RECONNAISSANCE DE LA MAIN POUR LES INTERFACES GESTUELLES
|
|
|
- Bernard Charbonneau
- il y a 10 ans
- Total affichages :
Transcription
1 RECONNAISSANCE DE LA MAIN POUR LES INTERFACES GESTUELLES Sébastien Marcel Olivier Bernier Daniel Collobert France Telecom - CNET DTL / DLI / TNT 2 avenue Pierre Marzin Lannion FRANCE Les interfaces gestuelles basées sur l'image sont la voie la plus naturelle pour la construction des interfaces homme-machine du futur, mais ce sont aussi les plus difficiles à concevoir. Nous proposons d'utiliser un modèle de réseau de neurones pour reconnaître une posture de la main dans une image. Les gestes de la main sont segmentés en utilisant une discrétisation de l'espace corporel basée sur l'emplacement du visage et sur les proportions anthropométriques du corps. 1. INTRODUCTION LISTEN est un système temps-réel de suivi de personnes [2]. Dans ce système, les visages sont détectés par un réseau de neurones dans des zones de teinte chair. Nous présentons une extension de LISTEN utilisant la reconnaissance des postures de la main pour exécuter une commande. Pour faciliter la de l'intention de l'utilisateur d'exécuter une commande, des "fenêtres actives" sont définies dans l'espace corporel. Ainsi, lorsqu'une zone de teinte chair entre dans une "fenêtre active", des réseaux de neurones, associés respectivement à chacune des postures que l'on souhaite détecter, sont déclenchés. 2. LE TRAITEMENT DE L'IMAGE Nous définissons un blob comme un objet statistique de composantes spatiales (x,y) et colorimétriques (Y,U,V). Les pixels appartenant à un blob sont ceux qui ont des propriétés spatiales et colorimétriques similaires aux composantes du blob [8][4]. L'image est filtrée à l'aide d'une table de teinte chair (Figure 1), puis un algorithme d'expansion calcule des zones de pixels de teinte chair connexes. Les zones qui sont en mouvement servent à initialiser la construction des blobs (Figure 2). Figure 1. Image filtrée Figure 2. Blobs
2 3. UN ESPACE CORPOREL BASE SUR LE VISAGE L'espace corporel centré sur le visage est défini à partir d'une "discrétisation de l'espace pour l'emplacement des mains" [5] et du visage détecté par LISTEN. Figure 3. L'espace corporel centré sur le visage Figure 4. Un modèle anthropométrique du corps L'espace corporel centré sur le visage (Figure 3) est construit en utilisant un modèle anthropométrique exprimé en fonction de la hauteur totale du corps (Figure 4) et rapporté à la hauteur du visage détecté par LISTEN. Dans nos séquences, prises en champ large, les visages et les mains sont de petite taille. La reconnaissance des postures devient alors une tâche difficile. 4. LE MODELE DE RESEAU DE NEURONES Les réseaux de neurones, tels les modèles discriminants [6] ou les cartes de Kohonen [1], ont été précédemment appliqués à la reconnaissance des postures de la main. Dans ce travail, nous proposons d'utiliser un modèle déjà appliqué à la de visage : le modèle génératif contraint (CGM) [3] (Figure 5). Figure 5. Le modèle génératif contraint Figure 6. Distance de reconstruction Le but de l'apprentissage génératif contraint est de se rapprocher le plus possible de la probabilité de distribution de l'ensemble des données que l'on cherche à apprendre.
