michel Émery Résumé : Comment une propriété évidente visuellement en dimensions deux et trois s étend-elle aux autres dimensions? Voici une
Le nombre d or et Fibonacci
Août 2004, Bordeaux Pentagone et nombre d or Irrationalité Séries géométriques Equation Remarques et exercice Le pentagramme magique se retrouve partout dans la nature et hors de la nature est le symbole
La plate-forme DIMA. Master 1 IMA COLI23 - Université de La Rochelle
La plate-forme DIMA Master 1 IMA COLI23 - Université de La Rochelle DIMA Bref aperçu Qu'est-ce? Acronyme de «Développement et Implémentation de Systèmes Multi-Agents» Initié par Zahia Guessoum et Jean-Pierre
Tout au long de votre cursus Quel métier futur? Dans quel secteur d activité? En fonction de vos goûts et aptitudes et du «niveau d emploi» dans ce
Tout au long de votre cursus Quel métier futur? Dans quel secteur d activité? En fonction de vos goûts et aptitudes et du «niveau d emploi» dans ce «profil» S orienter (éventuellement se réorienter) dans
Théorie des Langages
Théorie des Langages Analyse syntaxique descendante Claude Moulin Université de Technologie de Compiègne Printemps 2010 Sommaire 1 Principe 2 Premiers 3 Suivants 4 Analyse 5 Grammaire LL(1) Exemple : Grammaire
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
OPTIMAXMD. Assurance vie permanente avec participation. Faites fructifier votre argent
OPTIMAXMD Assurance vie permanente avec participation Faites fructifier votre argent VOUS AVEZ BESOIN D ASSURANCE Tout le monde a besoin d assurance, mais le monde de l assurance peut paraître très complexe