3 Pour cela, un réseau de neurones non-linéaire à compression est entraîné avec des exemples, mais aussi avec des contre-exemples. Chaque exemple de main est reconstruit à l'identique et chaque contre-exemple est contraint à être reconstruit comme une moyenne du voisinage de l'exemple le plus proche. Pour chaque posture, la classification est faite en mesurant la distance entre l'entrée présentée et la sortie obtenue (Figure 6). 5. EXPERIMENTATIONS 5.1. RESULTATS SUR NOTRE BASE D'IMAGES Un petit nombre de postures de la main a été sélectionné (A, B, C, Cinq, Pointe et V). Pour chacune d'elle, nous avons construit une base de plusieurs milliers d'exemples sur des fonds uniformes et complexes divers. Les tailles des fenêtres des postures sont : 20x20 pour A, 18x30 pour B, 18x20 pour C et Cinq, et 18x30 pour Pointe et V (Figure 7). Pour rechercher une posture, les images sont explorées à différentes échelles, des fenêtres sont testées à différentes positions par un CGM qui donne la probabilité d'avoir une posture de la main. Figure 7. Exemples de notre base de test Une partie de la base a été utilisée pour l'apprentissage (environ 80%) et le reste pour les tests. Même si les images sur fonds complexes sont plus difficiles à apprendre, le CGM permet d'obtenir un taux de raisonnable sans trop dégrader le taux de fausses alarmes (Table 1 et 2). Table 1 : Résultats moyens sur notre base de test avec fonds uniformes A,B,C,V ,8 % 1 / A à V ,4 % 1 / Table 2 : Résultats moyens sur notre base de test avec fonds complexes A,B,C,V ,8 % 1 / A à V ,1 % 1 / Le taux de est essentiel pour permettre au système d'avoir de bonnes performances, il doit être faible en comparaison du nombre de tests réalisés pour une image. Le taux de sur des images diverses ne contenant pas de mains est d'environ 1 fausse alarme pour tests.
4 5.2. RESULTATS SUR UNE BASE D'IMAGES D'EVALUATION Le CGM a également été testé sur la base de Jochen Triesch [7]. Cette base d'évaluation contient des images 128x128 en niveaux de gris de 10 signes de la main exécutés par 24 personnes sur des fonds uniformes (clairs et sombres) et sur des fonds complexes. Nous avons testé les postures A, B, C et V (Figure 8). Figure 8. Exemples de la base de Jochen Triesch Les tests effectués sur la base d'évaluation donnent des résultats comparables en s (Table 3) et en (Table 4) à ceux obtenus sur nos bases de tests. Nous pensons pouvoir améliorer ces résultats en ajoutant de nouvelles données ou en combinant les réseaux entre eux. Table 3 : Résultats moyens sur la base de Jochen Triesch avec fonds uniformes A,B,C,V ,7 % 1 / Table 4 : Résultats moyens sur la base de Jochen Triesch avec fonds complexes A,B,C,V 96 84,4 % 1 / EXPERIMENTATIONS EN TEMPS REEL La des postures de la main a été intégrée dans une version mono-utilisateur de LISTEN. Ce système suit les blobs différents du visage dans l'espace corporel. Dans cet espace, des zones appelées fenêtres actives, sont définies a priori pour détecter l'intention de l'utilisateur d'exécuter une commande et restreindre l'espace de recherche. Figure 9. Exemples de de postures de la main dans les blobs
5 Ainsi, lorsqu'un blob entre dans une fenêtre active les détecteurs de postures sont déclenchés. Actuellement, il n'y a pas de stratégie dans le choix des détecteurs à utiliser, ils sont tous mis à contribution. Le réseau de neurones qui produit la meilleure, détermine la posture réalisée par l'utilisateur. Malgré l'utilisation systématique de tous les détecteurs, le système reste utilisable en temps réel. 6. CONCLUSION Nous venons d'intégrer la des postures de la main et l'espace corporel centré sur le visage dans un système mono-utilisateur basé sur LISTEN. Cette application constitue un premier pas vers les interfaces gestuelles basées sur l'image. Nous travaillons actuellement sur l'intégration à ce système d'un noyau de reconnaissance des gestes dynamiques de la main, basé sur l'analyse du mouvement des blobs. REFERENCES [1] Boehm, K. and Broll, W. and Sokolewicz, M., Dynamic Gesture Recognition Using Neural Networks: A Fundament for Advanced Interaction Construction. SPIE, Conference Electronic Imaging Science and Technology (1994). [2] Collobert, M., Feraud, R., Le Tourneur G., Bernier, O., Viallet, J.E., Mahieux, Y. and Collobert, D. LISTEN: A System for Locating and Tracking Individual Speakers. 2nd Int. Conf. on Automatic Face and Gesture (1996), [3] Feraud, R. PCA, Neural Networks and Estimation for Face Detection. NATO ASI, Face Recognition: from Theory to Applications (1997), [4] Kauth, R.J. and Pentland, A and Thomas, G.S. Blob: an unsupervised clustering approach to spatial preprocessing of multispectral scanner imagery. 11 th Int. Symposium on Remote Sensing of the Environment, Ann Arbor, MI, (1997). [5] McNeill, D. Hand and Mind: What gestures reveal about thought. Chicago Press (1992). [6] Murakami, K. and Taguchi, H. Gesture recognition using Recurrent Neural Networks. CHI'91, [7] Triesch, J. and Malsburg, C. Robust Classification of Hand against Complex Backgrounds. 2nd Int. Conf. on Automatic Face and Gesture (1996), [8] Wren, C. and Azarbayejani, A. and Darrell, T. and Pentland, A. Pfinder: Real-Time Tracking of the Human Boby. IEEE Transactions on Pattern Analysis and Machine Intelligence (1997), vol 19, n 7, pp
Laboratoire 4 Développement d un système intelligent
DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement
Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo
Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo Dans ce projet, nous allons réaliser le code qui permet d'insérer sur une image, un logo sur un
Une vue d ensemble de la reconnaissance de gestes
Une vue d ensemble de la reconnaissance de gestes Julien Thomet Département d informatique Université de Fribourg [email protected] Résumé Le désir de pouvoir interagir avec un ordinateur de manière
Monitoring elderly People by Means of Cameras
Nuadu project Technologies for Personal Hearth Seminar, June 4th, 2009 Monitoring elderly People by Means of Cameras Laurent LUCAT Laboratory of Embedded Vision Systems CEA LIST, Saclay, France 1 Summary
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons
Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons Ahmad OSMAN 1a, Valérie KAFTANDJIAN b, Ulf HASSLER a a Fraunhofer Development Center
Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.
Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis
modélisation solide et dessin technique
CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
Cisco Advanced Video Monitoring System
Cisco Advanced Video Monitoring System Le logiciel Cisco Advanced Video Monitoring System (AVMS) est un logiciel de vidéosurveillance intelligent, de qualité professionnelle, destiné aux petites entreprises.
Intérêts et limites de la vidéo-surveillance intelligente pour la Sécurité Globale
Intérêts et limites de la vidéo-surveillance intelligente pour la Sécurité Globale Pierre BERNAS 1 1 EVITECH +33.820.2008.39 pbernas at evitech dot com 1. Introduction Depuis la fin des années 90, la numérisation
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems
Traitement numérique de l'image. Raphaël Isdant - 2009
Traitement numérique de l'image 1/ L'IMAGE NUMÉRIQUE : COMPOSITION ET CARACTÉRISTIQUES 1.1 - Le pixel: Une image numérique est constituée d'un ensemble de points appelés pixels (abréviation de PICture
SIG ET ANALYSE EXPLORATOIRE
SIG ET ANALYSE EXPLORATOIRE VERS DE NOUVELLES PRATIQUES EN GÉOGRAPHIE Jean-Marc ORHAN Equipe P.A.R.I.S., URA 1243 du CNRS Paris Résumé L'offre actuelle dans le domaine des logiciels de type Système d'information
NC 06 Norme comptable relative aux Immobilisations incorporelles
NC 06 Norme comptable relative aux Immobilisations incorporelles Objectif 01. Une entreprise peut acquérir des éléments incorporels ou peut elle-même les développer. Ces éléments peuvent constituer des
Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12
Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 2 Discrimination Invariance Expressions faciales Age Pose Eclairage 11/12/2012 3 Personne Inconnue Identité
LibreOffice Calc : introduction aux tableaux croisés dynamiques
Fiche logiciel LibreOffice Calc 3.x Tableur Niveau LibreOffice Calc : introduction aux tableaux croisés dynamiques Un tableau croisé dynamique (appelé Pilote de données dans LibreOffice) est un tableau
Reconnaissance de gestes : approches 2D & 3D
Reconnaissance de gestes : approches 2D & 3D Maher Mkhinini et Patrick Horain Institut Mines-Télécom/Télécom SudParis Département Électronique et Physique, 9 rue Charles Fourier, 91011 Evry, France Email
Géométrie discrète Chapitre V
Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets
Présentation du sujet de thèse Schémas temporels hybrides fondés sur les SVMs pour l analyse du comportement du conducteur
Présentation du sujet de thèse Schémas temporels hybrides fondés sur les SVMs pour l analyse du comportement du conducteur Réalisé par : Bassem Besbes Laboratoire d Informatique, Traitement de l Information
Ré-ordonnancement adaptatif de messages dans un réseau ad hoc de véhicules
Ré-ordonnancement adaptatif de messages dans un réseau ad hoc de véhicules M. Shawky, K. Chaaban, P. Crubillé Heudiasyc UMR 6599 CNRS, Univ. Tech. De Compiègne 1 ADAS (Advanced Driving Aid System) Reactive
Fête de la science Initiation au traitement des images
Fête de la science Initiation au traitement des images Détection automatique de plaques minéralogiques à partir d'un téléphone portable et atelier propose de créer un programme informatique pour un téléphone
Technique de compression des images médicales 4D
Technique de compression des images médicales 4D Leila Belhadef 1 et Zoulikha Mekkakia 1 1 Département d Informatique, USTO-MB, BP 1505 El Mnaouer, Oran, Algérie [email protected], [email protected]
Catégories de format d'optimisation
Catégories de format d'optimisation On distingue 3 formats principaux pour les images destinées au Web: JPG GIF PNG Le format JPG est le format idéal pour les photographies et ses paramètres d'optimisation
Clients et agents Symantec NetBackup 7
Protection complète pour les informations stratégiques de l'entreprise Présentation Symantec NetBackup propose un choix complet de clients et d'agents innovants pour vous permettre d optimiser les performances
Optimisation de la compression fractale D images basée sur les réseaux de neurones
Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A [email protected]
Étude de données multisources par simulation de capteurs et clustering collaboratif
Étude de données multisources par simulation de capteurs et clustering collaboratif Germain Forestier, Cédric Wemmert, Pierre Gançarski Université de Strasbourg - LSIIT - CNRS - UMR 75 Pôle API, Bd Sébastien
Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies
Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure
Cinq conseils pour tirer le meilleur parti de Google Analytics
Cinq conseils pour tirer le meilleur parti de Google Analytics Auteurs : Ross Perez et Brett Sheppard Avril 2013 p2 Google Analytics a mis à votre disposition plusieurs nouvelles fonctions intéressantes
L apprentissage automatique
L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer
IBM Software Big Data. Plateforme IBM Big Data
IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes
L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :
La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
DA MOTA Anthony - Comparaison de technologies : PhoneGap VS Cordova
DA MOTA Anthony - Comparaison de technologies : PhoneGap VS Cordova I. Introduction Dans une période où la plasticité peut aider à réduire les coûts de développement de projets comme des applications mobile,
Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP
Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez
PHPWEBSITE -Tutoriel image
PHPWEBSITE -Tutoriel image La capture des images depuis le web pour mon site. L optimisation d images pour le web, 1 Préparer des images pour le Web A. Généralités 1. Les trois formats d'images sur le
Bienvenue sur Lab-Windows Il n'y a de vents favorables que pour ceux qui ont un cap
Page 1 of 7 Rechercher sur le Web Bienvenue sur Lab-Windows Il n'y a de vents favorables que pour ceux qui ont un cap Accueil Actualité Windows Vista Windows Server Active Directory TCP/IP Securité Qui
Algorithmes d'apprentissage
Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
Traitement bas-niveau
Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.
TEXT MINING. 10.6.2003 1 von 7
TEXT MINING 10.6.2003 1 von 7 A LA RECHERCHE D'UNE AIGUILLE DANS UNE BOTTE DE FOIN Alors que le Data Mining recherche des modèles cachés dans de grandes quantités de données, le Text Mining se concentre
Christophe CANDILLIER Cours de DataMining mars 2004 Page 1
Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe
Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par
Mathématiques et leurs interactions. Mathématiques et leurs interactions. Mathématiques et leurs interactions. Mathématiques et leurs interactions
Sujets de thèse Ecole Doctorale "Sciences et Ingénierie" 2011-2012 Sujet de thèse Unité de recherche Nom de l'encadrant Discipline principale Discipline secondaire Le rôle de l'information en finance JEANBLANC
Laboratoire d Automatique et Productique Université de Batna, Algérie
Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,
Organiser des séquences pédagogiques différenciées. Exemples produits en stage Besançon, Juillet 2002.
Cycle 3 3 ème année PRODUCTION D'ECRIT Compétence : Ecrire un compte rendu Faire le compte rendu d'une visite (par exemple pour l'intégrer au journal de l'école ) - Production individuelle Précédée d'un
Formula Negator, Outil de négation de formule.
Formula Negator, Outil de négation de formule. Aymerick Savary 1,2, Mathieu Lassale 1,2, Jean-Louis Lanet 1 et Marc Frappier 2 1 Université de Limoges 2 Université de Sherbrooke Résumé. Cet article présente
Nouveau Web Client marquant, Cumulus Video Cloud, optimisations de la base de données, et plus..
INFORMATION PRODUIT : Quoi de Neuf dans Cumulus 9.0? Nouveau Web Client marquant, Cumulus Video Cloud, optimisations de la base de données, et plus.. Les nouveautés marquantes et les améliorations disponibles
Création d'un site dynamique en PHP avec Dreamweaver et MySQL
Création d'un site dynamique en PHP avec Dreamweaver et MySQL 1. Création et configuration du site 1.1. Configuration de Dreamweaver Avant de commencer, il est nécessaire de connaître l'emplacement du
RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources
Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils
Axis IP-Surveillance. Solutions de vidéo sur IP professionnelles pour la sécurité, la vidéosurveillance et le contrôle à distance
Axis IP-Surveillance Solutions de vidéo sur IP professionnelles pour la sécurité, la vidéosurveillance et le contrôle à distance Facilité d'installation L offre de vidéo sur IP Axis apporte au monde professionnel
Tablette. Quelques applications à installer sur sa
Quelques applications à installer sur sa Tablette DEC22 --- C Jézégou -------------------- Quelques applications pour tablettes de classe --------------------- page 1 / 5 Domaine Application Fonction Lien
CURRICULUM VITAE. Informations Personnelles
CURRICULUM VITAE Informations Personnelles NOM: BOURAS PRENOM : Zine-Eddine STRUCTURE DE RATTACHEMENT: Département de Mathématiques et d Informatique Ecole Préparatoire aux Sciences et Techniques Annaba
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
Tune Sweeper Manuel de l'utilisateur
Tune Sweeper Manuel de l'utilisateur www.wideanglesoftware.com Table des matières Introduction 2 Démarrage rapide 5 Recherche de doublons 9 Sélection des pistes à conserver 12 Éliminer les doublons 15
Leica Application Suite
Leica Application Suite Macro Editor et Macro Runner (Éditeur de macros et Exécuteur de macros) Personnalisées et automatisées 2 Les instructions peuvent être momentanément suspendues» de manière optionnelle
MS PROJECT 2000. Prise en main. Date: Mars 2003. Anère MSI. 12, rue Chabanais 75 002 PARIS E mail : [email protected] Site : www.anere.
DOCUMENTATION MS PROJECT 2000 Prise en main Date: Mars 2003 Anère MSI 12, rue Chabanais 75 002 PARIS E mail : [email protected] Site : www.anere.com Le présent document est la propriété exclusive d'anère
Acronis Backup & Recovery 10 Advanced Server Virtual Edition. Guide de démarrage rapide
Acronis Backup & Recovery 10 Advanced Server Virtual Edition Guide de démarrage rapide Ce document explique comment installer et utiliser Acronis Backup & Recovery 10 Advanced Server Virtual Edition. Copyright
Logiciel SCRATCH FICHE 02
1. Reprise de la fiche 1: 1.1. Programme Figure : Logiciel SCRATCH FICHE 02 SANS ORDINATEUR : Dessiner à droite le dessin que donnera l'exécution de ce programme : Unité : 50 pas : Remarque : vous devez
Algorithmique avec Algobox
Algorithmique avec Algobox 1. Algorithme: Un algorithme est une suite d instructions qui, une fois exécutée correctement, conduit à un résultat donné Un algorithme doit contenir uniquement des instructions
Chapitre 22 Optimisation pour diffusion à l'écran, pour le web
1 1 9 9 7 7 Optimisation pour diffusion à l'écran, pour le web Diffusion pour le web........................ 31 Les paramètres avant l exportation................. 31 Optimisation pour le web......................
Christophe SANNIER [email protected]
Systèmes d Information à Référence Spatiale Utilisation d un Estimateur de Régression avec des Données Landsat pour l Estimation de l Etendu et des Changements du Couvert Forestier du Gabon de 1990 à 2010
REALISER UN SITE INTERNET AVEC IZISPOT SOMMAIRE
REALISER UN SITE INTERNET AVEC IZISPOT Voici un tutoriel pour vous aider à réaliser un petit site internet (4 pages) à l'aide du logiciel gratuit IZISPOT. Dans l'exemple qui suit, il s'agit de mettre en
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Guide de l'utilisateur : Surveillance MédiaSource Analytique
Guide de l'utilisateur : Surveillance MédiaSource Analytique Chapitre 1 : Bienvenue à Surveillance MédiaSource Analytique 2 À propos de Surveillance MédiaSource Analytique 2 Choisir le ton d'un article
2. Activités et Modèles de développement en Génie Logiciel
2. Activités et Modèles de développement en Génie Logiciel Bernard ESPINASSE Professeur à l'université d'aix-marseille Plan Les Activités du GL Analyse des besoins Spécification globale Conceptions architecturale
Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services
69 Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services M. Bakhouya, J. Gaber et A. Koukam Laboratoire Systèmes et Transports SeT Université de Technologie de Belfort-Montbéliard
SQL Server 2014 Administration d'une base de données transactionnelle avec SQL Server Management Studio
Présentation 1. Introduction 13 2. Présentation de SQL Server 14 2.1 Qu'est-ce qu'un SGBDR? 15 2.2 Mode de fonctionnement client/serveur 16 2.3 Les plates-formes possibles 18 2.4 Les composants de SQL
Master Exploration Informatique des données Data Mining & Business Intelligence. Evelyne CHARIFOU Priscillia CASSANDRA
Master Exploration Informatique des données Data Mining & Business Intelligence Groupe 5 Piotr BENSALEM Ahmed BENSI Evelyne CHARIFOU Priscillia CASSANDRA Enseignant Françoise FOGELMAN Nicolas DULIAN SOMMAIRE
MANUEL ACHAT à DISTANCE
MANUEL ACHAT à DISTANCE NV VLAAMSE VISVEILING STEDELIJKE VISMIJN NIEUWPOORT Mars - 2013 Version 1.1 Auteur Mark SMET Aucxis Trading Solutions cvba Zavelstraat 40, 9190 Stekene, België Tel +32 (0)3 790
Manuel de l utilisateur de Samsung Auto Backup
rev.2010-06-29 Manuel de l utilisateur de Samsung Auto Backup Table des matières Contents Chapter1 Précautions Chapter2 Les concepts de base de la sauvegarde (Backup) Apprendre les concepts de base de
Programme scientifique Majeure INTELLIGENCE NUMERIQUE. Mentions Image et Réalité Virtuelle Intelligence Artificielle et Robotique
É C O L E D I N G É N I E U R D E S T E C H N O L O G I E S D E L I N F O R M A T I O N E T D E L A C O M M U N I C A T I O N Programme scientifique Majeure INTELLIGENCE NUMERIQUE Langage Java Mentions
En synthèse. HVR pour garantir les échanges sensibles de l'entreprise
En synthèse HVR pour garantir les échanges sensibles de l'entreprise Le logiciel HVR fournit des solutions pour résoudre les problèmes clés de l'entreprise dans les domaines suivants : Haute Disponibilité
Détection et suivi d'objets dans une séquence d'images par contours actifs
Détection et suivi d'objets dans une séquence d'images par contours actifs A. Fekir (1), N. Benamrane (2) et A. Taleb-Ahmed (3) (1) Département d informatique, Université de Mustapha Stambouli, BP 763,
PRINCIPE MICROSCOPIE CONFOCALE
PRINCIPE MICROSCOPIE CONFOCALE Un microscope confocal est un système pour lequel l'illumination et la détection sont limités à un même volume de taille réduite (1). L'image confocale (ou coupe optique)
Transférer et enregistrer les photos sur l'ordinateur
BML INFORMATIQUE Perfectionnement Séance N 4 Approche de la photo numérique Daniel Drux 15 Oct. 2014 Cette séance a pour but de vous aider à aborder la photo numérique en assimilant les notions de base.
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
Vidéosurveillance. Lien : http://www.videoprotection.interieur.gouv.fr/
Vidéosurveillance Lien : http://www.videoprotection.interieur.gouv.fr/ Les principes La vidéosurveillance va de plus en plus souvent participer à la détection antiintrusion, au contrôle d'accès, à la télésurveillance.
Livrable 2.1 Rapport d analyse et de restructuration de code monothread des modules P, T, Q et F de l encodage MPEG-4 AVC
Groupe des Ecoles des Télécommunications Institut National des Télécommunications Département ARTEMIS Advanced Research & TEchniques for Multidimensional Imaging Systems Livrable 2.1 Rapport d analyse
DÉCOUVERTE DE CAPTURE ONE
Page 1/12 DÉCOUVERTE DE CAPTURE ONE PREMIERS PAS Lorsqu'on a l'habitude ce logiciel on effectue toutes les opérations ( ou presque avec lui ), y compris le transfert des fichiers depuis l'apn vers le disque
Systèmes d'alarme intrusion AMAX Simple et fiables
Systèmes d'alarme intrusion AMAX Simple et fiables 2 Systèmes d'alarme intrusion AMAX Bosch sécurise vos biens : les systèmes d'alarme intrusion AMAX orent une solution adaptée à la demande de vos clients
R-ICP : une nouvelle approche d appariement 3D orientée régions pour la reconnaissance faciale
R-ICP : une nouvelle approche d appariement 3D orientée régions pour la reconnaissance faciale Boulbaba BEN AMOR, Karima OUJI, Mohsen ARDABILIAN, et Liming CHEN Laboratoire d InfoRmatique en Images et
OBJET : Mise en œuvre du décret n 2004-1144 du 26 octobre 2004 relatif à l'exécution des marchés publics par carte d'achat.
Secrétariat général DIRECTION DE L'EVALUATION DE LA PERFORMANCE, ET DES AFFAIRES FINANCIERES ET IMMOBILIERES SOUS-DIRECTION DES AFFAIRES IMMOBILIERES SLAC/N AFFAIRE SUIVIE PAR : Pierre AZZOPARDI Tél :
Prédiction de couverture de champ radioélectrique pour les réseaux radiomobiles : L apport du Système d Information Géographique ArcInfo 8
Prédiction de couverture de champ radioélectrique pour les réseaux radiomobiles : L apport du Système d Information Géographique ArcInfo 8 Christine TURCK 1 * et **, Christiane WEBER**, Dominique THOME*
Analyse Sémantique de Nuages de Points 3D et d Images dans les Milieux Urbains
Analyse Sémantique de Nuages de Points 3D et d Images dans les Milieux Urbains Andrés Felipe SERNA MORALES Directrice de thèse: Beatriz MARCOTEGUI ITURMENDI [email protected] MINES ParisTech, Mathématiques
Classification Automatique de messages : une approche hybride
RECIAL 2002, Nancy, 24-27 juin 2002 Classification Automatique de messages : une approche hybride O. Nouali (1) Laboratoire des Logiciels de base, CE.R.I.S., Rue des 3 frères Aïssiou, Ben Aknoun, Alger,
Interactions geste-musique par vision artificielle Gesture-music interactions by artificial vision
Interactions geste-musique par vision artificielle Gesture-music interactions by artificial vision F. Bardet T. Chateau F. Jurie M. Naranjo Lasmea, UMR6602 du CNRS/Université Blaise Pascal, 63172 Aubiere
Réussir et traiter ses photos sous UV avec Photoshop
Réussir et traiter ses photos sous UV avec Photoshop par Rémi BORNET le 29/12/2009 Beaucoup de personnes n'arrivent pas à obtenir de bons résultats en photos sous UV et ne trouvent pas de conseils. Cet
Présentation de GnuCash
Par Jean-Marc St-Hilaire De JMS Informatique Enr. Jean-Marc St-Hilaire a une formation en programmation et en comptabilité (H.E.C.) Cette présentation est disponible à www.jmsinformatique.com/ateliers
GHOST SPECIAL EDITION Guide d'installation et d'utilisation
GHOST SPECIAL EDITION Guide d'installation et d'utilisation Copyright Toute représentation, transmission, reproduction, traduction dans une langue étrangère ou un langage informatique quelconque, ou tout
Gérer ses impressions en ligne
Gérer ses impressions en ligne Service d'impression en ligne et copieurs numériques en réseau E.N.T : onglet Services pratiques, Rubrique Gérer ses impressions. Octobre 2012 Version : 1.1.1 Direction des
http://www.sage.fr/documents/bdc/fiches/05/4/kb15397.html?auth=/8w/aqdii3mj...
Page 1 sur 6 La mise à jour fiscale dans les Etats Comptables et Fiscaux La mise à jour fiscale dans les Etats Comptables et Fiscaux La mise à jour fiscale consiste à remplacer le paramétrage de la base
Logiciel de gestion de données
Logiciel de gestion de données Logiciel ProdX Productivité accrue Qualité supérieure des produits Sécurité renforcée Visibilité totale des processus ProdX Logiciel de gestion des données d'équipements
ANALYSE DE RISQUE AVEC LA MÉTHODE MEHARI Eric Papet [email protected] Co-Fondateur SSII DEV1.0 Architecte Logiciel & Sécurité Lead Auditor ISO 27001
ANALYSE DE RISQUE AVEC LA MÉTHODE MEHARI Eric Papet [email protected] Co-Fondateur SSII DEV1.0 Architecte Logiciel & Sécurité Lead Auditor ISO 27001 PLAN Introduction Générale Introduction MEHARI L'analyse
Seafile, pour simplifier l'accès à ses fichiers, les partager et les synchroniser
Seafile, pour simplifier l'accès à ses fichiers, les partager et les Accès : hors E.N.T. Direction Informatique Accès : hors E.N.T. Version : 2.3 Date : 20/05/2015 Editeur : Auteur(s) : Copyright : Licence
JUPITER /20/27/61m. Contact NF, 50mA à 24v max. avec R50 Ohms en série
JUPITER /20/27/61m 1 ) - SPECIFICATIONS TECHNIQUES Tension 12v nominal (8,5 à 16 v dc) Courant 25 ma max à 12vdc Ondulation 2v c/c à 12vdc Sortie alarme Contact NF, 50mA à 24v max. avec R50 Ohms en série
Vérification audiovisuelle de l identité
Vérification audiovisuelle de l identité Rémi Landais, Hervé Bredin, Leila Zouari, et Gérard Chollet École Nationale Supérieure des Télécommunications, Département Traitement du Signal et des Images, Laboratoire
CRÉER UNE BASE DE DONNÉES AVEC OPEN OFFICE BASE
CRÉER UNE BASE DE DONNÉES AVEC OPEN OFFICE BASE 3. ème partie : RAPPORTS MENU D'ACCUEIL - MIGRATION Table des matières 1. Les RAPPORTS...2 1.1 Création d'un rapport basé sur une Requête...3 1.2 Imprimer,
